
PART II
Finding Needles in the World’s Biggest Haystack

- or -
The Page Match & Page Rank Problems

We will look at how a search engine carries out an impossible task:

• Read your search word or phrase;

• search all 40 billion pages on the Internet;

• list all the pages that contain some or all of your phrase;

• rank these matches so the best matches are first;

• and do this in less than two seconds.



Topics for Part II

1. The PageMatch Problem investigates how your browser takes your inter-
net search string, passes it to a search engine which returns an answer
incredibly fast. We will see that this process involves a number of hidden
tricks and indexes.

2. The PageRank Problem considers how it is possible, once many matching
web pages have been found, to select the very few that correspond most
closely to your search string.



Goals for this lecture

1. To realize that a search engine doesn’t wait for your search string and
then start checking one page after another on the web;

2. To realize that it’s possible to create an index of the web, just like the
index of a book;

3. To understand how Web crawling is done to create an index;

4. To recognize how information searches were done before the Internet.

5. To watch a video from a Google engineer explaining in general terms how
Web searches work at Google.



Reading Assignment

Read Chapter 2, pages 10–23, “9 Algorithms that Changed the Future”.



What’s the Internet?

Once, computers were simply stand-alone devices.

A computer could be used to create information and store it on its own hard
drive.

I could use my computer to write a letter to you, but to send it, I’d have to
print it out and put it in an envelope.

Or, if you were in the same office, I could copy my letter onto a removable
disk, carry it to your computer, and load it onto your hard disk, so you could
view it.

People very quickly invented ways of connecting all the computers in an
office using cables, so that information could be moved from one hard disk
to another by simple keyboard commands.



What’s the Internet?

Gradually, it became clear that it was a good idea to connect all the com-
puters in the whole world this way.

This required modifying computers to include an Internet port which could
be connected by a thin cable to a local network, over which information
could be sent and received.

It required building a network of Internet Servers, so that every message
could be passed from its sender computer, through a sequence of servers, til
it reached its recipient computer.

It required coming up with a universal system of numeric addresses, called
the Internet Protocol or IP, so that each message included an exact address
that the servers could read.

It required setting up Domain Name Servers (DNS) so that humans could
specify an easy-to-remember address such as facebook.com or fsu.edu,
but these would be automatically translated to numeric IP addresses.



What’s the Internet?

Up to this point, the Internet simply connected computers.

This was good for scientists, who often wanted to access a big, far away
supercomputer without having to get on an airplane, or package their data
in an evelope or tape and mail it to the computer.

Instead, using the Internet, a scientist could start on a desktop computer,
and log in to the supercomputer using programs called ssh or putty.

They could run a big scientific program on the supercomputer.

Then they could bring the data back to their desktop computer using a file
transfer program called ftp or sftp.

In fact, scientists still use the Internet this way.

...But then some other stuff happened.



What’s the World Wide Web?

The Internet had been set up to make it easy for a person on one computer
to send information to another computer, which was like sending a letter.

But sometimes someone wanted to make an announcement to many people
they knew, (so a lot of individual letters), or perhaps even to any interested
person (even people unknown to the author.) This was more like a newspaper
or poster.

This idea eventually brought about the creation of the World Wide Web
(WWW), by Tim Berners-Lee at the European Center for Nuclear Research.

WWW took advantage of the existence of the Internet, and its addresses
and server system to create something that had not been imagined before.



What’s the World Wide Web?

The web began with the idea that any computer user might want to share
some information with people around the world.

To make this possible, the user simply had to set aside a special location or
directory or folder on their computer, often called public html.

Any documents placed inside this location would be presumed to be intended
to be viewed by any interested person.

To access the documents, however, required knowledge of the address of
the computer. The addresses had a specific format, starting with the prefix
http://www and then listing information that specified the country, type
of institution, department of the institution, person, directory and filename.

Such an address can be a lot to remember. A fairly short example is:
https://www.sc.fsu.edu/undergraduate/courses



What’s the World Wide Web?

These documents were usually fairly short, and so were called web pages.

Thus, to publicize a new class to any interested computer user, an instructor
could create a document called newclass.txt and place it in the public html
of a computer:

Announcing a new class in Computational Thinking!

This fall, the Department of Scientific Computing

will be offering a class called "Computational Thinking".

For details, stop by room 445 Dirac Science Library.

Or check out the syllabus at

http://people.sc.fsu.edu/~jburkardt/classes/ct_2016/syllabus.txt



What’s the World Wide Web?

As WWW became better known, people began to take advantage of it,
posting interesting and useful information in their public areas.

But the crazy complicated address system was a huge drawback. No one
could find the information without knowing the address, and the address was
so long and complicated that it wasn’t possible to try to guess where things
were.

The first improvement came with the invention of links, which allowed a
person writing a web page to make a bridge or simple connection to other
web pages, saving readers from having to know more addresses.



What’s the World Wide Web?

A web page using links would allow a user to jump to another web page
simply by clicking on highlighted or underlined or colored text, rather than
having to enter that address separately:

Announcing a new class in Computational Thinking!

This fall, the Department of Scientific Computing

will be offering a class called "Computational Thinking".

For details, stop by room 445 Dirac Science Library.

Or check out the SYLLABUS.

--------



What’s the World Wide Web?

Now that interesting web pages existed on the web, and it wasn’t so hard
to find them, a new kind of program was developed for computers, called a
browser.

One early browser was called Mosaic, which transformed into NetScape, and
then into FireFox.

The browser’s job was to display a web page on the computer screen, allow
the user to specify an address for a new web page, to effortlessly jump to a
new web page if the user clicked on a link on the current web page, and to
jump back if the user changed their mind.

Because it still wasn’t obvious how to find the most interesting information,
browsers often included lists of recommended web pages for users to try.

Some browsers included a simple feature which would allow the user to ask a
question, and get back a recommendation for a good web page to investigate.



What’s the World Wide Web?

Because people added, modified, and deleted web pages every day, the web
was very dynamic, and the most interesting places to examine changed from
day to day.

The simple programs inside a browser for guiding users relied on lists created
by a staff who could not keep up with the rapid growth in the number of
web pages and users.

Browser companies began desperately researching new methods of satisfying
users, who wanted good information on what was new on the internet, and
how to get there.

The problem was that the web changed too rapidly for human analysis, but
how could a computer be of any use in finding and evaluating web pages?



Browsers and Search Engines

Originally, internet browsers tried to handle user searching themselves, or
simply included pointers to a few places that listed resources.

Now users were demanding a much improved search facility.

It seemed sensible to split up the work, to separate the browser from the
search engine. The browser would take care of moving to any particular web
page, but the search engine would be a separate program that figured out
which web page was the right place to go to next, in response to the user’s
question.

In some ways, the browser was like a car which could go anywhere, while the
search engine was like a GPS system, which could direct the browser to a
desired location.



Browsers and Search Engines

Ever since those days, there have been two clearly distinct but cooperating
programs for navigating on the web.

Browsers like Mosaic/NetScape/Firefox, Google Chrome, Microsoft Internet
Explorer/Edge, Apple Safari, and Opera allow people to view and retrieve
information on the internet.

Search engines, like Google Search, Microsoft Bing, DuckDuckGo, Yahoo
Search!, Ask.com, are used from within a browser, by typing a search string
into a search box. The search engine then seeks to list web pages that
pertain to that search string, after which the user can ask the browser to
display information from a selected site.



Winners and losers in the browser wars



The search engine wars

In 2002, Google, Yahoo, and Microsoft had about 30% of the search engine
market share, but Google made some dramatic improvements to its search
engine, and drove Yahoo and Microsoft down to less than 20% shares each
(and dropping).



Winners and losers in the search engine wars



It seems like everything is somewhere on the Web

To most of us, the web is simply an enormous pile of

• documents;

• photographs, images, pictures;

• email, messages, chats;

• songs;

• magazines;

• videos, movies;

• programs;

• advertisement, commercials and promotional videos;

• retail stores and ticket outlets;

• social media sites.



Can’t find it = can’t use it!

The Web may seem to be able to connect us to everything; but if we don’t
know where something is, we might as well not have it.



We don’t even know what we’re looking for

So as the Internet has grown in size (number of things connected) and
complexity (kinds of things connected), it has become increasingly important
to develop and improve ways of:

• finding things you are looking for;

• recommending new things you might be interested in;

• learning enough about your interests to guess what other things you might
want to see.



How hard is a search engine’s job?



Specialized search engines have a simple task

You are probably familiar with some specialized search programs that help
you find information on the web, such as NetFlix and Yelp and Orbitz and
Amazon.

These programs work well because they have a very limited vocabulary. You
often select choices from a list, or enter simple information into boxes, like
your credit card number and address.

For such a program, it’s easy to imagine a simple procedure for getting the
desired information from the user, and then checking a list of song titles,
travel dates, or shoe sizes, until a desired match is found, and then finishing
up the billing and shipping arrangements.

While such programs seem to carry out an elaborate sequence of steps, in
general the choices are not so large, and it’s easy to determine when you’ve
found a match (the right size, the right price, the correct dates).

But a real search engine has a much more difficult task!



A search engine must be prepared for anything

Suppose you are looking for a list of the rulers of Russia, or advice on
how to whistle, or instructions on how to get rid of a wasp infestation.

As soon as the browser realizes you’re doing a search, it hands the information
to the search engine, as a list of one or more words or search strings.

The search engine doesn’t speak English or French, or Mandarin. It has no
idea what your words actually mean.

If your search word is apple, should it concentrate on fruit, on the computer
company, on the recording label for the Beatles, Fiona Apple, a movie named
“The Apple”? What about Applebee’s restaurant?

What makes matters worse is that if you search on “Apple”, there seem to
be more than a billion web pages on which that word appears!



How does our search phrase become an answer?



What happens between your question and the answers?

Your browser is running on the computer right in front of you.

The information you need is somewhere else, perhaps far away.

We assume you’ve got a connection, wireless or wired, to your local network.
Your request goes out from the local network to the Internet... and a few
seconds later, your answer appears, a list of hundreds or thousands of “hits”,
showing about 15 or 20 on the first page, including the location and an
extract from the matching text.

It seems like magic; in fact, it’s impossible for a search engine to receive a
search string and check every word of every web page on the Internet and
return the good matches to you unless you are willing to wait days for an
answer.

But we got the answer in two seconds!

It seems impossible for this to work!



Why does this seem an impossible task?

For your browser to access just one web page:

• the browser converts the web address to a numeric IP (Internet Protocol)
address;

• it has to set up a connection to that address;

• once the connection is made, it has to request a copy of the page from
the remote computer;

• it has to wait for the remote computer to find the file locally;

• it has to wait for the information in the web page to be copied across the
Internet into a local file.

Each single web page access can take on the order of 1 second.

There are more than 40 billion web pages on the Internet;

To copy every web page would take 40 billion seconds = 1240 years.



When 1 second is too long to wait: The Cache Trick

Browser users expect rapid response, and browser developers try every trick
they can think of to keep their users happy.

Although a typical web page access might take a second, sometimes there is
a longer delay because the network is busy, or the path to the web page is
unusually long, or the server that controls the web page is very slow.

Since users often refer to a single web page several times in a single session,
browsers added a cache, that is, they saved copies of the most recent web
pages that have been visited. When you request a page, rather than going
immediately to the web, the browser first checks to see if it already has a
copy in its cache.

This Cache Trick usually works fine. But you can see it break down some-
times. If a web page has been updated since you first referred to it, your
browser may continue to show you the out-of-date version. This is why
most browsers include a Refresh button, which really means throw away
the cached page and get a fresh copy from the web!



What really happens is a little more complicated

It’s natural to assume that if you search for polar bears, then the search
engine...really searches every web page on the Web, and comes back with a
list of all the pages that contain that word.

That is impossible. So what does happen?

In order to find your matching pages, the search engine did a great deal of
work long before your fingers touched the keyboard:

• web crawling: making a map of the Web;

• examining links: making an index of every word.

Let’s see how careful advance work makes your search happen so fast!



Step 1: Making a map

A search engine prepares in advance for your question, whatever it is.

It starts this process by locating all the web pages it can find. This is called
web crawling. It’s hard to do right, because there’s no map of the internet,
and new sites appear and disappear every minute.

Imagine the Web as a network of stops in the New York subway system.
The search engine needs to take random rides on this subway system, and
notice every place it stops, and how it got there, and whether anything has
changed since the last visit. All of this goes to updating a map of the Web.



A crawler explores the web

A web crawler, often called a spider, is actually a program. A search engine
lets many web crawlers explore the web. From time to time, a crawler visits
the main FSU web page.

It notes all the links on the FSU web page, some of which changed since the
last visit. It makes as many observations as possible in the local FSU web
page directory, sending this information back to the search engine.

Once it has extracted all the information it can from the main FSU web
page, it decides somewhat randomly where to explore next.



Spiders figure out the shape of the web

From their starting sites, the swarm of spiders follow links across the web,
recording what they see and sending it back to the main search engine site,
where all the information is combined into an updated snapshot of the web,
its web sites, the web pages, and the links in those web pages.



How does a spider start its travels over the Web?

Some parts of the web are well known, and don’t change their locations.
These are servers, computers devoted to a special task. These are good
places for an internet crawler to begin its exploration.

A web server does nothing but send and retrieve web pages to your browser
while you’re surfing the Internet.

An e-mail server is a computer that works as a virtual post office, receiving
and storing mail messages, and interacting with you when you check your
mailbox.

Facebook servers do nothing but handle all the activities of their users,
and they are packed with information that a crawler wants to see.



Creepy crawlers

If you have a web site, you may be surprised or unhappy to realize that a
robotic spider will look at your information from time to time and send a
summary of it back to Microsoft or Google or Yahoo.

Usually, if you have a web site, anybody can look at your information, but
still, it can be unsettling to realize that some viewers are actually vacuuming
up your information for their own use.

Because of user complaints and privacy concerns, some major web sites and
social media sites try to restrict access by these crawlers.



The Map Trick Can Break Down

Creating a map of the web is part of the search engine’s plan to efficiently
respond to your requests.

When you send a question to the search engine, it relies first on this map,
rather than on the actual web. That means that, sometimes, the map and
the web differ.

The map may include a web page that has since actually disappeared. For
this reason, your search request will sometimes point to what seems like an
interesting web page, but when you try to view it, it says “Can’t find this
page!” and you’re left thinking, “What? You just told me to look at it!”

Also, if you put a web page up, it will not be visible to any search engine for
some time, until a web crawler runs into it and adds it to the map.

These failures are two consequences of the otherwise very reliable Map
Trick.



Step 2: Making an index

So now we have some idea of how it’s possible to map the web using crawlers.

But just because we know where every web page is, we still have the impos-
sible task of checking them all against the user’s search string.

Luckily, Google solved this problem, using other information gathered by the
web crawlers.

When you do a Google search, you are NOT actually searching the web, but
rather Google’s index of the web.

Google’s index is well over 100,000,000 gigabytes of information, requiring
one million computing hours to build, and is constantly updated.

Now we want to understand what it means to index the web.



Web search = match + rank

When you issue a web search query, it is processed in two stages:

• matching searches for all matching pages using the web map;

• ranking orders those matching pages so the best appear first.

The query “London bus timetable” seeks matches, and then ranks them.



Library search: Search engines have always existed

One way to realize how search engine indexing makes the page match task
possible is to think about what used to happen, in the good old days, when
you went to the library to work on a term paper.

You might start by wandering through the library, looking for the books you
need, but after a while, you realize this is hopeless.

Then you find a librarian and say:

“I need a list of the rulers of Russia.”

The librarian doesn’t know where your information is either. But the librarian
knows how you can find it.

The librarian says: “Search the catalog card index!”



Library search: A search engine from the good old days



Library search: Creating an index takes time

The old card catalog index contained hundreds of thousands of search phrases:
topics, author names, events, all in alphabetical order.

Every time a new book came into the library, the librarians prepared cards
for every topic covered by the book, and added these to the index.

With great work, and over a long time, the card catalog was built up to be
a labor saving device that allowed you to “instantly” (well, within a minute
or two) discover the “addresses” (library call numbers) of every book in the
library that might pertain to your topic.



Library search: Search phrase + index gets us the address

Searching the card catalog under Russia, Rulers we might see a sequence
of cards like:

Lieven, Dominic “Russia’s rulers under the old regime” DK253.L54
Lev, Timofeev “Russia’s secret rulers” DK510.73.T56
Warnes, David “Chronicle of the Russian Tsars” DK37.6W37
Gooding, John “Rulers and subjects” DK189.G86

Perhaps the title by Warnes seems the best match for our interest. In that
case, we need to make a note of the information DK37.6W37 because this
is the Library of Congress catalog number for the book.

This number amounts to an address for the book, so once we have a map
of the library, we now know where to search next.



Library search: Address + Map gets us book



Library search: Books have an index too!

Most nonfiction books include an index, which lists names and topics in
alphabetical order, and the pages on which these are discussed.



Library search: Book + book index gives us our information

Once we get the book in our hands, we’re holding 300 or 400 pages of dense
text; we probably don’t want to read or even scan the whole book to find a
list of Russia’s rulers!

Instead, we rely on the fact that books include an index at the back, making
it possible to rapidly locate the pages on which key topics are presented.

So we turn to the back of the book, and luckily, find “Rulers, List: 217” and
turn to page 217 and finally have what we want:

Rurik I 862-879
Oleg of Novgorod 879-912
Igor I 913-945
Olga of Kiev 945-962
... ...



Library search: Pretty efficient?

Now Strozier library claims to hold about 3.3 million books.

A typical book might have 300 pages.

So we can estimate there are a total of 3,300,000 x 300 ≈ 1 billion pages.

Our search lead us to one page on one book, so essentially we picked one
page out of a billion in about 15 minutes.

This means that in every single second, we essentially skipped over a million
pages of useless text in our search for the right one.

Let’s remember this!

Library search rate ≈ one million pages per second.



Library search: The Index Trick

Twice, in our library search, we referred to an index as an efficient way to
rapidly narrow our search.

The library index listed books in the library that might pertain to our topic.

The book index listed pages in the book that might pertain to our topic.

The indices saved us from having to search every book, or search every page.

Of course, the reason we had a fast search was that other people (librarians
and publishers) had already done the hard work of preparing accurate indexes
for us.



Web search is similar to library search

Searching the web is similar to searching the library:

• There are a huge number of items;

• Each item contains many pieces of information;

• Each item has an address.

We need:

• a way to specify a search topic;

• a list of items that might include this topic;

• an address for each item;

• a map that tells us how to reach any address;

• a way to reach the address;

• a way to view the item;

• a way to locate our search topic within the item.



Rapid search requires indexing

For instance, every time a politician in Washington D.C. publishes a book,
everyone rushes to the bookstore, goes to the back of the book, and looks
to see if their own name appears in the index!

An index takes a long time to make; most of the information will never
actually be used, and it’s important to select only useful occurrences of
important items.

But once the index is prepared, then it’s possible to rapidly locate any indexed
item, no matter how big the book, or the library.

Thus, the next ingredient in our rapid page matching procedure is the The
Index Trick.

Next time we will see how to create and use an index of all the search words
on all the web pages on all the web sites on the World Wide Web.



Matt Cutts’s Video on “How Search Works”

Matt Cutts is an engineer at Google and explains how Google’s search engine
works.

https://www.youtube.com/watch?v=Md7K90FfJhg



Socrative Quiz PartII Quiz1

IUZGAZ34E

Answer T for true and F for false.

1. Safari is a search engine.

2. Google Chrome is a browser.

3. You have to use a browser to get to a search engine.

4. A search engine checks every word of every web page.

5. A spider or a crawler is an electronic robot which is inside your computer.

6. A spider starts its Web search, at a popular Web site or server.

7. Currently, Yahoo is the most popular search engine in the U.S.

8. You are not actually searching the Web but an index of the Web.

9. The Internet and the World Wide Web were developed at the same time.

10. Links on a web page provide a bridge to other web pages.



Goals for this lecture

1. By looking at simple examples we want to see how a Web index can be
made;

2. To understand the importance of the location of keywords on a Web page;

3. To realize that Web pages are typically written in a language called HTML;

4. How HTML tags can indicate what a web page is about.



Map + Match + Rank

We have seen that when you enter a search phrase in your browser, the
browser passes this request to a search engine, and the search engine doesn’t
actually go out and check the web, but rather looks at an index of the web
created from information gathered by web crawlers as they constructed a
map of the web.

The stages involved in this process include:

1. map the web, its web pages and topics;

2. match the search words to web pages;

3. rank the matching web pages by importance.

Let’s assume that the web map has been built, and that it’s time to think
about how to rapidly match web pages to an arbitrary user search word.



The Index Trick

Let’s recall from our discussion last time how an index can be used to speed
up the search for occurrences of some word, phrase, or topic.

An index essentially says “If you’re looking for this topic, check out these
places.”

It should be clear that this idea, which worked so well for libraries and books,
can be extended to the web and web pages.

An index takes a lot of work to prepare; once it’s created, it makes searching
incredibly faster.



Where the Google Search index is calculated and stored



The tiny web

The web is too huge to think of indexing right away. Let’s start with a simple
model, in which there are just three objects, pages 1, 2 and 3.

Indexing these web pages is very similar to indexing a book. We will consider
every word important. So we start by listing alphabetically the unique words
we find. Each word will be followed by a “1” if it occurs in page 1, a “2” if
in page 2, and so on.

Let’s go through this painful indexing process now.



The tiny web: index #1

Our resulting index should look like this. It is a single file that contains all
the words that appear, and which web pages use them:

Word Pages containing word
a 3

cat 1 3
dog 2 3
mat 1 2
on 1 2
sat 1 3

stood 2 3
the 1 2 3

while 3



The tiny web: One keyword on any page

A search engine could answer questions with just this single index file.

If we enter the search string dog, the search engine can quickly find the
corresponding line in the index (this is quick, because a computer takes
advantage of alphabetical ordering even more efficiently than we do). Then
the search engine can report that “dog” appears in pages 2 and 3.

Of course, a real search engine would include a bit of the text surrounding
the occurrence of “dog” but that’s an added feature that we don’t need to
worry about right now.

If we enter the search string cat, our search engine will tell us that this word
occurs in pages 1 and 3.



The tiny web: Several keywords on the same page

Often, our search string involves more than one word.

For example, if we are interested in finding a web page that discusses the
problems of having both a cat and a dog, then we don’t want pages that have
cats and pages that have dogs, we want pages that contain both keywords
at the same time.

So let’s enter a search phrase dog cat.

The search engine can determine that “dog” occurs on pages 2 and 3; Then
the search engine can find “cat” on pages 1 and 3.

Now it must put these two facts together, realizing that “dog” and “cat”
both appear only on page 3, and this is the single result returned.

So finding two search words together on the same page takes two searches,
three words would require three searches, and so on.



The tiny web: We didn’t access the web to answer the question

Notice an important fact: to answer these questions, we did not have to
have access to the original web pages. We needed that when we made the
index, but now a single index file allows us to answer questions about all
three pages.

Now the World Wide Web has 40 billion web pages. Suppose we can create
a similar (but huge!) index file for them. Then, to answer simple matching
questions about all the web pages, we only have to search one place, the
index file, not the web itself.

This is one clue to how a search task that should take a thousand years can
be cut down to 2 seconds.



The tiny web: Can we handle connected keywords?

In most search engines, it is possible to enter a phrase, using quotation
marks, such as “cat sat”. In that case, you are not just asking that both
words appear somewhere on the same page, but that they appear immediately
together, in that order. That is, we want the bigram cat sat.

The index file we created for the tiny web can tell us that both cat and sat
occur on pages 1 and 3, but not whether they occur together.

It might seem that the solution is to look up cat and then go to those web
pages and find whether sat occurs in the right position.

This is not acceptable! It would require downloading every web page that
had cat, and reading the entire web page to see whether sat was the next
word. There is no way to guarantee a fast answer.



The tiny web: Include keyword locations in the index

Maybe we can fix this problem, if we include more information in our index.

Suppose in version #2 of our index file:

• we label every word in each page with its position;

• we record every occurrence of a word in the page along with its position.

So if the occurs twice in a web page, each occurrence is listed, along with
its position.



The tiny web: Index #2

Word Page-Position
a 3-5

cat 1-2 3-2
dog 2-2 3-6
mat 1-6 2-6
on 1-4 2-4
sat 1-3 3-7

stood 2-3 3-3
the 1-1 1-5 2-1 2-5 3-1

while 3-4



The tiny web: Searching index #2

Now suppose we are given the search phrase “cat sat”.

We look up the word cat, and see that it occurs on page 1 as word 2, and
on page 3 as word 2.

sat is on page 1 as word 3, right after cat, so we have a hit on page 1.

sat is on page 3 as word 7, not immediately following cat there, and so that
counts as a miss.

By making our index more intelligent, we can now answer any phrase inquiry
about our web pages, and we still don’t need to access the web to do this.

We call this The Word Location Trick.



Socrative Quiz PartII Practice Quiz1

IUZGAZ34E

Use the following table of page numbers and word locations:

Word Page, Position

a 1-7
animal 1-2 2-6 3-5
be 2-4

cheetah 1-8 2-1 3-1 2-5 3-1
earth 1-4
fastest 1-1 2-5 3-3

is 1-5 3-2
land 3-4
may 2-2
not 1-6 2-3
on 1-3

1. On what page(s) does the word earth occur?

2. On what page(s), if any, does the bigram on earth occur? If it doesn’t
occur, enter “0”.



3. On what page(s), if any, does the trigram fastest land animal occur? If
it doesn’t occur, enter “0”.



Nearness: When is one matching pair better than another?

Suppose we were interested in learning the cause of malaria. We might
naturally search on malaria cause although we probably don’t insist that
those two words occur exactly together.

Suppose the search engine discovered two web pages with both match words.
We can see the first web page is a better match. What clues could a search
engine use?



Nearness: We know where things are

Here we see part of our index file, with keywords highlighted.

Word Page, Position
by 1-1

cause 1-6 2-2
common 1-5

...
malaria 1-8 2-19
many 2-13

of 2-10 2-14
...

the 1-3 1-24 2-7 2-11



Nearness: Close keywords are better

Using our word location index, the search engine can see that on page 1,
malaria and cause are just 1 word apart, versus 16 words apart on page 2.

Although both pages match both keywords, page 1 may be the better match
because the keywords occur much closer to each other.

Notice that the computer does not understand what it is reading! It could
do the same kind of analysis for keywords and text written in Italian, or in
ancient Mayan.

It may look like an intelligent action, but it’s based on a very simple idea:
physically close keywords suggest a better match.

The Nearness Trick is thus also useful for our upcoming page ranking task.



Nearness in Google Search

We already know two ways to specify multiple key words to a search engine:

• quoted, we prefer that the words appear together, in that order;

• unquoted, the words can be in any order and far apart.

It turns out that most search engines automatically prefer situations in which
the keywords are close. However, one interesting feature in Google Search
allows us to specify how close we want the words to be.

If we use one asterisk between two quoted keywords, then we are asking for
pages where the keywords appear in that order, separated by exactly one
word

"string1" * "string2"



Nearness: Search results for “Lincoln” * “Vampire”



Nearness: Avoiding spam pages

One reason that search engines also prefer matches in which multiple key-
words are close is to avoid being trapped by spamdexes. A spamdex is an
artificial web page that simply contains a grab bag of keywords, without any
information. You could make such a web page by posting a dictionary, minus
the definitions, for instance. We will look at this more closely later in the
course.

A search engine looking for hair loss remedy or tap dance lessons or
perpetual motion machines will find matches (but no information!) on
a spamdex page, and the spamdex operator will pick up some money by
displaying ads to the annoyed user.

Thus, even if the user doesn’t request that the keywords be close, search
engines avoid matching pages that fail the proximity test.



Nearness: A spam page, your keywords are here somewhere!

a aa aaa aaas aah aahed aahs aal aalii aam aani aardvark aardvarks aardwolf
aardwolves aargh aarhus aaron aaronic aaronical aaronite aaronitic aaru aau
aaziz ab aba ababa ababdeh ababua abac abaca abacate abacay abaci aba-
cinate abacination abaciscus abacist aback abacterial abactinal abactinally
abaction abactor abaculus abacus abacuses abada abade abadite abaff abaft
abail abaisance abaiser abaissed abait abaka abalienate abalienation abalone
abalones abama abamp abampere aband abandon abandonable abandoned
abandonedly abandonee abandoner abandoning abandonment abandonments
abandons abanic abantes abaptiston abarambo abaris abarthrosis abarticu-
lar abarticulation abas abase abased abasedly abasedness abasement abase-
ments abaser abases abasgi abash abashed abashedly abashedness abashes
abashing abashless abashlessly abashment abashments abasia abasic abas-
ing abask abassin abastardize abatable abate abated abatement abatements
abater abaters abates abating abatis abatised abatises abaton abator abattoir
abattoirs abatua abature abave abaxial abaxile abaya abaze abb abba



HTML: Indexing should notice a web page title

Web pages are actually a little more complicated than the simple text files
we have used so far as examples.

Web pages are written in HyperText Markup Language HTML. HTML al-
lows the author to vary the font type and size, to include tables, lists and
figures, and to indicate the structure of the document.

A web page author can specify a title for the web page using specific HTML
tags to indicate where the title starts and stops.

If a search engine is looking for the key word malaria, doesn’t it make a
huge difference if the actual title of a page is “Malaria”?



HTML: An example of title searching

Here are three web pages which include title information.

The pages as we see them.

The pages as the browser and search engine see them.

When written in HTML the Web page typically has a title between the
special tags <titleStart> and <titleEnd>. (The actual HTML tags are
slightly different.) An intelligent search engine takes advantage of noticing
the title!



HTML: Planning an improved improved tiny web index

Our improved tiny web index will notice and include HTML tags.

Since the spiders see the actual text that generates the Web page, the first
“word” to index is the HTML tag <titleStart>, the next words are the ones
in the title, then the HTML tag <titleEnd>, then the HTML tag for starting
the body, followed by the body of the page and finally the HTML tag for
ending.



HTML: Indexing a single page, including HTML tags

For example, for the page entitled “My Cat” we have the following indexing.

<titleStart> my cats <titleEnd>
1 2 3 4

<bodyStart> the cat sat
5 6 7 8

on the mat <bodyEnd>
9 10 11 12



HTML: The tiny web index #3

Word Page, Position
a 3-10

cat 1-3 1-7 3-7
dog 2-3 2-7 3-11
mat 1-11 2-11
my 1-2 2-2 3-2
on 1-9 2-9

pets 3-3
sat 1-8 3-12

stood 2-8 3-8
the 1-6 1-10 2-6 2-10 3-6

while 3-9
<titleStart> 1-1 2-1 3-1
<titleEnd> 1-4 2-4 3-4
<bodyStart> 1-5 2-5 3-5
<bodyEnd> 1-12 2-12 3-13



HTML: Using index #3

Suppose a user searches for dog. A page in which dog is in the title is
probably a stronger match.

Each time a page is found containing the word dog, the engine can check
whether this word is actually part of the web page title. It does this by
comparing the positions of <titleEnd> and dog and <titleStart>. If
the keyword falls between the two title markers, then this web page is more
highly related than if it occurs elsewhere.

By looking at our index, we see the following cases:

Page titleStart dog titleEnd Start < dog < End?
2 1 3 4 yes
2 1 7 4 no
3 1 11 4 no

This technique is The Metaword Trick.



Maps and Indexes have solved the pagematch problem

From what we have seen, the impossible problem of quickly responding to
a request to find keywords in all the webpages in the world has become the
possible problem of intelligently searching a single index file.

Just as with card catalogs and an index at the back of a book, the creation
of an index file for the web takes a great deal of time, and space.

Google, for instance, has created enormous collections of computer servers
whose job is to collect all the information on all the web pages and create,
update, and analyze the corresponding index file. This means that the index
file is actually always out of date (like Google Street View) but regularly
updated piece by piece.



Computational Thinking: Computer Tricks

The search engine may seem to be intelligent - it’s answering your questions,
after all. But actually, we have simply figured out a number of tricks that
make it possible to come up with reasonable approximations of good answers:

• The Cache Trick

• The Map Trick

• The Index Trick

• The Nearness Trick

• The Word Location Trick

• The MetaWord Trick

These are examples of computational thinking in action: given a problem,
how we can use the strengths of a computer (ability to store information, to
gather and remember new information, look up information quickly, repeat
operations) to simulate the abilities of a human agent (read all the web
pages, and find the matching ones).



After finding matches, we need to do ranking!

Even with the tricks we have described, it is common for a search engine to
discover thousands or millions of matching web pages.

The mapping and matching algorithm are only the beginning of the process
of responding to your web search.

Next it will be necessary to consider the page rank algorithm, which considers
all the matching pages that have been found, and sorts them in order of
importance, so that even with millions of matches, most users know their
best choice is a match on one of the first few pages.



Socrative Quiz PartII Quiz2

IUZGAZ34E

Use the table below to answer the following questions.

Word Page, Position

a 3-10
cat 1-3 1-7 3-7
dog 2-3 2-7 3-11
mat 1-11 2-11
my 1-2 2-2 3-2
on 1-9 2-9
pets 3-3
sat 1-8 3-12

stood 2-8 3-8
the 1-6 1-10 2-6 2-10 3-6
while 3-9

<titleStart> 1-1 2-1 3-1
<titleEnd> 1-4 2-4 3-4
<bodyStart> 1-5 2-5 3-5
<bodyEnd> 1-12 2-12 3-13

1. The word pets is in only one of the three titles.



2. The word sat is adjacent to cat but not to dog.

3. The word mat only occurs in the body of the page and not in the title.

4. The word my only occurs in the title of the pages and not in the body.


