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In this section of the course, we will look at things that seem to
have an element of chance or randomness.

We will try to understand how randomness can be created,
understood, and measured.

We will look at common instances of randomness, especially games
of chance.

We will talk about measuring the kinds of randomness, and how it
is possible for a computer to simulate random behaviors.
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In 1946, Stanlislaw Ulam was a physicist working at Los Alamos,
trying to predict the behavior of a beam of neutrons that penetrate
a material.

If a neutron collides with an atom in the material, it can be
absorbed, be deflected at a new angle and speed, or cause the
atom to split.

For one neutron and one collision, Ulam could estimate the
probability of each event. The problem was that a single neutron
might cause many collisions, with the outcome different each time.

Getting a useful answer meant estimating the behavior of many
neutrons and many collisions, which seemed impossible to
calculate.
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After playing the card game of clock solitaire many times, Ulam
noticed that he didn’t win very often. Rather than trying to figure
out the probability of winning, he counted up his wins and losses
until he saw a pattern that he could explain.

A few days later, he realized that rather than trying to solve the
neutron problem exactly, he could get good results if he could
simply “play the neutron game” and keep statistics.

For each play of the game, he started a neutron heading into the
material, and ...essentially... rolled dice to determine how far it
would travel before colliding, and what would happen at the
collision.

After a few games played on paper, it was clear the method was
useful, and the newly invented computer was used to play and
record the results of thousands and millions of such games.

Physicists were surprised that sometimes they could solve a
problem by flipping coins.

6 / 104



7 / 104



In this discussion, we will consider some questions that are
suggested by Ulam’s discovery (which is now known as the Monte
Carlo Method):

What is special about a random event?
Can we understand how some random events are “chosen” to
occur?
Are there underlying patterns in random events?
Can we tell if a random event is actually biased?
How can it be possible for a computer to behave randomly?
Can random events be used, not just to play games or
gamble, but to answer new scientific questions?
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We often assume that the task of a scientist is to determine laws
that are followed by natural objects and events.

One of the greatest such achievements, the rules of planetary
motion, took thousands of years to work out, and resulted in
Newton’s law of gravity.

Newton’s law for the moon also applies to basketballs.

It allows us to calculate the future location of an object of any size,
moving at any speed, if we know a few pieces of initial information.

Newton’s laws seemed to suggest a clockwork universe, that could
be easily understood once we had worked out all the laws.
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Although scientists look for lawful behavior, there’s at least one
area where predictability is the last thing wanted - games of
chance!

The reason we roll the dice, or shuffle the cards, or spin the wheel
is to try to make it impossible to predict the outcome.

Shuffling, spinning or otherwise scrambling information to avoid
prediction is sometimes called randomization, and the results, such
as the sum of two dice, or a poker hand, or the lottery number, is
called a random event.

When we say an event is random, we usually simply mean that,
before it happened, we had no way of predicting that particular
result.
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Examples of things that seem to be truly random:

(football) - who wins the toss of a coin;
(biology) - baby girl or baby boy;
(geology) - location and strength of next earthquake;
(gambling) - the Power Ball lottery number);
(safety) - the number of fatal traffic accidents per year;
(candy) - the number of red, orange, blue, green, yellow and
brown M&M’s in a package;
(manufacturing) - the number of hours a light bulb will last;
(weather) - the number of named hurricanes in a season;
(medicine) - the chances that a patient will be cured;
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The simplest random event is a coin toss. We say heads and tails
are even odds, or 50-50 or equally likely. The technical term is that
heads and tails have uniform=(equal) probability.

This doesn’t help us to predict what happens on a single coin toss,
but if we toss a coin many times...or many coins all at once, we do
predict that the number of heads and tails will be roughly the
same.

We make this judgment based on our observations of actual
experiments. Let’s take an example of such an experiment and see
what insight we can gain.
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Because we wrote the data as a table, rather than a list, our eye
can take it all in at once.

Some patterns, like the actual number of H’s and T’s are real; it
seems like there are about the same number of each, but it’s hard
to judge.

Other patterns are accidental. Do you see that column 1 is mostly
T’s? Do you see many horizontal strings of H’s? If we changed the
shape of the table, many of these patterns would change or
disappear.

Especially if the list of symbols becomes very long, we may want to
find other ways of displaying the data.
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If we want to show all the coin toss results, in the exact order
they occurred, we can make make a line plot, which connects pairs
of data points.

Most plot programs expect numbers to work with. One way to do
this is to represent T by -1 and H by +1.

Most plot program work with pairs of numeric values. For our
data, we’ll number the tosses, and pair the number with the result.

Symbol: T T T T H T T H T T ...
Toss: 1 2 3 4 5 6 7 8 9 10 ...
Value: -1 -1 -1 -1 +1 -1 -1 +1 -1 +1 ...

So the plotting program would work with pairs (1,-1), (2,-1),
(3,-1), (4,-1), (5,+1), (6,-1), and so on.
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The simple plot does store all the data, but it’s still very hard for
the eye to read.

One of the obvious questions we may wonder is how many heads
and tails did we encounter? To answer that question, we don’t
need to see the entire history of the experiment, just the frequency
of each result.

We can make a bar chart where the height of the left and right
bars represents the number of tails and heads in our experiment.

Such a chart is easy to read, even if we consider hundreds or
thousands of coin tosses.
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Suppose that, in this experiment, we won a dollar each time a
head came up, and paid a dollar for each tail.

Then something that would be very interesting to us would be the
running sum of the results, that is, our current winnings or losses.

We compute a running sum by adding up all the preceding values.
For our data, this process would look like this:

Symbol: T T T T H T T H T T ...
Toss: 1 2 3 4 5 6 7 8 9 10 ...
Value: -1 -1 -1 -1 +1 -1 -1 +1 -1 +1 ...
Sum: -1 -2 -3 -4 -3 -4 -5 -4 -5 -4 ...

We seem to be losing badly at the beginning, but the plot shows
how we come out ahead when the game ends at toss 100, winning
a total of $2.
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If we’re playing for money, we might wonder whether the game is
fair or not. As with most random events, the answer to such a
question is never certain, but it becomes more and more obvious as
we repeat the experiment many times.

A fair way to judge the coin tossing game is to compute the
running average of the results. After each toss, divide the current
total winnings or losses by the number of tosses. We’d expect the
running averages would tend to zero.

We compute a running average by averaging the sum.

Symbol: T T T T H T T H T T ...
Toss: 1 2 3 4 5 6 7 8 9 10 ...
Value: -1 -1 -1 -1 +1 -1 -1 +1 -1 +1 ...
Sum: -1 -2 -3 -4 -3 -4 -5 -4 -5 -4 ...
Ave: -1/1 -2/2 -3/3 -4/4 -3/5 -4/6 -5/7 -4/8 -5/9 -4/10 ...
Ave: -1.00 -1.00 -1.00 -1.00 -0.60 -0.66 -0.71 -0.50 -0.55 -0.40 ...

While the pattern is not so obvious in the first 10 values, it does
seem to be decreasing. In fact, the average quickly drops to zero.
This seems to be a fair game, and a fair coin. 26 / 104
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Ten students were each asked to flip a coin ten times and record
the results. In the table, each row represents the results for a
particular student. Because there are only 10 students and 10 flips,
the table is compact.

But suppose one student did all the flips, and worse yet, suppose it
was 1000 flips? What are our choices for presenting the
information? Remember, we have to see the data in order to find
any patterns in it.

Certainly, one option is simply a list of 1000 H’s and T’s, but this
would not be easy to study.

If we really want to see all the data, in the order in which it
occurred, we can make a plot with 1,000 spikes, going up for heads
and down for tails.
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Let’s suppose we have 20 students who do 100 coin tosses each.

How can we present this data in a way that will make patterns
clear?

Our first attempt is simply to plot all the results, that is, for each
student, we plot a zig-zag line that is +1 for each head and -1 for
each tail.

The resulting plot seems useless, a blue cloud. It does suggest,
though, that from one toss to the next, we have every possible
pattern occurring (H-¿H, H-¿T, T-¿H, T-¿T).

We only see this because the experiment was carried out 20 times.
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If we plot the running sum, this tells us how much we would be
winning or losing, if each coin toss was worth $1.

But when we have 20 experiments, we can’t see individual results
well. However, we do notice something interesting. The average
winnings tend to slowly drift apart, but there seems to be as much
chance to be ahead as behind.

However, one thing you may notice is the tendency of most of the
sums to stay near the middle.
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If we plot the running average, this tells us how much we would
be winning or losing, on average, per toss.

This plot actually has useful information, because it shows that, for
all 20 experiments, the running average tends to drop down
towards zero.

It’s hard to see the details, and to have a stronger certainty we’d
want to take more tosses, but the running average experiment
suggests that we have used a fair coin.
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When we looked at 20 running sums plotted together, it seemed
as though the curves tended to stay near the center, and only a
few curves wandered far away.

This was not an accident, it’s a feature of the coin tossing
experiment, and of many natural phenomena.

It turns out that results in the middle are much more likely that
those at the extremes, and that this becomes more and more true
as we increase the number of coin tosses.

This may seem strange, since the coin has no preference for heads
or tails. How does repeatedly tossing an unbiased or fair coin seem
to produce a biased distribution of results?
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Another example of a random event occurs when a marble drops
down onto an obstructing peg, and must swerve left L or right R,
as a tossed coin will show heads or tails.

If there are levels of pegs, that’s like tossing the coin several times.

Following the marble’s path to its final location is just like tracing
the running sum. As the picture suggests, the marbles have a very
strong tendency to end up near the middle.

This behavior, often observed in nature, is called the central
tendency or the return to the average.
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As a demonstration of this behavior, let’s try this exercise.
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Now we can try to understand the pattern in our results.

After one toss, it’s easy to see we have two equally likely results, T
or H.

After another toss, we have four equally likely results, if we want
to remember the order in which things occurred. But usually, we
simply ask how many heads and tails we have. In that case, there
is only one way to have two heads or tails, but two ways to have a
head and a tail. When we toss again, there is only one way to have
three tails, but three ways to have 2 tails and a head; we could
have picked up the head on the first, second or third toss.

And as we go down the table, there are more and more ways to get
answers near the middle, whereas it is hard to stay at the extremes
unless you always get heads or always get tails.
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In going from row to row of our triangle, there is a simple pattern.

If we simply write down the number of ways we can get a given
result, we have what is called Pascal’s triangle.

As we move down the triangle, you can see that in each row, the
first and last values are always 1, while the numbers towards the
center continue to grow larger.

In each row, the numbers count the number of ways of reaching
that result. The more ways, the more likely the result.

This reflects the fact that repeated coin tosses tend to result in
about the same number of heads and tails, and that in a pachinko
game, the balls will most often end up near the middle.
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In order to see patterns in a random process, we have to observe
it many times.

So we can imagine that a single experiment is to toss a coin ten
times, and count the number of heads.

To see that we tend to get about 5 heads most of the time, we can
do this experiment many times.

For this test, with 1,024 experiments, we definitely see the
tendency to get results near the middle of the range.

If we do it exactly 1,024 times, then the numbers we see in the bar
chart should roughly match the numbers we saw in Pascal’s
triangle.
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So far, we have assumed that the coin is fair.

Suppose someone has replaced the fair coin with a trick coin that
shows up heads much more often than tails?

If we make a plot of the results for 100 tosses, we may think we
see something wrong, because there seem to be a number of
streaks of heads showing up.
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In this case, doing a bar chart suggests that there is something
very wrong.

This unfair coin has a tendency, in 10 tosses, to turn up heads 7
times, and tails 3 times. By plotting the results of 100 tosses, we
can see and measure this behavior very clearly.
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The running average of the results constantly updates an
estimate of how much we are winning per coin toss.

This average may wiggle around at first, but it should eventually
settle down.

In a fair game, the running average settles down to zero.

In this unfair game, we see an estimated value closer to 0.4, that
is, on average, you can expect to make about 40 cents per toss
over the long run.
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If we compare the barcharts for 10 tosses of the uniform and
biased coins. we see the effect of the bias.

We said the uniform tosses had a tendency to go to the center.
For the biased coin, the tosses still have a tendency, but now the
“center” is not a physical place (the middle). Ten tosses of a coin
with bias 0.7 seems to tend towards 7 heads, which is actually
what we should expect.
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Using what we know, let’s imagine a gambling situation that’s a
little more realistic.

Suppose there are two gamblers, Mr Alpha (A) and Mr Bond (B).

Mr A has $3, and Mr B has $7.

If a coin lands heads, Mr A takes $1 from Mr B, while tails works
the other way.

The two gamblers are going to play “all the way”, that is, they will
not stop until one of them is bankrupt.
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A: 3 4 5 4 3 2 3 2 1 2 1 2 3 2 1 0
H H H H H H

T T T T T T T T T
B: 7 6 5 6 7 8 7 8 9 8 9 8 7 8 9 10
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In this example, A loses after 15 tosses, with 6 heads and 9 tails.

In fact, 9 - 6 = 3, because A started with $3,000 and he is
guaranteed to lose as soon as there are 3 more tails than heads.

On the other hand, for B to lose, there have to be 7 more heads
than tails, because he has $6,000 to start with.

As long as the coin is fair, it is much more likely that the current
total will have an excess of 3 tails than an excess of 7 heads. So
there is an important advantage in starting the game with more
money than your opponent.
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set A and B to initial values (such as 3 and 7)

if nobody is bankrupt then

toss a coin (choose H or T randomly)

keep track of the total number of tosses

if we got an H
transfer 1 from B to A

otherwise
transfer 1 from A to B
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As long as we have a coin, or other randomizer, we can simulate
this game.

To get some idea of how how the game works, we can play it many
times, and look at the results.

We can replay the game with new values of A and B, and see what
effect that has as well.

Things to ask:

Given A and B, what is a typical length of the game?
Given A and B, what are the chances A or B will win?
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A B Average Maximum Probability Probability
length length A wins B wins

-- -- ------- ------- ---- ----
3 7 21 135 0.29 0.71
30 70 2,010 12,992 0.28 0.72
10 10 101 722 0.49 0.51
1 100 104 10,472 0.01 0.99

61 / 104



We simulated the gambling game 1,000 times, and recorded how
long each game took, and who won. By averaging, we got the
average length of a game, and the estimated probablities for A or
B to win.

By looking at the numbers, you might be able to guess some of
the following mathematical facts:

the average length of a game should be A*B;
A’s probability of winning should be A/(A+B);
no matter how the game begins, on average the players will
end up even (wins and losses average out)

Even if A has $1 and B has $100, the fact is that A has a small
chance of a big win, and B has a big chance of a small win, and
these are equal.
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It’s time to go to Las Vegas and try some real gambling!

To keep things simple, let’s look at a typical Las Vegas roulette.

There are 36 pockets numbered 1 to 36, half red and half black.
There are also 0 and 00 pockets, which always win for the house.

Simple bets include choosing a number (which pays $36 for a $1
bet) or a color (which pays $2 for a $1 bet).

(When we say the payoff is $36, we might instead say you win $35
plus the $1 back that you originally bet.)

These payoffs would actually be fair, except that anytime the
wheel hits 0 or 00, the house always wins.
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Results of 1,000 roulette spins, always betting $10 on red:

36 37 38
Trial pockets pockets pockets

1 -760 -540 -1,880
2 1660 -1,340 -2,080
3 -140 -1,540 -2,360
4 20 -1,320 -1,880
5 380 300 -1,880
6 1120 -660 -1,900
7 360 -2,380 -1,720
8 -60 120 -3,120
9 420 -1,520 -1,140

10 -960 -1,140 -2,980
----- ---- ------ ------
Total -160 -2,720 -5,340
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A “fair” roulette wheel would have 36 pockets, so that if you bet
on 1 number, you would win $35 if you hit, and lose $1 if you
missed. And if you bet on red, you would win $1 half the time and
lose $1 half the time.

But on a 37 or 38 pocket roulette wheel, if a ’0’ or ’00’ turns up,
you lose whether you bet red or black. This gives the casino an
edge. How much of an edge would this be? We can experiment to
get a feel for the difference that the extra pockets make.

In this table, we bet $10 on red 1000 times, and we do this 10
times. On the fair wheel, we actually come out ahead 6 times out
of ten, and averaged a loss of $16 for 1,000 spins.

For the 37 pocket wheel, we only come out ahead twice, and our
average loss is $272 in 1,000 spins.

On the 38 pocket wheel, we never come out ahead, and we about
double our typical loss.

The two extra pockets make a huge difference in the long run!
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The game of Snakes and Ladders may have originated in India.

The game is played on a 10x10 board of squares numbered 1
through 100.

Several players may compete, alternating turns.

To move, a player moves ahead as indicated by the roll of a die,
with the following special cases:

players essentially begin on square “0”;

exactly landing on 100 wins the game;

if the move exceeds 100, some rules allow a win, others forfeit
the move;

landing on a snake moves the player backward;

landing on a ladder moves the player ahead;
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Snakes and Ladders is not a kind of gambling, but it is an
elaborate process which involves random events (the dice).

Computer simulation is the use of computers to answer questions
about physical or logical systems but making a model of the
system and having the computer follow its rules.

We can use the computer to simulate a game of Snakes and
Ladders. For simplicity, we’ll only have one player, and the
question we will ask is “How many turns will it take for the typical
player to complete the game?”

To answer that question, we’ll have to make a model of the game,
understand its rules, and keep track of the results of many games.
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Looking closely at the board, we can see that our player can be in
any one of 100 squares.

For convenience, we can add a square 0 (for ”Start”) and a square
101 (for ”Finish).

Some squares are snakes and some are ladders. To model this, we
just need to know if the square is a jump, and where such a square
will jump to.
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7 -> 8 -> 9
^ |S|
| |S|
6 <- 5 <- 4
|L| ^
|L| |

0 -> 1 -> 2 -> 3

square 0 1 2 3 4 5 6 7 8 9
type? L S
go to: - 6 - - - - - - 5 -
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It might help to sketch a small version of our problem, where we
only have a 3x3 board, and one ladder, from square 1 to square 6,
and one snake, from square 8 back to 5.

To record where the snakes and ladders are, we can make a list of
numbers.

0 1 2 3 4 5 6 7 8 9 Ladder at 1 goes to 6,
type L S
connect |0|6|2|3|4|5|6|7|5|9| <-- Snake at 8 goes to 5

and if you think about it, we don’t really need to know whether a
square is a snake or a ladder.
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Most dice have 6 sides, but for this tiny model, let’s assume the
die will only show a 1 or a 2.

Then we start at square 0, and roll the die repeatedly. This
diagram shows, for each square, the snake, ladder or dice moves
that are possible.

We can work out the least number of dice rolls necessary to end
the game, but it’s not clear what the longest game would be.

In fact, it is theoretically possible for the game to last forever, since
we could do a loop like 5 -¿ 6 -¿ 7 -¿ 8 -¿ 5 over and over.

However, we can certainly estimate the average game length.
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square = 0

if square is less than 9 then

if square is snake or ladder then
next square is other end of snake or ladder

otherwise
roll die for value of 1 or 2
next square is ( square + die value )

move from square to next square
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Here is an idea of how we might simulate a single game of our
tiny version of Snakes and Ladders.

We can easily include a line that keeps track of the number of dice
rolls.

Then we repeat this procedure many times, and average that
result.

This is what we will now do for the actual game of Snakes and
Ladders.
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Trial Average Shortest Longest

1 39.8 7 175
2 39.2 7 185
3 38.7 7 158
4 39.5 7 205
5 38.5 7 187
6 38.3 7 198
7 39.5 8 207
8 38.8 7 176
9 39.9 7 185

10 39.0 7 242
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If we simulate 1,000 games, we can compute the average,
shortest and longest games observed.

To feel comfortable with our results, we can do this 10 times, and
see if our estimates change.

Note that the average and shortest seem reliable.

But the length of the longest game varies considerably. That is
because it is always possible to have a very long game. But the
longer the game, the more unlikely it is to actually happen. So
these things are hard to observe.

Very rare events are sometimes called “black swans”, and they
worry people who only have simulations to guide them.
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In fact, if we are more careful about keeping our records, we can
estimate the probability that the game will take any number of
moves.

That is, if we play the game 10,000 times, we can ask for the
probability that the game will take exactly 39 moves to win (which
is about the average number.) If we observe a 39 move game 247
times in our sample, we estimate the probability at

247
10,000 ≈ 0.025 = 2.5% chance.

By converting frequency to relatively frequency, we estimate
probability.
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We know the average length of the game. We know the
probability of any particular number of moves. But another useful
piece of information is to be able to say the probability that the
game will be done in at most a certain number of steps.

To estimate whether the game will be over in 39 steps or less, we
again look at our results, and count all the games that take 39
steps or less and divide by the total number of games played.

As the number of steps increases, this value must steadily increase
as well.

Now, by looking at the graph, we can answer the question “How
soon will 90% of all the games be done?” ... looks like 70 moves.
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We looked at the game of Snakes and Ladders because it was a
simple example with clear rules and some questions that made
sense to ask.

The point is, though, that the very same ways of looking and
analyzing a problem are used when a computational scientist tries
to make a model of

the spread of an epidemic disease;

the mixing of genes in successive generations;

the forecast of a hurricane’s path;

the random motion of pollen particles suspended in the air;

the annual number and severity of earthquakes;

how a rumor can spread or disappear over social media
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The transmission of disease is still a mystery.

If people are exposed to a sick person, some will also get sick. We
don’t know which people will get sick, we don’t know why they get
sick. The only thing we can do is observe, over and over again, the
probability that a person will catch the disease after exposure.

Since we don’t have rules, only probabilities, we can’t predict the
exact extent of a disease epidemic. But we can certainly use our
probabilities to make simulations, which give us at least an idea of
typical ways an epidemic might behave over time.

If we have a good estimate for the probabilities and other factors
in disease transmission, we can use computer simulations to
investigate the best strategies for controlling an epidemic.
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The SIR model is one of the simplest disease transmission
models.

It divides the populuation into:

Susceptibles, well people who can catch the disease;

Infecteds, sick people who can spread the disease;

Recovereds, people who had the disease, but recovered.

This is a reasonable model for diseases you only get once, such as
measles and chicken pox.
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repeat this from day 1 to day 50

consider each person P

if P is susceptible
roll die to decide if P becomes infected

otherwise, if P is infected
and P has been sick for at least 4 days, P now recovers
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So that we have something to work with, let’s make some
choices.

We run our simulation for 100 days;

We start with a group of healthy people.

We assume every healthy person has the same chance of
getting sick on a given day;

We assume every sick person gets better after 4 days;

Our simulated day begins

We consider the chance that each healthy person get sick;

For each infected person, if they’ve been sick 4 days, they get
better.

We keep track of the days, the number of S, I and R people.

We may ask whether everyone eventually got sick.
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Our original idea is simply that everyone has the same chance of
catching the disease. But we know very well that the chance of
catching a disease is very low if you avoid sick people.

Let’s look at a model that includes this idea of nearness and
disease transmission.

Let’s imagine a hospital with one huge room with 100 beds.
People are in the hospital waiting to have babies, to get bones set,
to have burns bandaged, and so on.

But now let’s suppose exactly one patient has a new disease.

Then let’s assume that healthy people in the hospital can only
catch the disease if they are in a bed that is next to a sick person.

The other rules are the same:

a healthy person near a sick person has a probability of
getting sick;
a sick person gets better after 4 days.
a recovered person can’t get sick again.
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repeat this from day 1 to day 50

consider each person P

if P is susceptible
if P has a sick neighbor (north, south, east, west),

roll die to decide if P becomes infected
otherwise, if P is infected
and P has been sick at least 4 days, P recovers
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Now, in order to use the disease model with our hospital bed
case, we simply have to check whether a susceptible person is
actually in a bed directly next to a sick person.

You can imagine that if a susceptible person had two or more sick
neighbors, we might expect the odds of catching the disease to
increase. We won’t worry about that right now, but it’s the kind of
thing you can do to try to improve your model.
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Here are the first 6 days of the disease.

You can see how it spreads a bit like a fire, and the gray area that
shows up in the center is the “recovered” patients, something like
the burned out area in the center of a fire.
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Now we see days 6, 10, 15, 20, 25, and 30.

The disease seems to be progressing very well, but in the lower left
corner, it dies out before catching everyone.
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We can make day-to-day plots of the number S, I, and R patients.

If everyone got sick at some point, then at the end of the plot, if
the disease has finished spreading, we’d have no susceptibles, no
infecteds, but only recovereds.

In this example, we managed to spare a few patients from the
disease.

Using the computer model, we could investigate whether the
disease rate would be affected by such strategies as spreading the
beds further apart, or changing the shape of the room.
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Chance is involved in many games, social situations, business
propositions, and physical occurrences.

If a random event is repeated often enough, we may be able to
count the number of times each possible outcome occurs. Then we
may estimate the probability of each outcome, even though we
can’t predict exactly what will happen on the next try.

Using probabilities, we can simulate situations involving random
events.

This can allow us to understand the typical behavior to be
expected.

A computer is ideal for such studies, since these simulations should
be done many times for best results, and may involve a lot of
record keeping.
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