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Chapter 2

Results from Linear

Analysis

In the last chapter we began to see the need for certain mathematical tools in
order to rigorously analyze the finite element method. In an effort to have this
book as self-contained as possible, we provide here a short summary of many of the
commonly used results from functional analysis.

The main goal of this chapter is to introduce the mathematical tools necessary
to precisely formulate and analyze a general weak problem and its discrete analogue.
The advantage to this abstraction is that we are able to treat a wide class of problems
within the same general framework. In later chapters when we investigate particular
differential equations, we see that many of the weak formulations fit into this general
framework. Thus, if we determine conditions which guarantee existence, uniqueness,
and continuous dependence on the data of our general weak problem and derive an
error estimate, then we can easily analyze a particular weak formulation by showing
that it satisfies the hypotheses for the general problem.

In formulating weak problems we need to determine appropriate classes of
function spaces to use for our test and trial spaces and to examine some of their
basic properties. The particular types of spaces that are needed are certain Hilbert
spaces which are named after the German mathematician David Hilbert (1862-
1943). These spaces offer a natural setting for weak problems and can be considered
as generalizations of Euclidean space. In general, these Hilbert spaces are infinite
dimensional. When attempting to understand various concepts and results on infi-
nite dimensional spaces, it is always helpful to ask oneself what this corresponds to
in a finite dimensional setting such as R

n. In many situations we attempt to point
out the analogous results in R

n.
We remark that this chapter is by no means a complete exposition of the

topic; rather, it is merely intended to prepare the reader for subsequent chapters.
For a more detailed exposition of the topics in Section 2.1-2.3, one may consult any
functional analysis text; e.g., see [Schechter], [Kreysig], [Yoshida].
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18 Chapter 2. Results from Linear Analysis

2.1 Linear spaces

The goal of this section is to recall some basic definitions for linear or vector spaces,1

inner products, and norms and specify some of the notation we use throughout the
book. For simplicity of exposition, we only consider real linear spaces.

Definition 2.1. A linear space (or vector space) V is a set of objects on which
two operations are defined;2 the first determines the sum of two elements belonging
to V and the second determines the product of any scalar (a real number) α and
any element of V . These sum and product operations must satisfy the following
properties:

(i) u + v ∈ V for all u, v ∈ V ;

(ii) u + v = v + u for all u, v ∈ V ;

(iii) u + (v + w) = (u + v) + w for all u, v, w ∈ V ;

(iv) there is an element 0 ∈ V such that u + 0 = u for all u ∈ V ;

(v) for each u ∈ V there exists an element (−u) ∈ V such that u + (−u) = 0;

(vi) αu ∈ V for each scalar α and all u ∈ V ;

(vii) 1u = u for all u ∈ V ;

(viii) α(u + v) = αu + αv for all scalars α, and for all u, v ∈ V ;

(ix) (α + β)u = αu + βu for all scalars α, β and for all u ∈ V ;

(x) α(βu) = (αβ)u for all scalars α, β and for all u ∈ V .

These axioms are simply the well-known properties satisfied by the set of all
vectors in R

n with the usual definitions for the sum and scalar product operations.
However, more general collections of objects such as the set of all continuous func-
tions defined on the interval [a, b] with the usual definitions of sum and product are
also linear spaces.

The elements of a linear space V are called vectors. An expression of the form

α1u1 + α2u2 + · · · + αnun ,

where αi ∈ R and ui ∈ V , i = 1, . . . , n, is called a linear combination of the vectors
ui. In the simple example of the previous chapter, we saw that our approximate
solution was chosen to be a linear combination of functions which formed a basis
for the approximating space. The two underlying properties of a basis are linear
independence and spanning. Clearly we can always take a linear combination of
m vectors and get the zero vector by choosing all the coefficients to be zero. The

1The terms are used interchangeably.
2There is also an associated field which we always choose to be the real numbers.
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concept of linear independence/dependence characterizes whether this is the only
way to get the zero vector. Recall that for m vectors in R

n, this reduces to the
question of whether the linear system A~x = ~0 has only the trivial solution; here the
m columns of A are the vectors. The question of whether a set of m vectors in R

n

span R
n reduces to the question of whether A~x = ~b has a unique solution for any

~b ∈ R
n.

Definition 2.2. The set of vectors {ui}
n
i=1 is called linearly dependent if there

exist real numbers αi, i = 1, . . . , n, not all of which are zero, such that

α1u1 + α2u2 + · · · + αnun = 0 . (2.1)

Otherwise, the set is called linearly independent; i.e., the set is linearly inde-
pendent if the only solution to (2.1) is αi = 0, i = 1, . . . , n.

Definition 2.3. A subset of vectors of a finite dimensional vector space V is called
a spanning set if every vector belonging to V can be written as a linear combination
of the elements of the subset.

To define a basis for a linear space, we need enough vectors to span the space but
not too many so that they are linearly dependent.

Definition 2.4. If V is a linear space and S = {v1, v2, . . . , vr} is a finite set of
vectors in V , then S is called a basis for V if it is a linearly independent spanning
set of V .

To clarify the difference between a finite dimensional and an infinite dimensional
linear space, we make the following definition.

Definition 2.5. A linear space V is called finite dimensional of dimension n if V
contains n linearly independent elements and if any set of (n +1) vectors belonging
to V is linearly dependent.

When posing a discrete weak problem, we use a finite dimensional space so
we can generate a basis and hence write our approximating solution as a linear
combination of the basis elements. In fact, we usually choose our approximating
spaces as finite dimensional subspaces of the underlying infinite dimensional space
on which the weak problem is posed.

Definition 2.6. A subset S of a vector space V is called a subspace of V if u ∈ S
and v ∈ S implies that αu + βv ∈ S for every α, β ∈ R.

Example 2.7 Consider the infinite dimensional linear space of all continuous func-
tions defined on Ω = [0, 1] with the usual definition of addition and scalar multipli-
cation; we denote this space as C0(Ω). Define the following two subsets of C0(Ω)

S1 = {v ∈ C0(Ω) : v(0) = 0}
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and

S2 = {v ∈ C0(Ω) : v(0) = 1} .

The set S1 is a subspace of C0(Ω) since if we take a linear combination of any two
continuous functions that are zero at x = 0 then the result is a continuous function
that is zero at x = 0. However, the set S2 is not a subspace because if we add
two functions which are one at x = 0 then the resulting function has the value
two at x = 0. This will be important to us when we are satisfying inhomogeneous
boundary conditions.

Mappings or operators on linear spaces play an important role, especially
linear mappings.

Definition 2.8. A mapping f of a linear space V onto a linear space W , denoted
f : V → W , is called a linear mapping or equivalently a linear operator provided

f(αu + βv) = αf(u) + βf(v) ∀ u, v ∈ V, α, β ∈ R . (2.2)

The kernel of a mapping f : V → W is defined to be the set {v ∈ V : f(v) = 0}
and the range is defined to be the set of all w ∈ W such that there exists a u ∈ V
where f(u) = w.

For example, matrix multiplication using an m × n matrix is a linear map from
R

n → R
m. The kernel of the mapping is just the null space of the matrix and the

range is just the span of the columns of the matrix.
The structure of a general linear space is not rich enough to be of use in

analyzing the finite element method. In this section the goal is to build a particular
class of linear spaces which have the properties that we need to state and analyze
our problems. In particular, we need a distance function or metric to measure the
“size” of a vector, such as an error vector. However, to be useful the metric must be
defined in such a way that there is a relationship between the algebraic structure of
the vector space and the metric. To guarantee this relationship we first introduce
the concept of a norm which uses the algebraic properties of the space and then we
use the norm to define a metric.

2.1.1 Norms

One familiar distance or metric function is the Euclidean distance formula for mea-
suring the length of a given vector in R

n or equivalently the distance between two
points in R

n. This concept of length of a vector in R
n can be generalized to in-

clude other measures such as the maximum component of a vector in R
n. This

generalization is accomplished by introducing the notion of a norm on R
n which

is a real-valued function from R
n to R satisfying important properties that the

Euclidean distance possesses. This concept of a norm can be extended to general
linear spaces. A norm on a linear space V can be used to measure the “size” of an
element of V , such as the size of an error.
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Definition 2.9. A norm on a linear space V is a real-valued function from V to
R, denoted by ‖·‖, such that

(i) ‖u‖ ≥ 0 for all u ∈ V and ‖u‖ = 0 if and only if u = 0;

(ii) ‖αu‖ = |α| ‖u‖ for all u ∈ V and all α ∈ R;

(iii) ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u, v ∈ V .

The last property is known as the triangle inequality due to its interpretation in
R

n using the standard Euclidean norm. In the exercises we consider the three most
common norms on R

n.
If we relax the first property of a norm to allow ‖u‖ = 0 for u 6= 0, but still

require properties (ii) and (iii), then we call the resulting function a semi-norm.
A linear space V equipped with a norm as defined above is called a normed linear
space so that we think of a normed linear space as a pair (V, ‖ · ‖).

Example 2.10 If we return to our linear space C0(Ω) where Ω = [0, 1] we can
define a norm as

‖f‖ ≡ max
x∈[0,1]

|f(x)| .

Clearly, all three properties of the norm are satisfied. To measure the difference
between two vectors, f, g ∈ C0(Ω) we determine

‖f − g‖ = max
x∈[0,1]

|f(x) − g(x)| .

Since there is always a choice of norms to use on a given vector space, we
would like to know if these different measures are somehow comparable.

Definition 2.11. Two norms, ‖ · ‖a, ‖ · ‖b defined on a linear space V are said to
be equivalent if there are constants C1, C2 such that

C1‖u‖a ≤ ‖u‖b ≤ C2‖u‖a . (2.3)

Of course, if (2.3) holds then we also have

1

C2
‖u‖b ≤ ‖u‖a ≤

1

C1
‖u‖b .

In a course in linear algebra, it is usually proved that all norms on R
n are equiv-

alent. In the exercises, the actual constants in the equivalence relations for the
three standard norms on R

n are investigated; of course, these constants can depend
upon n. In functional analysis, one can show a more general, i.e., that in a finite
dimensional vector space all norms are equivalent. For the proof of the result, see
[Schechter].

Lemma 2.12. If V is a finite dimensional normed linear space, then all norms are
equivalent.
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2.1.2 Inner products

Recall that in dealing with vectors in R
n, one defines a scalar product of two vectors

~a = (a1, a2, · · · , an) and ~b = (b1, b2, · · · , bn) ∈ R
n as

(~a,~b) = ~aT~b =

n
∑

i=1

aibi .

The result of the scalar product is just a number so it can be viewed as a function
from R

n → R. The scalar product is useful in many applications such as determining
if two vectors are perpendicular or equivalently, orthogonal. This concept can be
generalized to elements of a linear space in the following manner.

Definition 2.13. An inner product or scalar product on a (real) linear space
V is a real-valued function from V to R, denoted by (·, ·), satisfying

(i) (u, u) ≥ 0 for all u ∈ V and (u, u) = 0 if and only if u = 0;

(ii) (u, v) = (v, u) for all u, v ∈ V ;

(iii) (αu + βv, w) = α (u, w) + β (v, w) for all u, v, w ∈ V and all α, β ∈ R.

A vector space V equipped with an inner product is aptly called an inner product
space.

Example 2.14 Returning to our example C0(Ω) of a linear space we can define an
inner product as

(f, g) =

∫ 1

0

f(x)g(x) dx .

The three properties of the inner product are easily shown to be satisfied by using
the properties of integrals. See exercises.

Analogous to the case of R
n, we say that two vectors in an inner product space

are orthogonal if their scalar product is zero.

Definition 2.15. Let V be an inner product space. Then u, v ∈ V are orthogonal
if and only if

(u, v) = 0 . (2.4)

One can use the inner product to define a norm for a vector space. Indeed, if
we let ‖v‖ = (v, v)1/2 for all v ∈ V , one can readily show that this defines a norm
on V ; see the exercises for details. We refer to a norm defined in this manner on an
inner product space as the induced norm.

To complete this section we present an inequality for inner product spaces
which is extremely useful. Recall that the scalar product of two vectors in R

n can
also be written as (~a,~b) = ‖~a‖ ‖~b‖ cos θ where ‖ · ‖ denotes the standard Euclidean
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norm and θ is the angle between the two vectors. The Cauchy-Schwarz inequality
generalizes this result to an inner product space.

Lemma 2.16. Let V be an inner product space. The Cauchy-Schwarz inequality is
given by

(u, v) ≤ (u, u)
1

2 (v, v)
1

2 ∀ u, v,∈ V . (2.5)

If ‖ · ‖ denotes the induced norm on V then this inequality can also be written as

(u, v) ≤ ‖u‖
1

2 ‖v‖
1

2 ∀ u, v,∈ V . (2.6)

Proof. To verify (2.5), we first note that it is trivially satisfied if u = 0 or v = 0
so we consider the case where u, v 6= 0. By the first property of inner products, we
know that (u − αv, u − αv) ≥ 0 for any α ∈ R. Using the linearity property of the
inner product we rewrite this as

0 ≤ (u − αv, u − αv) = (u, u) − 2α(u, v) + α2(v, v)

= (u, u) − α(u, v) − α
[

(u, v) − α(v, v)
]

.

Now the term in brackets is zero if we choose α = (u, v)/(v, v). Note that this is
possible since we are considering the case v 6= 0. Thus

(u, u) −
(u, v)2

(v, v)
≥ 0

and simplification yields the Cauchy-Schwarz inequality (2.5). The second form of
the inequality given in (2.6) follows directly from the definition of the norm on V
induced by the scalar product.

2.1.3 Topological concepts

One of our goals in analyzing the finite element method is to determine the error
between the solution of the discrete weak problem and the solution of the continuous
weak problem. We can use the concept of norm introduced in the last section to
measure the distance between these two solutions. For a normed vector space V ,
we define the distance ρ between two vectors u and v as ρ(u, v) = ‖u − v‖.

In discretizing a problem, we expect to have a sequence of solutions which
are generated by using successively finer meshes. We expect that these solutions
converge, in some sense, to the solution of the continuous problem. We now make
precise what this means.

Definition 2.17. A sequence of vectors u1, u2, u3, . . . belonging to a normed linear
space V is called convergent if there exists a vector u ∈ V such that given any
ǫ > 0, there exists a postive integer N = N(ǫ) such that

‖un − u‖ < ǫ ∀n ≥ N .
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We call u the limit of the sequence {ui}i≥1 and write

lim
n→∞

un = u or un → u in V as n → ∞ .

It can be shown that a convergent sequence has only one limit and un → u in V if
and only if ‖un − u‖ → 0 as n → ∞.

An important tool in analysis is the Cauchy sequence. If we use Definition 2.17
to show that a sequence is convergent, then we need to know its limit. However,
sometimes we don’t know the actual limit or it may not even be in our linear space.
Oftentimes the important issue is that a sequence converges rather than what its
limit is. A Cauchy sequence is one in which its terms ultimately become arbitrarily
close. In fact, we can discount a finite number of terms at the beginning of the
sequence and then guarantee that any two of the remaining terms are closer than
some prescribed value.

Definition 2.18. A sequence of vectors {ui}i≥1, {ui} ∈ V , is called a Cauchy
sequence if, given any ǫ > 0, there exists an integer N = N(ǫ) such that

‖un − um‖ ≤ ǫ ∀ m, n ≥ N .

Here ‖ · ‖ defines a norm on a normed linear space V .

Every convergent sequence is clearly a Cauchy sequence since

‖um − un‖ = ‖(um − u) + (u − un)‖ le ‖u − um‖ + ‖u − un‖

and we can make the right-hand side arbitrarily small as m, n → ∞. However, the
converse is not always true as the following example illustrates.

Example 2.19 The Weierstrass Approximation Theorem states that a continuous
function defined on [a, b] can be uniformly approximated as closely as desired by
a polynomial defined on [a, b]. More precisely, suppose f is a continuous function
defined on [a, b]. For every ǫ > 0, there exists a polynomial function p(x) such that
maxx∈[a,b] |f(x)?p(x)| < ǫ. Thus we can construct a sequence of polynomials in
the linear space of polynomials defined on [a, b] with the max-norm which form a
Cauchy sequence but its limit is not a polynomial.

We would like to avoid this situation by imposing on our space of functions
the property that every Cauchy sequence in V has a limit in V . In addition to
properties (i)–(x) which characterize linear spaces, we would like to add the property
of completeness, i.e.,

(xi) if {vn} is a sequence of elements in V such that ‖vn − vm‖ → 0 as m, n → ∞,
then there exists an element v ∈ V such that ‖v − vn‖ → 0 as n → ∞.

Another way to state property (xi) is to require that every Cauchy sequence in V
is convergent.
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A complete normed vector space, i.e., a collection of objects satisfying prop-
erties (i)–(xi) with a norm defined on the space, is of such importance that it is
given a special name: a Banach space. Euclidean n-dimensional space is the most
familiar example of a Banach space. Given any (noncomplete) normed space S
it can be proved that by adding new elements, S can be extended to a complete
normed space (a Banach space), V . This process is referred to as the completion of
S or the closure of S in V .

Since we work with finite dimensional subspaces when we discretize, we often
have sequences on these subspaces and need to know if their limit is in the subspace.

Definition 2.20. A subset S of a Banach space V is said to be a closed subspace
of V if it is a subspace of V with the property that whenever {ui}i≥1 is a convergent
sequence in V such that ui ∈ S, i = 1, 2, . . . , then u = limn→∞ un belongs to S also.

It can be shown that every finite dimensional subspace is closed; this is important
for us since our approximating spaces are finite dimensional.

Our search for the appropriate function spaces to use in analyzing the finite
element method is almost at an end. In the next section we add a final property to
our complete, normed linear space, that of an inner product.

2.1.4 Hilbert spaces

A complete inner product space is called a Hilbert space; these spaces extend the
ideas of the Euclidean space R

n to infinite dimensional spaces. For example, the
parallelogram law in R

2 states that the the sum of the squares of the lengths of the
two diagonals in a parallelogram equals the sum of the squares of the lengths of the
four sides. This law can be shown to hold in all Hilbert spaces and is written as

‖f + g‖
2

+ ‖f − g‖
2

= 2
(

‖f‖
2

+ ‖g‖
2 )

, (2.7)

where ‖·‖ denotes the induced norm and f, g are any elements of the Hilbert space.
See the exercises for a proof of this result.

Clearly, every Hilbert space is a Banach space; one simply uses the norm in-
duced by the inner product, i.e., ‖v‖ = (v, v)1/2 . However, the converse is not true.
A standard counterexample is to consider the Banach space of all bounded linear
functions with the uniform or max norm. In this example, one can demonstrate
that the parallelogram law fails to hold so it can not also be a Hilbert space; see the
exercises for details. The most commonly used spaces of admissible test and trial
functions for weak formulations of boundary value problems for partial differential
equations are Hilbert spaces.

Example 2.21 An example of a Hilbert space that is central to our discussions is
L2(Ω) where Ω denotes an open, connected subset of R

n. To construct this space,
we consider the set of real-valued, continuous functions u(x) = u(x1, x2, . . . , xn)
defined on Ω where (x1, x2, . . . , xn) denotes a point in R

n. Addition and scalar
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multiplication are defined in the usual manner. We define an inner product as

(u, v) =

∫

Ω

u(x)v(x) dΩ , (2.8)

where dΩ is the volume element in Ω. Clearly this satisifes all the properties of
an inner product given in Definition 2.13. In order to guarantee that the integral
defining this inner product exists, we restrict our attention to functions u(x) on Ω
such that

∫

Ω

|u(x)|2 dΩ < ∞ .

We now define S to be the space described above; i.e.,

S = {u | u = u(x), u(x) is continuous for all x ∈ Ω and

∫

Ω

|u(x)|2 dΩ < ∞} .

Then S is an inner product space with the inner product defined by (2.8). The
norm on S is given by

‖u‖ = (u, u)1/2 =

(∫

Ω

|u(x)|2 dΩ

)1/2

.

In general, the space S is not complete. For example in R, let Ω = (−1, 1) and let
S be defined as above. Consider the sequence u1(x), u2(x), · · · where

uj(x) =







−1 for −1 < x ≤ −1/j
jx for −1/j ≤ x ≤ 1/j
1 for 1/j < x < 1 .

It is straightforward to show that {uj(x)}, j = 1, 2, · · ·, is a Cauchy sequence in S.
Moreover, the sequence converges to the discontinuous function f(x) where

f(x) =







−1 for −1 < x < 0
0 for x = 0
1 for 0 < x < 1 .

However, f(x) 6∈ S and so there is no continuous function u(x) on (−1, 1) for which
‖un − u‖ → 0 as n → ∞. By adding new elements to S we can complete the space
to form a Hilbert space V . These additional functions may be piecewise continuous,
but, in general, are highly discontinuous. This extended complete space V is called
L2(Ω) which is a complete inner product space, i.e., a Hilbert space.

Remark The space L2(Ω) is really a special case of the Banach space of functions
on Ω which are p-integrable denoted Lp(Ω), p ≥ 1, The norm is given by

‖u‖Lp =

(∫

Ω

|u|p dΩ

)1/p
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for 1 ≤ p < ∞ and for p = ∞

‖u‖L∞ = sup
Ω

|u| .

Remark In a manner analogous to the construction of L2(Ω), we can construct
a weighted L2-space. Given a weight w(x), integrable on Ω, we define the inner
product as

(u, v) =

∫

Ω

u(x)v(x)w(x) dΩ .

We denote this space L2(Ω; w).

2.2 Best approximations

In this section we want to investigate some geometric properties of Hilbert spaces.
A central idea in approximation theory is to determine an element of a subspace of a
given vector space which is closest (with respect to the given metric) to a particular
element of the vector space; that is, to find the best approximation of the given vector
in the subspace. (In fact, this is the basis for least squares methods.) We would like
to know when it is possible to assert in advance that a best approximating element
exists. Moreover, we want to know whether this best approximating element is
unique.

Example 2.22 Consider the situation illustrated in Figure 2.1. Here we assume
that we have a given plane S in R

3, a vector u 6∈ S, and we want to find a vector
s in S that is nearest u; i.e., ‖u − s‖ ≤ ‖u − φ‖ for all φ ∈ S where we are using
the standard Euclidean norm. Clearly in this case, there is a a unique s and it is
found by drawing a perpendicular from u to S; that is, projecting the vector u onto
S. Also, we can uniquely write the vector u as the sum of the vector s ∈ S and a
vector not in S.

S

u

s

u-s

ϕ
u-ϕ

Figure 2.1.

There are analogous results for general Hilbert spaces. However, they do not
hold for a general subspace but only a closed subspace (see Definition 2.20). In the
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finite element setting, we are guaranteed that the subspace is closed since it is finite
dimensional.

The following result is known as the Projection Theorem and it states that
given an element in a Hilbert space, its orthogonal projection onto a closed subspace
is the element of the subspace that is “nearest” the given vector where the distance
is measured using the induced norm. Of course one must keep in mind that this
depends upon the choice of the inner product (and thus the norm) on the given
Hilbert space.

Theorem 2.23. (The Projection Theorem) Let S be a closed subspace of a
Hilbert space V which is not the whole of V . Then given u ∈ V there exists a unique
element Pu ∈ S such that

‖u − Pu‖ = inf
φ∈S

‖u − φ‖ (2.9)

where Pu satisfies
(u − Pu, φ) = 0 for every φ ∈ S . (2.10)

Proof. Let u ∈ V such that u 6∈ S. We know that for all φ ∈ S, ‖u − φ‖ > 0 so
that if we define the distance from u to S as the lower bound

δ = inf
φ∈S

‖u − φ‖ ,

then there exists a sequence φn ∈ S such that ‖u − φn‖ → δ as n → ∞. Our goal
is so show that {φn} is a Cauchy sequence in S and thus conclude that the limit of
the sequence is also in S because S is a closed subspace of the Hilbert space V ; we
call Pu this limit.

To demonstrate that {φn} is a Cauchy sequence we apply the parallelogram
law (2.7)

with f = u − φm and g = u − φn. We have

‖(u − φm) + (u − φn)‖2 + ‖(u − φm) − (u − φn)‖2 = 2 ‖u − φm‖2 + 2 ‖u − φn‖
2

and simplifying the left-hand side gives

4

∥

∥

∥

∥

(

u −
φm + φn

2

)∥

∥

∥

∥

2

+ ‖φn − φm‖
2

= 2 ‖u − φm‖
2

+ 2 ‖u − φn‖
2

(2.11)

because

‖(u − φm) + (u − φn)‖
2

= ‖2u − φm − φn‖
2

= 4

∥

∥

∥

∥

u −
1

2
(φm + φn)

∥

∥

∥

∥

2

.

Now φn, φm ∈ S and S is a subspace of V , so we have that (φm + φn)/2 ∈ S and
thus by the definition of δ, the first term on the left of (2.11) is nonnegative and at
least as large as 4δ2. Thus

‖φn − φm‖2 ≤ 2 ‖u − φm‖2 + 2 ‖u − φn‖
2 − 4δ2 .
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We conclude that because ‖φm − u‖ → δ, ‖φn − u‖ → δ as m, n → ∞, the right-
hand side goes to zero as m, n → ∞, and hence {φn} is a Cauchy sequence in a
closed subspace and therefore convergent.

Uniqueness of the limit s ∈ S is proved in the standard way by assuming there
are two elements in S which satisfy (2.9). Let s1 and s2 have the property that

δ = inf
φ∈S

‖u − φ‖ = ‖u − s1‖ = ‖u − s2‖ .

Then because (s1 + s2)/2 ∈ S, we have that

δ ≤

∥

∥

∥

∥

u −
1

2
(s1 + s2)

∥

∥

∥

∥

≤
1

2
‖u − s1‖ +

1

2
‖u − s2‖ = δ

where we have used the triangle inequality for the last inequality. This implies that
for u − s1 and u − s2 the triangle inequality must hold as an equality. However,
this can only be true if u − s1 = α(u − s2) for some α. If we choose α = 1 then
this leads to a contradiction because it would imply s1 = s2; if α 6= 1 then we have
(α − 1)u = s2 − s1 and this contradicts the fact that u 6∈ S. Consequently we have
uniqueness.

To prove (2.10) we assume that there is some φ̂ ∈ S such that (u − Pu, φ̂) 6=
0 and show that this assumption leads to the existence of an s ∈ S such that
‖u − s‖ < inf

φ∈S
‖u − φ‖; thus we obtain a contradiction. Let s ∈ S be given by

s = Pu +

(

u − Pu, φ̂
)

(

φ̂, φ̂
) φ̂ .

Then

‖u − s‖
2

=



u − Pu −

(

u − Pu, φ̂
)

‖φ̂‖2
φ̂, u − Pu −

(

u − Pu, φ̂
)

‖φ̂‖2
φ̂





= ‖u − Pu‖
2
−

2

‖φ̂‖2

(

u − Pu, φ̂
)(

u − Pu, φ̂
)

+
1

‖φ̂‖4

(

u − Pu, φ̂
)2

‖φ̂‖2

= ‖u − Pu‖
2
−

1

‖φ̂‖2

(

u − Pu, φ̂
)2

.

Because our assumption was that (u − Pu, φ̂) 6= 0, we have

‖u − s‖ < ‖u − Pu‖ = inf
φ∈S

‖u − φ‖

which is the contradiction we sought.

In Example 2.22, we wrote the vector which we projected into the subspace
as the sum of a vector in the subspace and one orthogonal to the subspace. Theo-
rem 2.23 guarantees that we can do this in a Hilbert space when we are projecting
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onto a closed subspace. Given u in a Hilbert space V then the unique Pu in a
closed subspace S guaranteed by Theorem 2.23 is called the orthogonal projection
of u onto the closed subspace S. In this case, if we let r = u − Pu, then we can
write

u = Pu + r where Pu ∈ S and (r, φ) = 0 for all φ ∈ S . (2.12)

Hence the vector r = u − Pu is orthogonal to all vectors in S; we call the set of
all vectors orthogonal to S the orthogonal complement of S and denote it by S⊥.
Thus we have written u as the sum of an element in S and one orthogonal to S,
i.e., in S⊥. In the exercises, we explore the fact that the analogous result holds for
the entire Hilbert; that is, the Hilbert space V can be written as the direct sum of
S and S⊥.

Another interpretation of the vector s guaranteed by Theorem 2.23 is given
by (2.9). From this equation we call Pu the best approximation of u in S. In
the case when S is a finite dimensional subspace of a Hilbert space V (and thus
automatically closed) then we can explicitly construct the best approximation to a
given vector in V by using (2.10). To see this, we let φi, i = 1, . . . , m be a basis for
S and from (2.10), (u − Pu, φi) = 0 for i = 1, . . . , m. Also Pu can be written as a
linear combination of the basis elements; i.e., Pu =

∑m
j=1 cjφj . Thus

m
∑

j=1

cj (φj , φi) = (u, φi) , i = 1, . . . , m , (2.13)

which is just a linear system for the unknowns cj , j = 1, . . . , m. The matrix G whose
entries are given by Gij = (φj , φi) is known as the Gram matrix associated with the
basis functions {φi} of S and is guaranteed to be nonsingular. This can be easily seen
by assuming that if G is singular, then we could find a vector d = (d1, d2, . . . , dm)

such that Gd = 0. This would imply
(

∑m
j=1 djφj , φi

)

= 0 for all i = 1, . . . , m and

thus the vector u =
∑m

j=1 djφj would be orthogonal to S which is a contraction.
In the following example we investigate the effect that the choice of the ap-

proximating subspace for the best approximation has on the properties of the Gram
matrix.

Example 2.24 Consider the problem of determining the best approximation to a
function f(x) in two different subspaces of L2(0, 1). We first consider the subspace
consisting of all polynomials of degree three or less. In this case an obvious choice
of a basis is {1, x, x2, x3}. The specific system we must solve is





















∫ 1

0 dx
∫ 1

0 x dx
∫ 1

0 x2 dx
∫ 1

0 x3 dx

∫ 1

0
x dx

∫ 1

0
x2 dx

∫ 1

0
x3 dx

∫ 1

0
x4 dx

∫ 1

0
x2 dx

∫ 1

0
x3 dx

∫ 1

0
x4 dx

∫ 1

0
x5 dx

∫ 1

0 x3 dx
∫ 1

0 x4 dx
∫ 1

0 x5 dx
∫ 1

0 x6 dx







































c1

c2

c3

c4



















=





















∫ 1

0 f(x) dx

∫ 1

0
xf(x) dx

∫ 1

0
x2f(x) dx

∫ 1

0 x3f(x) dx





















.



2.2. Best approximations 31

Upon performing the integration the system becomes



















1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





































c1

c2

c3

c4



















=





















∫ 1

0
f(x) dx

∫ 1

0
xf(x) dx

∫ 1

0 x2f(x) dx

∫ 1

0 x3f(x) dx





















.

It is important to note that in this case the Gram matrix is not sparse and is the
well-known Hilbert matrix which is notoriously ill-conditioned. Consequently, if we
look for the best approximation to a function f(x) out of the space of polynomials
of degree n or less, then for even modest values of n our solution is not be reliable
using standard matrix solvers.

On the other hand, if we choose as a subspace of L2(0, 1) the space of continu-
ous piecewise linear functions over the uniform partition of [0, 1] into N subintervals
and choose as a basis the piecewise linear “hat” functions described in the previous
chapter, then the resulting matrix is well-conditioned and is tridiagonal. To see the
structure of the matrix consider the uniform partition of [0, 1] into 3 subintervals
with four grid points x1 = 0, x2 = 1

3 , x3 = 2
3 , x4 = 1. Let φi(x), i = 1, . . . , 4 denote

the basis functions

φ1 =

(

1 − 3x 0 ≤ x ≤ 1
3

0 elsewhere

)

, φ2 =





3x 0 ≤ x ≤ 1
3

2 − 3x 1
3 ≤ x ≤ 2

3
0 elsewhere



 ,

φ3 =





3x − 1 1
3 ≤ x ≤ 2

3
3 − 3x 2

3 ≤ x ≤ 1
0 elsewhere



 , φ4 =

(

3x − 2 2/3 ≤ x ≤ 1
0 elsewhere

)

.

The Gram matrix has the (i, j) entry given by
∫ 1

0
φi(x)φj(x) dx. Due to the fact

that the basis function φi(x) has local support, we deduce that the Gram matrix is

























∫ 1

0
φ2

1 dx
∫ 1

0
φ2φ1 dx 0 0

∫ 1

0 φ1φ2 dx
∫ 1

0 φ2φ2 dx
∫ 1

0 φ3φ2 dx 0

0
∫ 1

0 φ2φ3 dx
∫ 1

0 φ3φ3 dx
∫ 1

0 φ4φ3 dx

0 0
∫ 1

0
φ3φ4 dx

∫ 1

0
φ4φ4 dx

























,

which is a symmetric tridiagonal matrix.

Being able to find the best approximation to a given function using piecewise
polynomials does not directly help us to find our finite element approximation. This
is because in order to use (2.13) to find the best approximation to u, we need to
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know u, which in our case is the unknown solution to the weak problem. However,
what we see in the next chapter is that when we measure the error in our finite
element approximation, it will be bounded by a constant times the error in the best
approximation in the approximating space.

2.3 Bounded linear functionals

Functional is just the name given to a special type of function which assigns a
number to each element of a linear space. For example, for functions in L2((0, 1))
the integral over the domain is a functional. If V is a given Hilbert space with inner
product (·, ·) and induced norm ‖·‖ then ‖v‖ assigns a number to each element v in
V and is thus a functional. If we fix an element u in V , then (v, u) assigns a value
( i.e., a scalar) to each element. Such mappings are called functionals. Functionals
which are linear and bounded are of particular interest.

Definition 2.25. F is a functional on a Hilbert space V if it assigns to every
v ∈ V a unique number F (v) and we write F : V → R. A functional is called linear
if for every u, v ∈ V and scalars α, β we have

F (αu + βv) = αF (u) + βF (v) . (2.14)

In addition, we say that a functional is bounded if

sup
v∈V

|F (v)|

‖v‖
< ∞, v 6= 0 , (2.15)

where ‖ · ‖ is the induced norm on V . We call this finite number ‖F‖.

We note that if F is a bounded linear functional on V then this is equivalent to
saying that F is a linear functional which is a continuous function of its arguments.

Example 2.26 Let V be a Hilbert space; for a fixed u ∈ V the inner product
F (v) = (v, u) denotes a bounded linear functional on V . Clearly it defines a func-
tional and is linear because of the linearity of the inner product. Specifically, we
have

F (αv+βw) = (αv+βw, u) = (αv, u)+(βw, u) = α(v, u)+β(w, u) = αF (v)+βF (w) .

Boundedness follows from using the Cauchy-Schwarz inequality

F (v) = (v, u) ≤ ‖v‖ ‖u‖ .

to obtain
|F (v)|

‖v‖
≤ ‖u‖ < ∞ ∀ v ∈ V ,

for v 6= 0.
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In a similar manner, the linearity of the norm on a Hilbert space can be used to
demonstrate that the norm is a bounded linear functional. Clearly, we can think of
many other examples of bounded linear functionals, but what is surprising is that
the inner product is really the only one on a Hilbert space; i.e., every bounded linear
functional can be written as an inner product. This result is known as the Riesz
Representation Theorem and is named after the Hungarian mathematician Frigyes
Riesz (1880-1956).

Theorem 2.27. (Riesz Representation Theorem) For every bounded linear
functional F on a Hilbert space V there is a unique element f ∈ V such that

F (v) = (v, f) for all v ∈ V . (2.16)

Moreover, ‖F‖ = ‖f‖.

Proof. We first note that if F assigns to each v ∈ V the value zero, then the proof
is immediate by taking f = 0. In the sequel we assume that this is not the case.
However, we do know that for each v ∈ V which F assigns to zero we must have
that f is orthogonal to it; i.e., (v, f) = 0. We call the set of all vectors v such that
F (v) = 0 the kernel of F and denote it by K(F ). Hence we must construct an f
that is orthogonal to the kernel of F .

We first demonstrate that K(F ) is a closed subspace of V . To show that it is
a subspace we use the linearity of F ; i.e., if u, v ∈ K(F ) then

F (αu + βv) = αF (u) + βF (v) = 0 .

To show that it is a closed subspace of V , we let {un} be a sequence in K(F ) such
that un → u ∈ V as n → ∞ and show that u ∈ K(F ). We have

|F (u)| = |F (u) − F (un)| = |F (u − un)| ≤ ‖F‖ ‖u − un‖ ,

where we have used the fact that un ∈ K(F ), the linearity of F , and the definition
of the norm of a bounded linear functional. The right-hand side of this inequality
goes to zero as n → ∞ so that F (u) = 0.

We now proceed to construct an f that is orthogonal to K(F ). From the
comments following the projection theorem we know that we can write V as the
direct sum of K(F ) and K(F )⊥ since K(F ) is a closed subspace of V . Our strategy

is to take an arbitrary f̂ ∈ K(F )⊥, f̂ 6= 0 and construct an f ∈ K(F ) using f̂ .

Consider the vector F (v)f̂ − F (f̂)v. This vector is in K(F ) since

F
(

F (v)f̂ − F (f̂)v
)

= F (v)F (f̂) − F (f̂)F (v) = 0

and thus
(

F (v)f̂ − F (f̂)v, f̂
)

= 0 for all f̂ ∈ K(F )⊥, v ∈ V . Therefore we have

F (v)‖f̂‖2 = F (f̂)(v, f̂) so that

F (v) =

(

v,
F (f̂)

‖f̂‖2
f̂

)

.



34 Chapter 2. Results from Linear Analysis

Hence if we set f = (F (f̂)/‖f̂‖2)f̂ , we see that for each v ∈ K(F ), this choice of f
is orthogonal to v and we have the desired result.

To show uniqueness of f we assume that there are two vectors f1 and f2 such
that

F (v) = (v, f1) = (v, f2) ∀ v ∈ V .

But this implies that (v, f1 − f2) = 0 for all v ∈ V ; specifically set v = f1 − f2 from
which it follows that f1 − f2 = 0.

Lastly, we must demonstrate that ‖F‖ = ‖f‖. This follows immediately from
the definition of F and the Cauchy-Schwarz inequality. We have

|F (v)| = | (v, f) | ≤ ‖v‖ ‖f‖

so that if v 6= 0,
|F (v)|

‖v‖
≤ ‖f‖

and thus ‖F‖ ≤ ‖f‖. On the other hand, since f ∈ V , F (f) = (f, f) = ‖f‖2. Thus
the supremum is attained at v = f and we have equality.

The main goal of this chapter was to introduce the mathematical tools nec-
essary to formulate and analyze a general weak problem. The last tool we need is
a bilinear form. We define a bilinear form on a Hilbert space V to be a map from
V × V into R

1, denoted by B(·, ·), such that

B(α1u1 + α2u2, v) = α1B(u1, v) + α2B(u2, v)

B(u, β1v1 + β2v2) = β1B(u, v1) + β2B(u, v2)

for all ui, vi ∈ V and αi, βi ∈ R
1, i = 1, 2. That is, B(·, ·) is linear in each of its

components. An example of a bilinear form on L2(0, 1) is
∫ 1

0 u(x)v(x) dx. In fact,
any inner product on a Hilbert space defines a bilinear form; this can easily be seen
from the linearity of the inner product (see Definition 2.13). Another example of a
bilinear form on a Hilbert space V is (Bu, v)V where B is a linear operator from V
to V .

We say that a bilinear form B(·, ·) on V is bounded if there exists a positive
constant C such that

|B(u, v)| ≤ C ‖u‖V ‖v‖V .

If we fix an element u ∈ V then the bilinear form B(u, v) represents a linear func-
tional on V ; if B(·, ·) is bounded, then for a fixed u ∈ V , B(u, v) represents a
bounded linear functional F (v) on V . The Riesz Representation Theorem 2.27
then guarantees that there exists a unique element û ∈ V such that B(u, v) can be
written as the inner product (v, û). The ability to associate to each u ∈ V a unique
element û is central to our analysis of an abstract weak problem.
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Exercises

2.1. The most common examples of norms on R
n are the Euclidean norm defined

by

‖x‖ℓ2
=

(

n
∑

i=1

|xi|
2

)1/2

,

the sum norm defined by

‖x‖ℓ1
=

(

n
∑

i=1

|xi|

)

,

and the maximum norm defined by

‖x‖ℓ∞
= max

1≤i≤n
|xi| .

Here x = (x1, x2, · · · , xn). For any norm, the set {x : ‖x‖ ≤ 1} is called the
unit ball.

a. Sketch the unit balls for each of the norms defined above.

b. Show that the norms are equivalent by explicitly determining the com-
parability constants.

2.2. Let V be a complete inner product space; define ‖u‖ to be the non-negative

number (u, u)1/2. Show that this defines a norm on V .

2.3. Let V be a Hilbert space and let f, g ∈ V . Verify the parallelogram law

‖f + g‖
2

+ ‖f − g‖
2

= 2 ‖f‖
2

+ 2 ‖g‖
2

.

Note that the name comes from the special case of R
2 where we know that

the sum of the squares of the sides of a parallelogram is equal to the sum of
the squares of the diagonals.

2.4. In the previous exercise we saw that any two elements of a Hilbert space V
satisfies the parallelogram law; in fact, one can show that if B is a Banach
space which satisfies the parallelogram law then it is also a Hilbert space (see,
e.g., [Schechter]). Consider the Banach space of all bounded real functions
on the interval [0, 1] with the norm

‖u‖ = sup
0≤x≤1

|u(x)| .

Find functions f, g ∈ B which violate the parallelogram law and thus conclude
that B is a Banach space but not a Hilbert space. (Hint: for example, find
functions f, g such that ‖f‖ = ‖g‖ = ‖f − g‖ = ‖f + g‖. )

2.5. Let S be a closed subspace of a Hilbert space V . Let S⊥ be defined by

S⊥ = {u ∈ V : (u, φ) = 0 for all φ ∈ S} .
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Show that S⊥ is a closed subspace of V . Also show that S ∩ S⊥ = {0} and
thus V can be written as the direct sum of S and S⊥ so that every element
u ∈ V can be written as the sum of an element in S and in S⊥.

2.6. Let P be the projection operator from a Hilbert space V to a closed subspace
S ⊂ V ; i.e., P is an operator P : V → S such that

Pu =

{

u if u ∈ S
u0 otherwise,

where u = u0 + u1 uniquely with u0 ∈ S and u1 ∈ S⊥.

a. Show that P is linear.

b. Clearly, the range of P is S. What is the kernel of P? Why?

c. Show that P 2 = P .

d. Show that ‖P‖ = 1 where

‖P‖ = sup
φ∈V

‖Pφ‖

‖φ‖
for φ 6= 0 .

e. Show that I − P is the projection operator onto the orthogonal comple-
ment of S.

2.7. Prove that if {ui} is a convergence sequence in a normed linear space then
the limit is unique.

2.8. (Computational) Consider the function u(x) = x3 sin πx on [0, 1]. We want
to determine the best approximation in the L2-norm, ũ(x), to u(x) out of the
space of continuous piecewise linear functions which are zero at x = 0 and
x = 1.

a. Choose a uniform partition of [0, 1] with h = 0.25. Write a code to
determine the best approximation ũ to u(x) using the standard “hat”
basis functions for continuous piecewise linears. For the integration, use
a two-point Gauss quadrature rule. Write your code so that you have a
separate function or subroutine which evaluates a basis function at any
given point.

b. Repeat (a) with h = 0.125 and h = .0625. For each value of h determine
the L2(0, 1) error in u(x) and ũ(x); calculate a numerical rate of con-
vergence ( i.e., determine k such that the error is O(hk)) based upon
your two calculations. To calculate the error, apply the two-point Gauss
quadrature rule over each subinterval.


