
B y using a dynamical system to model a flour beetle’s
life cycle, we can estimate the key parameters that
describe its behavior. In the last issue, we presented

the model and defined six parameters.

PROBLEM 1.

To get some experience with this model, plot the popula-
tions L, P, and A for 100 days for three sets of data: b =
11.6772, �L = 0.5129, cel = 0.0093, cea = 0.0110, cpa = 0.0178,
L(0) = 70, P(0) = 30, A(0) = 70, and �� = 0.1, 0.6, and 0.9.
Describe the behavior of the populations in these three cases
as if you were speaking to someone who isn’t looking at the
graphs.

Answer:
Figure 1 shows the results. When �A = 0.1, the solution

eventually settles into a cycle, oscillating between two dif-
ferent values: 18.7 and 321.6 larvae, 156.7 and 9.1 pupae,
and 110.1 and 121.2 adults. Thus the population at four-
week intervals is constant. Note that the peak pupae popu-
lation lags two weeks behind the peak larvae population, and
that the adult population’s oscillation is small compared to
the larvae and pupae.

For �A = 0.6, the population eventually approaches a fixed
point: 110.7 larvae, 54.0 pupae, and 42.3 adults.

In the third case, �A = 0.9, there is no regular pattern for
the solution, so it’s called chaotic. The number of larvae
varies between 18 and 242, the number of pupae between 8
and 117, and the number of adults between 9 and 94.

PROBLEM 2.

Let �L = 0.5, �A = 0.5, cel = 0.01, cea = 0.01, and cpa = 0.01. Plot
Afixed, Lfixed, and Pfixed for b = 1.0, 1.5, 2.0, …, 20.0. To com-

pute these values for each b, use fsolve, started from the
solution with cel = 0, to solve the equations

. Provide fsolve with the Jacobian
matrix for the function ; on your plot, mark the b values
for stable equilibria with plus signs.

Answer:
Figure 2 shows the results. For the stable solutions, if we

start with population values near Afixed, Lfixed, and Pfixed, we’ll
converge to these equilibrium values.

PROBLEM 3.

(a) Let �L = 0.5128, cel = 0.0, cea = 0.01, and cpa = 0.09. For
�A = 0.02, 0.04, …, 1.00, use the LPA relations to determine
the population for 250 cycles. On a single graph, plot the
last 100 values as a function of �A to produce the bifurca-
tion diagram.

(b) Determine the largest of the values �A = 0.02, 0.04,
…, 1 for which the constant solution is stable (that is, well-
conditioned).

(c) Explain why the bifurcation diagram isn’t just a plot of
Lfixed versus �A when the system is unstable.

(d) Give an example of a value of �A for which nearby so-
lutions cycle between two fixed values. Give an example of
a value of �A for which nearby solutions are chaotic (or at
least have a long cycle).

Answer:
Figure 3 shows the bifurcation diagram. The largest

tested value of �A that gives a stable solution is 0.58. If we
perform the computation in exact arithmetic, the graph
would just be a plot of Lfixed versus �A. When the solution is
stable, a rounding error in the computation produces a
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Last issue’s installment of Your Homework Assignment featured the final problem in Dianne O’Leary’s popular
long-running department. In this issue, she offers a partial solution to it.
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nearby point from which the iteration tends to return to the
fixed point. When the solution is unstable, a rounding error
in the computation can cause the computed solution to drift
away. Sometimes it produces a solution that oscillates be-
tween two values (for example, when �A = 0.72), and some-
times the solution becomes chaotic or at least has a long
cycle (for example, when �A = 0.94).

PROBLEM 4.

(a) Use lsqnonlin to solve the least-squares minimization
problem, using each of the four sets of data in beetle-
data.m. In each case, determine the six parameters (�L, �A,
cel, cea, cpa, and b). Set reasonable upper and lower bounds on
the parameters and perhaps start the least-squares iteration
with the guess �L = �A = 0.5, cel = cea = cpa = 0.1, and b = 10.
Print the solution parameters and the corresponding resid-
ual norm.

(b) Compare your results with those that Brian Dennis
and his colleagues computed (see param_dl in beetle-
data.m). Be sure to include a plot that compares the pre-
dicted values with the observed values.

Answer:
I used bounds of 0 and 1 for all parameters except b. For

b, I used [0.1, 9.0]. The results are summarized in Tables 1
and 2 and contrast with the results of our model (new) with
that of Dennis and his colleagues (old).

Figure 4 shows the predictions obtained from my para-
meters and from those of Dennis and his colleagues. Note
that none of the models gives good predictions; we will see
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Figure 1. Results of the LPA model with three different choices of �A. Model predictions for b = 11.6772, �L = 0.5129, cel =
0.0093, cea = 0.0110, cpa = 0.0178, L(0) = 70, P(0) = 30, A(0) = 70, and �A = 0.1 (left), 0.6 (middle), and 0.9 (right). Number
of larvae is in blue, pupae in green, and adults in red.
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Figure 2. Equilibrium population as a function of b for �L =
0.5, �A = 0.5, cel = 0.01, cea = 0.01, and cpa = 0.01, b = 1.0,
1.5, 2.0, …, 20.0. Stable solutions are marked with pluses.

Colony cel cea cpa b �L �A Residual

New: a 0.018664 0.008854 0.020690 5.58 0.144137 0.036097 5.04
Old: a 0.009800 0.017500 0.019800 23.36 0.472600 0.093400 17.19
New : b 0.004212 0.013351 0.028541 6.77 0.587314 0.000005 7.25
Old: b 0.010500 0.008700 0.017400 11.24 0.501400 0.093000 14.24
New : c 0.018904 0.006858 0.035082 6.47 0.288125 0.000062 4.37
Old: c 0.008000 0.004400 0.018000 5.34 0.508200 0.146800 4.66
New: d 0.017520 0.012798 0.023705 6.79 0.284414 0.005774 6.47
Old: d 0.008000 0.006800 0.016200 7.20 0.564600 0.109900 7.42

Table 1. Parameter estimates computed in Problem 4.

Colony Norm of New Old
data vector residual residual

Colony a 33.55 5.04 17.19
Colony b 33.70 7.25 14.24
Colony c 33.44 4.37 4.66
Colony d 33.68 6.47 7.42

Table 2. Residual norms computed in Problem 4.
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later that lsqnonlin finds only a locally optimal set of pa-
rameters—not necessarily the best choice overall. There
is also the possibility of non-modeled errors in the data,
and perhaps the beetles didn’t respond well to the count-
ing process.

PROBLEM 5

Consider the data for the second beetle colony. For each
value b = 0.5, 1.0, …, 50.0, minimize the least-squares func-
tion by using lsqnonlin to solve for the five remaining pa-
rameters. Plot the square root of the least-squares function
versus b, and determine the best set of parameters. How sen-
sitive is the function to small changes in b?

Perform further calculations to estimate the forward er-
ror—how sensitive the optimal parameters are to small
changes in the data—and the backward error—how sensitive
the function is to small changes in the parameters.

Answer:
When the data is randomly perturbed, the estimate of b

for the second colony ranges from 4.73 to 6.83.

Y O U R H O M E W O R K A S S I G N M E N T
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Figure 4. Model predictions for colonies (a) through (d). The solid line represents the data, the pluses are the predictions
from Dennis and his colleagues, and the squares are our predictions.
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Figure 5. Values of b computed for colony b with 250
random perturbations of the log of the data, drawn from a
normal distribution with mean 0 and standard deviation 1.
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Figure 6. Changes in the residual as b is changed for colony
b, leaving the other parameters fixed.
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Figure 3. Bifurcation diagram for the data in Problem 3.
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A larger upper bound for b tends to cause the minimizer
to converge to a local solution with a much larger residual.

There are many ways to measure sensitivity: 

• We might ask how large a change we see in b when the
data is perturbed a bit. This is a forward error result. 

• We might ask how large a change we see in the residual
when the value of b is perturbed a bit. This is a backward
error result.

To estimate the forward error, I repeated the fit after adding
50 samples of normally distributed error (mean 0, standard
deviation 1) to the log of the counts. This is only an approxi-
mation to the error assumption usually made for counts—
Poisson error—but by using the log function in their
minimization, the authors are assuming that this is how the
error behaves. Even so, the estimate shown in Figure 5 range
from 1.00 to 9.00, quite a large change.

To estimate the backward error, I varied b, keeping the
other parameters at their optimal values, and plotted the re-
sulting residual versus b in Figure 6. We see that the resid-
ual isn’t very sensitive to changes in b.

Then I minimized the residual as a function of the five pa-
rameters remaining after setting b to fixed values. From Fig-
ure 7, we conclude that for any value of b between 1 and 50,
we can obtain a residual norm within 10 percent of the com-
puted minimum over all choices of b. This model seems to
give no insight into the true value of b.

But as a final attempt, I used a homotopy algorithm, re-
peating the computations from Figure 7, but starting each
minimization from the optimal point found for the previous
value of b. The resulting residuals, shown in Figure 8, are
much smaller, and the b value is somewhat better deter-
mined—probably between 5 and 10. Even more interesting,
the fitted model finally gives a reasonable approximation of
most of the data (see Figure 9).

To check the reliability of these estimates, it would be a
good idea to repeat the experiment for the data for the other
three colonies and to repeat the least-squares calculations us-
ing a variety of initial guesses.
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Figure 7. Best (smallest) residuals for colony b computed
as a function of the parameter b (blue circles) compared
with the red dotted line, indicating a 10 percent increase
over the minimal computed residual.
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Figure 8. Best (smallest) residuals for colony b computed
as a function of the parameter b (blue circles) compared
with the red dotted line, indicating a 10 percent increase
over the minimal computed residual, using homotopy.
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Figure 9. Revised model predictions for colony b, with
parameters cel = 0.008930, cea = cpa = 0, b = 7.5, �L =
0.515596, �A = 0.776820. The solid line represents the
data, the pluses are the predictions from Dennis and his
colleagues, and the squares are our predictions.
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