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Adaptive grid refinement is a critical component of the improvements that have recently
been made in algorithms for the numerical solution of partial differential equations (PDEs).
The development of new algorithms and computer codes for the solution of PDEs usually
involves the use of proof-of-concept test problems. 2D elliptic problems are often used
as the first test bed for new algorithms and codes. This paper contains a set of twelve
parametrized 2D elliptic test problems for adaptive grid refinement algorithms and codes.
The problems exhibit a variety of types of singularities, near singularities, and other
difficulties.
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1. Introduction

The numerical solution of partial differential equations (PDEs) is the most compute-intensive part of a wide range of sci-
entific and engineering applications. Consequently the development and application of faster and more accurate methods for
solving partial differential equations has received much attention in the past fifty years. Self-adaptive methods to determine
a quasi-optimal grid are a critical component of the improvements. Although adaptive grid refinement techniques are now in
widespread use in applications, they remain an active field of research, particularly in the context of hp-adaptive techniques.

The development of new algorithms and computer codes for the solution of PDEs usually involves the use of proof-of-con-
cept test problems. Such test problems have a variety of uses such as demonstrating that a new algorithm is effective, ver-
ifying that a new code is correct in the sense of achieving the theoretical order of convergence, and comparing the
performance of different algorithms and codes. Nearly every paper on algorithms for solving PDEs contains a numerical re-
sults section with one or more test problems.

In this paper, the focus is on 2D elliptic problems, as they are often used as the first test bed for new algorithms and codes
for solving PDEs. Other classes of problems (3D, hyperbolic, goal-oriented, etc.) can be found on the NIST Adapative Mesh
Refinement Benchmark Problems web page [1]. This paper contains a set of twelve 2D elliptic test problems for adaptive grid
refinement algorithms and codes. Most of the problems are taken from the numerical results section of papers in the adap-
tive grid refinement literature. The problems exhibit a variety of types of singularities (point and line singularities on the
boundary and in the interior), near singularities (sharp peaks, boundary layers, and wave fronts), and other difficulties. Most
of the problems are parametrized to allow ‘‘easy’’ and ‘‘hard’’ variations on the problem. This collection of problems can be
used for testing correctness of a computer code or optimality of an algorithm by observing the convergence rate of a norm
(energy, H1; L2, etc.) of the error with respect to the number of degrees of freedom, to test the efficiency index of error esti-
mates, to benchmark the computation time of different computer codes and algorithms, etc.

We primarily consider elliptic partial differential equations of the form
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with coefficient functions p; q; r and c, and right hand sides f, gD and gN , where X is a bounded, connected, polygonal, open
region in R2 with boundary @X ¼ @XD [ @XN; @XD \ @XN ¼ ;. Differentiation with respect to s is with respect to a counter-
clockwise parametrization of the boundary ðxðsÞ; yðsÞÞ with kðdx=ds dy=dsÞk ¼ 1. Eq. (2) represents Dirichlet boundary condi-
tions, and Eq. (3) represents natural boundary conditions if c ¼ 0 and mixed boundary conditions otherwise. We assume the
data in Eqs. (1)–(3) satisfy the usual ellipticity and regularity assumptions. Some of the test problems extend this to a cou-
pled system of two equations, and the inclusion of first order derivative and mixed derivative terms.

Many of the test problems use the special case of Poisson’s Equation
�r2u :¼ � @
2u
@x2 �

@2u
@y2 ¼ f ðx; yÞ
and Laplace’s Equation, which is Poisson’s equation with f = 0. All but one problem are defined by the method of manufac-
tured solution. When the right side of the equation is simply given as ‘‘f’’ and the exact solution is known, f is determined by
applying the operator to the exact solution. Similarly, if the boundary conditions are said to be Dirichlet and the exact solu-
tion is known, gD is given by the exact solution.

We use the terms singular and singularity rather loosely. We consider a function to be singular (or to have a singularity) if
it or a derivative of any order is singular. More precisely, we consider it to be singular if there exists a finite positive m such
that the function does not lie in Hm, where Hm is the usual Sobolev space of functions whose derivatives of order m are square
integrable, and the usual extensions to noninteger m. We refer to the largest m such that the function is in Hm as the Sobolev
regularity of the function.

2. The set of test problems

2.1. Analytic solution

This is a well behaved problem with a smooth solution that has no trouble spots. It can be used for seeing how an adaptive
algorithm behaves in a context where adaptivity is not really needed.

Equation: Poisson.
Domain: unit square.
Boundary conditions: Dirichlet.
Solution: 24axað1� xÞayað1� yÞa.
Parameters: the integer a determines the degree of the polynomial solution. It should be chosen to be large enough that

the highest order finite elements to be used will not give the exact solution.
The solution with a ¼ 10 is shown in Fig. 1, both as a color-mapped image and as a surface in perspective. The other fig-

ures that show solutions also present these two views.
Fig. 1. The solution of the analytic problem with a ¼ 10.
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2.2. Reentrant corner

For elliptic partial differential equations, reentrant corners in the domain are a source of singularities in the solution. In
particular, for a corner with an angle x as shown in Fig. 2, the solution behaves like ra where r is the distance from the corner
and a ¼ p=x. The solution is in H1þa��8� > 0 [2].

Equation: Laplace.
Domain: ð�1;1Þ � ð�1;1Þ with a section removed from the clockwise side of the positive x axis, as shown in Fig. 2.
Boundary conditions: Dirichlet.
Solution: ra sinðahÞ where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and h ¼ tan�1ðy=xÞ.

Parameters: x determines the angle of the reentrant corner, and consequently a and the strength of the singularity. Vary-
ing x can be used to study the effect of the strength of the singularity on adaptive algorithms. Using x ¼ 3p=2 gives the
infamous ‘‘L domain’’ problem used heavily in the adaptive refinement community. With x ¼ 2p the domain is a square with
a slit. A solution with x slightly larger than p is nearly linear.

The solutions for x ¼ pþ 0:01; 5p=4; 3p=2; 7p=4, and 2p are shown in Figs. 3–7.

2.3. Linear elasticity

Several papers [3–6] use a problem from linear elasticity as an example. This is a coupled system of two equations with a
mixed derivative in the coupling term. In [3] the equations are given as
�E 1�m2

1�2m
@2u
@x2 � E 1�m2

2�2m
@2u
@y2 � E 1�m2
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ð1�2mÞð2�2mÞ
@2u
@x@y ¼ Fy

8<
: ð4Þ
where u and v are the x and y displacements, E is Young’s Modulus, and m is Poisson’s ratio.
Two solutions are given in [3] in polar coordinates; a mode 1 solution
u ¼ 1
2G rk½ðj� Qðkþ 1ÞÞ cosðkhÞ � k cosððk� 2ÞhÞ�

v ¼ 1
2G rk½ðjþ Qðkþ 1ÞÞ sinðkhÞ þ k sinððk� 2ÞhÞ�

(
ð5Þ
and a mode 2 solution
u ¼ 1
2G rk½ðj� Qðkþ 1ÞÞ sinðkhÞ � k sinððk� 2ÞhÞ�

v ¼ � 1
2G rk½ðjþ Qðkþ 1ÞÞ cosðkhÞ þ k cosððk� 2ÞhÞ�

(
ð6Þ
where j ¼ 3� 4m; G ¼ E=ð2ð1þ mÞÞ, and k and Q are constants. The solutions have a point singularity at the origin and are in
H1þk��8� > 0 [4].

The domain is taken to be a square with a slit (a cracked plate) as in [6]. Some of the other references use an L-shaped
domain.

Equation: coupled system of two equations given by Eq. (4).
Domain: ð�1;1Þ � ð�1;1Þ with a slit from ð0;0Þ to ð1;0Þ.
Boundary conditions: Dirichlet.
Solution: Two solutions as given in Equations 5 and 6.
Fig. 2. Domain for the reentrant corner problem.



Fig. 3. The solution of the reentrant corner problem with x ¼ pþ :01.

Fig. 4. The solution of the reentrant corner problem with x ¼ 5p=4.

Fig. 5. The solution of the reentrant corner problem with x ¼ 3p=2.
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Parameters: All the above references use m ¼ 0:3 and E ¼ 1. The values for k and Q differ in the two solutions, and are
given in Table 1. See [3] for the derivation of these constants. With these solutions and parameters, Fx ¼ Fy ¼ 0.

The solutions are shown in Figs. 8–11.

2.4. Peak

This problem has an exponential peak in the interior of the domain. It is based on Problem 10 in [7].
Equation: Poisson.
Domain: Unit square.
Boundary conditions: Dirichlet.



Fig. 6. The solution of the reentrant corner problem with x ¼ 7p=4.

Fig. 7. The solution of the reentrant corner problem with x ¼ 2p.

Table 1
Parameters for the linear elasticity problem.

mode k Q

1 0.5444837367825 0.5430755788367
2 0.9085291898461 �0.2189232362488

Fig. 8. The u component of the mode 1 solution of the linear elasticity problem.
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Fig. 9. The v component of the mode 1 solution of the linear elasticity problem.

Fig. 10. The u component of the mode 2 solution of the linear elasticity problem.

Fig. 11. The v component of the mode 2 solution of the linear elasticity problem.
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Solution: e�aððx�xcÞ2þðy�ycÞ2Þ.
Parameters: ðxc; ycÞ is the location of the peak, and a determines the strength of the peak.
The solutions of two instances of this problem are shown in Figs. 12 and 13. The first has a mild peak at the vertex

(0.5, 0.5) with a ¼ 1000. The second has a sharp peak at (0.51, 0.117) with a ¼ 100000.

2.5. Battery

This problem comes from [6], where it is attributed to Ivo Babuška and Sandia National Laboratories. It features piecewise
constant coefficient functions p and q and right hand side f, and mixed boundary conditions. The solution has multiple point
singularities in the interior of the domain. The equation models heat conduction in a battery with nonhomogeneous mate-
rials. The domain is the rectangle shown in Fig. 14. The numbered regions indicate the areas of different material constants,



Fig. 12. The solution of the peak problem with a ¼ 1000; ðxc ; ycÞ ¼ ð0:5;0:5Þ.

Fig. 13. The solution of the peak problem with a ¼ 100000; ðxc ; ycÞ ¼ ð0:51;0:117Þ.

Fig. 14. Domain for the battery problem.
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with the constants given in Table 2. The location of the line segments that separate the regions are given in Table 3. The coef-
ficients of the mixed boundary conditions are given in Table 4. The solution has singularities at the points where three or



Table 2
Piecewise constant coefficient functions for the battery problem. k designates the region
from Fig. 14.

k p q f

1 25.0 25.0 0.0
2 7.0 0.8 1.0
3 5.0 0.0001 1.0
4 0.2 0.2 0.0
5 0.05 0.05 0.0

Table 3
The locations of the line segments that separate the regions of the
battery problem. For example, the line y ¼ 24:0 is the top of the region
in Fig. 14.

x y

0.0 0.0
6.1 0.8
6.5 1.6
8.0 3.6
8.4 18.8

21.2
23.2
24.0

Table 4
Boundary condition coefficients for the four sides of the battery problem
domain in Fig. 14.

side c gN

left 0.0 0.0
top 1.0 3.0
right 2.0 2.0
bottom 3.0 1.0

Fig. 15. The solution of the battery problem.

W.F. Mitchell / Applied Mathematics and Computation 220 (2013) 350–364 357
more materials meet. For any � > 0 there exists coefficients such that the solution is in H1þ�. By observing the rate of con-
vergence with uniform h-refinement and comparing it with the theoretical a priori error bound, we estimate that � is about
1/2 for the given set of coefficients. The solution is shown in Fig. 15.

Equation: � @
@x p @u

@x

� �
� @

@y q @u
@y

� �
¼ f with p; q and f given in Table 2.

Domain: ð0;8:4Þ � ð0;24Þ.



Fig. 16. The solution of the boundary layer problem with � ¼ 10�1.

Fig. 17. The solution of the boundary layer problem with � ¼ 10�3.

Fig. 18. The solution of the boundary line singularity problem with a ¼ 0:6.
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Boundary conditions: Mixed, with c and gN given in Table 4.
Solution: Unknown.
Parameters: None.

2.6. Boundary layer

This problem comes from [8]. It has an Oð�Þ boundary layer along the right and top sides of the domain. It is a convection–
diffusion equation with first order terms.

Equation: ��r2uþ 2 @u
@x þ @u

@y ¼ f .

Domain: ð�1;1Þ � ð�1;1Þ.



Fig. 19. The solution of the oscillatory problem with a ¼ 1
10p.

Fig. 20. The solution of the oscillatory problem with a ¼ 1
50p.

Fig. 21. The solution of the mild wave front problem.
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Boundary conditions: Dirichlet.
Solution: ð1� e�ð1�xÞ=�Þð1� e�ð1�yÞ=�Þ cosðpðxþ yÞÞ.
Parameters: � determines the strength of the boundary layer.
Figs. 16 and 17 show solutions with a mild boundary layer from � ¼ 10�1, and a steep boundary layer from � ¼ 10�3.

2.7. Boundary line singularity

Many papers [6,9–11] use a 1D example with a singularity of the form xa at the left endpoint of the domain. The solution
is in Haþ1=2�� 8� > 0 [9]. This can be extended to 2D by simply making the solution be constant in y. On the unit square, the
result is a solution that is singular along the left boundary.



Fig. 22. The solution of the steep wave front problem.

Fig. 23. The solution of the asymmetric wave front problem.
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Equation: Poisson.
Domain: Unit square.
Boundary conditions: Dirichlet.
Solution: xa.
Parameters: a P 1=2 determines the strength of the singularity. All of the cited references use a ¼ 0:6.
The solution with a ¼ 0:6 is shown in Fig. 18.

2.8. Oscillatory

This problem is inspired by the wave function that satisfies a Schrödinger equation model of two interacting atoms [12]. It
is highly oscillatory near the origin, with the wavelength decreasing closer to the origin. The number of oscillations, N, is
determined by the parameter a ¼ 1

Np. We use a Helmholtz equation for this problem.
Equation: �r2u� 1

ðaþrÞ4
u ¼ f , where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

Domain: Unit square.
Boundary conditions: Dirichlet.
Solution: sin 1

aþr

� �
.

Parameters: a determines the number of oscillations.
The solutions of a relatively easy problem with a ¼ 1

10p and a more difficult problem with a ¼ 1
50p are shown in Figs. 19 and

20. In the surface plot of Fig. 19 we have zoomed in on the origin to show the detail.

2.9. Wave front

A commonly used example for testing adaptive refinement algorithms is Poisson’s equation with a solution that has a
steep wave front in the interior of the domain [2,6,9,11]. Usually the wave front is given by an arctangent, but sometimes
a hyperbolic tangent is used. In this problem we use a circular wave front as in [6,11]. Parameters determine the steepness
and location of the wave front. With the arctangent wave front, there is a mild singularity at the center of the circle. By



Fig. 24. The solution of the wave front ‘‘well’’ problem.

Table 5
Parameters for the wave front problem.

name a xc yc r0

mild 20 �.05 �.05 0.7
steep 1000 �.05 �.05 0.7
asymmetric 1000 1.5 0.25 0.92
well 50 0.5 0.5 0.25

Fig. 25. The solution of the interior line singularity problem with a ¼ 2:5 and b ¼ 0.
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observing the convergence rate with uniform h-refinement, we estimate that the solution is in Hm with m � 2 if the center of
the circle is in the closure of the domain, and smooth otherwise.

Equation: Poisson.
Domain: Unit square.
Boundary conditions: Dirichlet.
Solution: tan�1ðaðr � r0ÞÞ where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

.
Parameters: ðxc; ycÞ is the center of the circular wave front, r0 is the distance from the wave front to the center of the circle,

and a gives the steepness of the wave front.
Four example solutions are shown in Figs. 21–24, with the parameters given in Table 5. In the first three we choose the

center of the circle to be outside the domain so that we are examining the performance on the wave front, not the singularity.
These solutions are characterized as a mild wave front, a steep wave front, and a steep wave front that is not symmetric
about the origin. In the fourth example, the entire circle is inside the domain, resulting in a solution that is a well with a
mild singularity at the bottom.

2.10. Interior line singularity

Houston et al. [9] extend the 1D xa problem in Section 2.7 to 2D by extending the 1D domain to (-1,1), defining the solu-
tion to be 0 for x < 0, extending the domain to 2D with y 2 ð�1;1Þ, and adding cosðpy=2Þ. We extend this further to allow a



Fig. 26. The solution of the interior line singularity problem with a ¼ 1:1 and b ¼ 0.

Fig. 27. The solution of the interior line singularity problem with a ¼ 1:5 and b ¼ 0:6.
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sloped line so that the singularity does not necessarily coincide with element edges. There is no PDE in [9] since they are only
evaluating their estimate of the regularity. We use a Poisson equation with Dirichlet boundary conditions. The solution is in
Haþ1=2��8� > 0 [9].

Equation: Poisson.
Domain: ð�1;1Þ � ð�1;1Þ.
Boundary conditions: Dirichlet. Solution: cosðpy=2Þ x 6 bðyþ 1Þ

cosðpy=2Þ þ ðx� bðyþ 1ÞÞa x > bðyþ 1Þ

	

Parameters: a determines the strength of the singularity and b determines the slope of the singularity line.
Solutions containing a mild singularity with a ¼ 2:5; b ¼ 0, a stronger singularity with a ¼ 1:1; b ¼ 0, and a slanted line

singularity with a ¼ 1:5; b ¼ 0:6 are shown in Figs. 25–27.

2.11. Intersecting interfaces

This problem comes from a paper by Kellogg [13] in which he studies Poisson problems with intersecting interfaces. Two
interfaces, given by the lines y ¼ 0 and y ¼ tanð/Þx, divide the plane into four regions for a given / 2 ð0;p=2�. The PDE coef-
ficients p and q are a piecewise constant function taking the value pi in the ith region counterclockwise from the positive x-
axis. Let w ¼ p=2� /. The solution is given in polar coordinates by
u ¼ ra1lðhÞ ð7Þ
where
lðhÞ ¼

cosððw� b1Þa1Þ cosððh� /þ a1Þa1Þ 0 6 h 6 /

cosða1a1Þ cosððh� pþ b1Þa1Þ / <¼ h <¼ p
cosðb1a1Þ cosðh� p� a1Þa1Þ p <¼ h <¼ pþ /

cosðð/� a1Þa1 cosðh� /� p� b1Þa1Þ pþ / <¼ h <¼ 2p

8>>><
>>>:

ð8Þ



Fig. 28. The solution of the intersecting interfaces problem.

Fig. 29. The solution of the problem with multiple difficulties.
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and where the numbers a1; a1 and b1 satisfy the relations
p1=p2 ¼ � tanððw� b1Þa1Þ cotða1a1Þ
p2=p3 ¼ � tanða1a1Þ cotðb1a1Þ
p3=p4 ¼ � tanðb1a1Þ cotðð/� a1Þa1Þ
p4=p3 ¼ � tanðð/� a1Þa1Þ cotððw� b1Þa1Þ
0 < a1 < p=w
maxf0;2/a1 � pg < 2a1a1 < minf2/a1;pg
maxf0;p� 2wa1g < �2a1b1 < minfp;2p� 2wa1g

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ
The solution has a discontinuous derivative along the interfaces, and an infinite derivative at the origin. The solution is in
H1þa1��8� > 0, so a1 can be chosen to make the Sobolev regularity arbitrarily close to 1.

Equation: �r � pru ¼ 0 where p is piecewise constant.
Domain: ð�1;1Þ � ð�1;1Þ.
Boundary conditions: Dirichlet.
Solution: given by Eqs. (7) and (8)
Parameters: As in [14], we take h ¼ p=2; p1 ¼ p3 ¼ R; p2 ¼ p4 ¼ 1, and a1 ¼ 0:1. The conditions in Eq. (9) can then be

solved to obtain R ¼ 161:4476387975881; a1 ¼ p=4 and b1 ¼ �14:92256510455152.
The solution for the given parameters is shown in Fig. 28.

2.12. Multiple difficulties

In [11] one of the test cases involves both a singularity due to a reentrant corner and a sharp gradient in the form of an
arctangent wave front. In this problem we combine four or five difficulties of different strengths into the same problem by
combining some of the features of the other test problems. It contains a point singularity due to a reentrant corner, a circular
wave front (which might include a singularity at the center of the circle), a sharp peak, and a boundary layer.
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Equation: Poisson.
Domain: L-shaped domain ð�1;1Þ � ð�1;1Þ n ð0;1Þ � ð�1;0Þ.
Boundary conditions: Dirichlet.
Solution: rðp=xÞ sinðhp=xÞ þ tan�1ðawð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xwÞ2 þ ðy� ywÞ

2
q

� r0ÞÞ þ e�apððx�xpÞ2þðy�ypÞ2Þ þ e�ð1þyÞ=�

Parameters: This problem has the same parameters as the problems that it combines. The boundary layer was placed on
y ¼ �1. It could instead be placed on y ¼ 1; x ¼ �1 or x ¼ 1, or any combination of them.

Fig. 29 shows a solution where the wave front intersects the boundary layer and corner singularity, and the peak is cen-
tered on the wave front. The following parameters were used. For the reentrant corner, x ¼ 3p=2. The wave front is defined
by ðxw; ywÞ ¼ ð0;�3=4Þ; r0 ¼ 3=4 and aw ¼ 200. The peak is centered at ðxp; ypÞ ¼ ð

ffiffiffi
5
p

=4;�1=4Þ with strength ap ¼ 1000. The
boundary layer is given by � ¼ 1=100.

3. Future work

The collection of problems given in this paper were selected to represent a variety of solution features for which adaptive
grid refinement is appropriate in the solution of elliptic partial differential equations in 2D. Clearly this is a limited class of
problems. Standard benchmark problems are also needed for 1D, 3D, time dependent problems, problems that are motivated
by real-world applications without manufactured solutions, goal-oriented adaptivity, etc. A web resource [1] is being devel-
oped, from which researchers can obtain standard adaptive grid refinement benchmark problems from a rich collection of
problems representing many classes of partial differential equations.
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