
I f you open a container of flour and see small red rods
among the powder, you’re probably looking at some
confused beetles (Tribolium confusum) or red beetles (Tri-

bolium castaneum), as pictured in Figure 1. These insects
progress through several stages of life—egg (two to four
days), larva (approximately 14 days), pupa (approximately
14 days), and adult (three years or more). Their life cycle is
complicated by one additional fact: they’re cannibalistic.
Adults and larvae eat eggs, pupae, and immature adults, and
adults also eat larvae.

By using a dynamical system to model the flour beetle’s
life cycle, we can estimate the parameters of biological sig-
nificance that describe their behavior. At the same time,
we illustrate some mathematical properties of dynamical
systems.

The Model
To try to understand the beetle population’s dynamics, en-
tomologists have developed a beetle model with three stages:

• L(t) is the number of (feeding) larvae at time t.
• P(t) is the number of nonfeeding (large) larvae, pupae, and

immature adults at time t.
• A(t) is the number of mature adults at time t.

Next, we define five coefficients of interaction, setting all
other ones to zero:

• b > 0 is the average number of larvae that each adult re-
cruits (that is, tends).

• 0 � �L � 1 is the probability that a larva dies from some-
thing other than cannibalism.

• 0 � �A � 1 is the probability that an adult dies from some-
thing other than cannibalism.

• is the probability that an egg won’t be eaten by
an adult between time t and time t + 1.

• is the probability that an egg won’t be eaten by
a larva between time t and time t + 1.

• is the probability that a pupa won’t be eaten by
an adult between time t and time t + 1.

The rate that adults eat larvae is small; we set it to zero.
The model Brian Dennis and his colleagues1 proposed is

L(t + 1) = bA(t)exp(–ceaA(t) – celL(t)), (1)
P(t + 1) = L(t)(1 – �L), (2)
A(t + 1) = P(t)exp(–cpaA(t)) + A(t)(1 – ��). (3)

We measure time t in 14-day units.

PROBLEM 1.

To get some experience, plot the populations L, P, and A
for 100 days for three sets of data: b = 11.6772, �L = 0.5129,
cel = 0.0093, cea = 0.0110, cpa = 0.0178, L(0) = 70, P(0) = 30,
A(0) = 70, and �� = 0.1, 0.6, and 0.9. Describe the behavior
of the populations in these three cases as if you were speak-
ing to someone who isn’t looking at the graphs.

Equilibria and Stability
It’s interesting to determine equilibria populations, or values
for the initial numbers of larvae, pupae, and adults for which
the population remains constant. We denote these as Afixed,
Lfixed, and Pfixed. Of course, one such solution is the extinction
solution of zero larvae, zero pupae, and zero adults. If cel = 0,
then Dennis and colleagues provide a nonzero solution,
valid when b > �A/(1 – �L):

Afixed = log(b(1 – �L)/�A)/(cea + cpa), (4)
Lfixed = bAfixedexp(–ceaAfixed), (5)
Pfixed = Lfixed(1 – �L). (6)

e c A tpa− ()

e c L tel− ()

e c A tea− ()

96 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

BEETLES, CANNIBALISM, AND CHAOS
Analyzing a Dynamical System Model

By Dianne P. O’Leary

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

Y O U R H O M E W O R K A S S I G N M E N T

A system’s evolution over time can be described with a set of equations called a dynamical system. In this
installment, we use a dynamical system to model the life cycle of flour beetles to estimate key parameters that
describe their behavior.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2007 97

The equilibrium solution is called stable if a colony of
beetles with initial population A(0) � Afixed, L(0) � Lfixed, and
P(0) � Pfixed tends to approach these values as time passes;
otherwise, the solution is unstable. Let xt be a vector with el-
ements L(t), P(t), and A(t). Then our Equations 1 through
3 are

xt+1 = F(xt),

where

.

By Taylor series,

F(xt) � xfixed + J(xfixed)(xt – xfixed),

where J(xfixed) is the Jacobian of F—that is, the 3 � 3 matrix
of partial derivatives. Therefore,

xt+1 � xfixed + J(xfixed)(xt – xfixed), so

xt+1 – xfixed � J(xfixed)(xt – xfixed), and

‖xt+1 – xfixed‖ � ‖J(xfixed)(xt – xfixed)‖ � ‖J(xfixed)‖ ‖xt – xfixed‖.

We conclude that the new point xt+1 tends to be closer to
xfixed than xt is if all eigenvalues of the Jacobian, evaluated at
xfixed, are inside the unit circle.

We can therefore label each equilibrium solution for our
beetle problem as stable or unstable depending on whether
the eigenvalues of the Jacobian matrix of the system

all lie within the unit circle.

PROBLEM 2.

Let �L = 0.5, �A = 0.5, cel = 0.01, cea = 0.01, and cpa = 0.01. Plot
Afixed, Lfixed, and Pfixed for b = 1.0, 1.5, 2.0, …, 20.0. To
compute these values for each b, use fsolve, started from
the solution with cel = 0, to solve the equations

. Provide fsolve with the Jacobian
matrix for the function , and on your plot, mark the b val-
ues for stable equilibria with plus signs.

Stability and Bifurcation
Let’s investigate stability a bit more. We know that when b
> �A/(1 – �L), Equations 4 through 6 give a constant solu-
tion to our population model. This means that if we start
the model with exactly these numbers of larvae, pupae, and
adults, we expect the population at each time to remain
constant. Let’s see what happens numerically, though. We’ll
study the solution as a function of �A, with the other para-
meters set to a particular choice of values. We want to know
whether the solution for large values of t is constant, peri-
odic, or chaotic (with no regular pattern). To decide this, we
make a bifurcation diagram: we run the LPA iteration for
various values of �A and plot the last 100 values of the LPA
iteration as a function of �A.

F̂
ˆ () ()F x F x x 0= − =

F(, ,)
exp()

()
exp(

L P A
bA c A c L

L
P c A

ea el

L

pa

=
− −

−
−

1 μ
)) ()+ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥A A1 μ

F x()
()exp(() ())

()()t

ea el

L

bA t c A t c L t
L t

P
=

− −
−1 μ

(()exp(()) ()()t c A t A tpa A− + −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥1 μ

FINAL INSTALLMENT

This is the 24th and final installment of Your Homework Assignment. I have enjoyed writing these assignments, and I
have especially enjoyed receiving reader comments. The columns will form the basis for 24 chapters of a new textbook,

and additional projects will appear on my Web site (www.cs.umd.edu/users/oleary). I’m grateful to Francis Sullivan and Nor-
man Chonacky, editors in chief of Computing in Science & Engineering during the past four years, for encouraging me to write
this column. It was a pleasure to work with Jennifer Stout, senior editor, whose professionalism, skill, and equanimity were
key to the column’s success. It has been a great experience.

Figure 1. Red beetles. The red beetle’s approximate length
when fully grown is 3 mm. (Figure copyrighted by Alex Wild, used with

permission; all rights reserved.)

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

98 COMPUTING IN SCIENCE & ENGINEERING

PROBLEM 3.

(a) Let �L = 0.5128, cel = 0.0, cea = 0.01, and cpa = 0.09. For �A
= 0.02, 0.04, …, 1.00, use the LPA relations in Equations 1
through 3 to determine the population for 250 cycles. On a
single graph, plot the last 100 values as a function of �A to
produce the bifurcation diagram.

(b) Determine the largest of the values �A = 0.02, 0.04,
…, 1 for which the constant solution is stable (that is, well-
conditioned).

(c) Explain why the bifurcation diagram isn’t just a plot of
Lfixed versus �A when the system is unstable.

(d) Give an example of a value of �A for which nearby so-
lutions cycle between two fixed values. Give an example of
a value of �A for which nearby solutions are chaotic (or at
least have a long cycle).

Nurturing vs. Cannibalism:
Estimating the Parameters
Now that we understand some properties of our dynamical
system model xt+1 = F(xt), let’s use some observed data to try
to determine the parameter values. Robert Desharnais and

Laifu Liu2 observed four colonies of red beetles for 266 days,
making observations every 14 days. With least squares, we
can estimate the six parameters in our model using this data.
Aside from the initial values L(0), P(0), and A(0), Desharnais
and Liu give us three data values Lobserved (t), Pobserved (t), and
Aobserved (t) for each time t = 1, …, 19. Given values of the six
parameters in our model, we can compute predicted values
of the populations at each of these times, so we want to de-
termine the parameters that minimize the difference between
prediction and observation. Because Desharnais and Liu tell
us that errors in the logs of the observed values are approxi-
mately equal, we minimize the least-squares function

where Lpredicted (t), Ppredicted (t), and Apredicted (t) denote the val-
ues obtained from Equations 1 through 3.

PROBLEM 4.

(a) Use lsqnonlin to solve the least-squares minimization
problem, using each of the four sets of data in beetledata.m.
In each case, determine the six parameters (�L, �A, cel, cea, cpa,
and b). Set reasonable upper and lower bounds on the para-
meters and perhaps start the least-squares iteration with the
guess �L = �A = 0.5, cel = cea = cpa = 0.1, and b = 10. Print the so-
lution parameters and the corresponding residual norm.

(b) Compare your results with those that Desharnais and
Liu computed (see param_dl in beetledata.m). Be sure to
include a plot that compares the predicted values with the
observed values.

When I asked 25 students to solve Problem 4 with the
data from the second colony of beetles, they obtained 13 dif-
ferent answers, all of them different from mine! Unfortu-
nately, none of them gave a good fit to the measured data.
When solving a nonlinear least-squares problem, it’s im-
portant to realize that the function might be nonconvex,
which means it might have many local minimizers. This
makes it quite difficult for an optimization routine such as

(log(()) log(()))L t L tobserved predicted
t

−
=

2

1

199

∑

+ −(log(()) log(()P t P tobserved predicted)))

(log(()) log(

2

1

19

t

observed prediA t A

=
∑

+ − ccted
t

t())) ,2

1

19

=
∑

Y O U R H O M E W O R K A S S I G N M E N T

TOOLS

The genome of the red flour beetle was the first beetle
genome sequenced (see www.hgsc.bcm.tmc.edu/

projects/tribolium/). For more pictures of it and other in-
sects, see Alex Wild’s Web site (www.myrmecos.net).

The main text uses life span and population data from
Robert A. Desharnais and Laifu Liu1 and Stuart M. Bennett
(www.the-piedpiper.co.uk/th7a.htm). The dynamical sys-
tems model we use comes from Brian Dennis, Robert A.
Desharnais, J.M. Cushing, and R.F. Constantino.2

A text by Edward R. Scheinerman gives an excellent in-
troduction to dynamical systems, stability, and bifurca-
tion diagrams.3

Recently, the LPA model’s developers have revisited the
problem.4

References

1. R.A. Desharnais and L. Liu, “Stable Demographic Limit Cycles in

Laboratory Populations of Tribolium Castaneum,” J. Animal

Ecology, vol. 56, no. 3, 1987, pp. 885–906.

2. B. Dennis et al., “Nonlinear Demographic Dynamics: Mathemati-

cal Models, Statistical Methods, and Biological Experiments,” Eco-

logical Monographs, vol. 63, no. 3, 1995, pp. 261–281.

3. E.R. Scheinerman, Invitation to Dynamical Systems, Prentice Hall,

1996.

4. R.F. Costantino et al., “Nonlinear Stochastic Population Dynamics:

The Flour Beetle Tribolium as an Effective Tool of Discovery,” Ad-

vances in Ecological Research, vol. 37, 2005, pp. 101–141.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2007 99

lsqnonlin to find the globally optimal solution. For diffi-
cult optimization problems, it sometimes helps to use a ho-
motopy method. In its simplest form, this just means that we
repeatedly use the known solution to one problem as a start-
ing guess to solve a difficult nearby problem.

PROBLEM 5.

Consider the data for the second beetle colony. For each
value b = 0.5, 1.0, …, 50.0, minimize the least-squares func-
tion by using lsqnonlin to solve for the five remaining pa-
rameters. Plot the square root of the least-squares function
versus b, and determine the best set of parameters. How sen-
sitive is the function to small changes in b?

Perform further calculations to estimate the forward er-
ror—how sensitive the optimal parameters are to small
changes in the data—and the backward error—how sensitive
the model is to small changes in the parameters.

D ennis and his colleagues evaluated the LPA model us-
ing a less demanding criterion: they just compared the

model’s one-step predictions with the true values. (This is
akin to a local error evaluation for an ordinary differential
equation model; we just ask how much error is produced in
a single step, assuming that correct values were given at the
previous step.) It would be interesting to repeat the sensi-
tivity analysis under this error criterion.

Acknowledgments
I’m grateful to David E. Gilsinn for helpful comments on
this homework assignment.

References
1. B. Dennis et al., “Nonlinear Demographic Dynamics: Mathematical

Models, Statistical Methods, and Biological Experiments,” Ecological
Monographs, vol. 63, no. 3, 1995, pp. 261–281.

2. R.A. Desharnais and L. Liu, “Stable Demographic Limit Cycles in Labora-
tory Populations of Tribolium Castaneum,” J. Animal Ecology, vol. 56,
no. 3, 1987, pp. 885–906.

Partial Solution to
Last Issue’s Homework Assignment

MONTE CARLO MINIMIZATION
AND COUNTING
One, Two, …, Too Many

By Isabel Beichl, Dianne P. O’Leary, and Francis Sullivan

I n the last issue’s installment of Your Homework Assign-
ment, we looked at Monte Carlo methods for difficult
numerical problems. Specifically, we studied three uses

of Monte Carlo methods—for function minimization, dis-
crete optimization, and counting.

PROBLEM 1.

Consider the function myf.m (on the Web site; www.
computer.org/cise/homework/), with domain 0 � x � 7.

(a) Generate 500 uniformly distributed points on the in-
terval [0, 7] in Algorithm 1, using fmincon for the local
minimizer. Make a graph illustrating the minimizer corre-
sponding to each starting point.

(b) L = 90.3 is a Lipschitz constant for the function myf.m.
Use Algorithm 2 on the interval [0, 7]. Compare the two
methods’ performance.

(c) (Extra) Try Monte Carlo minimization on your fa-
vorite function of n variables for n > 1.

Answer:
The programs myfmin.m and myfminL.m on the Web site

solve this problem but don’t make the graph.

PROBLEM 2.

Use the simulated annealing algorithm to minimize myf.m.
Experiment with various choices of T, �, and �. Describe your
experiment and the conclusions you can draw about how to
choose parameters to make the method as economical and re-
liable as possible.

Partial Answer:
The program sim_anneal.m on the Web site is one im-

Want to catch up on previous
Homework Assignments?

Visit our Web site at
www.computer.org/cise/homework/

to see past articles and solutions.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

100 COMPUTING IN SCIENCE & ENGINEERING

plementation of simulated annealing, and it can be run by
using problem1_and_2.m. To finish the problem, experi-
ment with the program. Be sure to measure reliability as well
as cost, and run multiple experiments to account for the fact
that the method is randomized. Also comment on the num-
ber of runs that converge to x = 1.7922, which is a local min-
imizer with a function value not much worse than the global
minimizer.

PROBLEM 3.

(a) Matlab provides a naive Monte Carlo solution algorithm
for the traveling salesperson problem (TSP). Given an or-
dering of the cities, it randomly generates a pair of cities and

interchanges them if this interchange lowers the total dis-
tance. Experiment with the demonstration program
travel.m and display the program using type travel to
see how this works.

(b) Write a program to solve a TSP using simulated an-
nealing, and compare your algorithm with that used in part (a).

Answer:
(a) Experiments with the Matlab travel code show that

it works for up to 50 cities but, as is to be expected, slows
down for larger sets. It’s interesting and important to note
that the solution is always a tour that doesn’t cross itself.
We’ll return to this point shortly.

(b) Figures A through C show the results of simulated an-
nealing for 100 random locations, with temperature T = 1,
0.1, and 0.01. Figures D and E show the actual tours for T =
0.1 and T = 0.01. Note that the result for 0.01 looks pretty
good but not that much better than the output for T = 0.1,
yet the T = 1 result looks completely random and gets
nowhere near a low-cost tour. This demonstrates that low-
ering the temperature really does give a better approxima-
tion. However, because the T = 0.01 tour crosses itself, we
know that it’s still not the true solution. And we don’t know
the true minimum score (distance) or an algorithm for set-
ting and changing T. Figuring out how to vary T is called de-
termining the cooling schedule. We generally want to use a
lower value of T as the solution is approached. The idea is
to avoid a move that would bounce away from the solution
when we’re almost there.

How we design a cooling schedule depends on our analy-
sis of the problem at hand. Some general techniques exist,
but cooling schedules are still an active research topic. Typ-
ing the phrase “TSP, simulated annealing, cooling schedule”
into Google Scholar gives more than 500 pointers to re-
search publications; a query to the main Google site gives
more than 12,000 hits.

The most popular general approach for setting a cooling
schedule is to change T whenever a proposed move is ac-
cepted. Suppose that the initial temperature is T0 and a pro-
posed move is finally accepted after k trials. Then the
temperature is reset to T0/log(k). The idea behind the use of
log(k) in the denominator is that the number of trials k re-
quired before generating a random number less than exp(–1/T)
is exp(1/T) on average, so 1/T should look something like
log(k). This is the famous logarithmic cooling schedule.1

Figures F, G, and H illustrate the application of simulated
annealing with a logarithmic cooling schedule to a TSP

Y O U R H O M E W O R K A S S I G N M E N T

Trial (thousands)

Sc
or

e

0 1 2 3 4 5 6 7 8 9 10
40

42

44

46

48

50

52

54

56

58

Figure A. Temperature = 1.0 no cooling. Moves are random.

Trial (thousands)

Sc
or

e

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8 9 10

Figure B. Temperature = 0.1 no cooling. Score improves
over time.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2007 101

with 100 random locations. The first two graphs show how
the score evolves over 10,000 trials at a low temperature.
Note that not many proposed moves that increase the score
are accepted and that the score doesn’t improve very much.
The last is a picture of the best tour obtained. Because it
crosses itself, it’s not the optimal tour—getting that requires
more computation and/or more sophisticated cooling
schedules. Solving the TSP for 100 random locations is re-
ally quite difficult!

If you think this use of simulated annealing to attack the
TSP seems quite informal and heuristic rather than analytic,
you’re right. In fact, some have argued that simulated anneal-
ing isn’t really an optimization method but rather a collection
of heuristic techniques that help in some cases. However,
there’s an important recently discovered connection between
the central idea of simulated annealing and the use of Monte
Carlo to approximate solutions to NP-hard problems, includ-
ing determining the volume of a bounded convex region in En.

Suppose that K is the set in question and we want to de-
termine Vol(K). If n is large, this can be a very hard problem.
The most well-developed approach is to define a sequence
of convex sets

K0 � K1 � K2 � … � Km = K,

where Vol(K0) is easy to evaluate. For each i, perform a
random walk in Ki and count how many walkers happen to
be in Ki–1. This gives an estimate of Vol(Ki–1)/Vol(Ki) and
the product of these estimates for all i is an estimate for
Vol(K).

The connection to simulated annealing comes in a couple
of ways. For one thing, the random walk can be done by us-
ing a Metropolis algorithm with a different rejection rate
(that is, a different temperature) for each i. A more recent
idea is to recognize that the volume is the integral of the
characteristic function of the set K so we can try to approach
this integral by integrating a sequence of other, easier func-
tions instead. In particular, we can embed the problem in
En+1 by adding an extra coefficient x0 to the points in En and
then choose functions f0 < f1 < f2 < ... fm, where fm is the char-
acteristic function of K but the others look like exp(–x0/T)
in the extra coefficient, x0.

Another example of simulated annealing is the KRS al-
gorithm (named for its creators, Claire Kenyon, Dana Ran-
dall, and Alistair Sinclair). Those who have become
fascinated by this subject might want to try to identify the
“temperature” in this case to understand why KRS is a form
of simulated annealing.

PROBLEM 4.

(a) Compute the partition function coefficients for a 2 � 2
lattice by explicit counting. Repeat for a 3 � 2 lattice. Con-
sider the 4 � 4 case, and see why it becomes difficult to ex-
plicitly count the number of arrangements.

(b) Implement the KRS algorithm, and use it to estimate
the partition function for a 4 � 4 lattice. Try various choices
of probabilities and updating intervals. Repeat for a lattice
as large as possible (perhaps 10 � 10).

Partial Answer:
(a) Table 1 gives some explicit counts, some done by hand

and some by Thomas DuBois’s latticecount.m.

Trial (thousands)

Sc
or

e

0 1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

50

55

60

Figure C. Temperature = 0.01 no cooling. Slightly better
score.

0.8 0.9 1.00 0.70.60.50.40.30.20.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure D. Actual tour T = 0.1 no cooling.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

102 COMPUTING IN SCIENCE & ENGINEERING

(b) One of the more interesting programming issues in
this problem is the data structure:

• If we keep track of each edge of the lattice, then we need
to enumerate rules for deciding whether two edges can be
covered at the same time. In our 2 � 2 lattice, for example,

we can’t simultaneously have a dimer on the top edge and
one on the left edge.

• If we keep track of each node of the lattice, then we need
to know whether a dimer occupies it, so our first idea
might be to represent a monomer by a 0 and a dimer by a
1. But we need more information—whether its dimer
partner is above, below, left, or right. Without this addi-
tional information, the array

tells us that the 2 � 2 lattice has two dimers on it, but we
can’t tell whether they’re horizontal or vertical.

• A third alternative is to keep track of both edges and nodes.
Think of it as a matching problem, in which you can match
each node with any of its four neighbors in a dimer, or it can
be a monomer. We maintain an array of nodes, where the
jth value is 0 if the node is a monomer, and equal to k if (k,
j) is a dimer. We store the edges in an n2 � 4 array, in which
the row index indicates the node at the beginning of the
edge, and the entry in the array records the node at the end.
Thus, each physical edge has two entries in the array (in
rows corresponding to its two nodes), and a few of the en-
tries at the edges are 0 because some nodes have fewer than
four edges. We can generate a KRS change by picking an
edge from this array, and we update the node array after we
decide whether to consider an addition, deletion, or swap.

The program KRS.m by Sungwoo Park on the Web site is
an efficient implementation of the second alternative. Fig-
ure I shows some sample results.

T he original paper provides information on how to set
the parameters to KRS.2 Kenyon, Randall, and Sinclair

showed that the algorithm samples well if both the number
of steps and the interval between records are very large, but,
in practice, the algorithm is considerably less sensitive than
the analysis predicts.

Disclaimer
Mention of commercial products does not imply endorse-
ment by NIST.

1 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥

Y O U R H O M E W O R K A S S I G N M E N T

0.8 0.9 1.00 0.70.60.50.40.30.20.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure E. Actual tour T = 0.01 no cooling.

Sc
or

e

Trial number x 104
0 1 2 3 4 5 6 7 8 9 10

11.0

11.7

11.6

11.5

11.4

11.3

11.2

11.1

10.9

10.8

10.7

Figure F. Score evolution. Logarithmic schedule for 10,000
steps.

C(0) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)

2 � 2 1 4 2
2 � 3 1 7 11 3
3 � 3 1 12 44 56 18
4 � 4 1 24 224 1,044 2,593 3,388 2,150 552 36
6 � 6 1 60 1,622 26,172 281,514 2,135,356 11,785,382 48,145,820 146,702,793

Table 1. Partial answer to Problem 4.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2007 103

References
1. D. Bertsimas and J. Tsitsikls, “Simulated Annealing,” Statistical Science,

vol. 8, no. 1, 1993, pp. 10–15.

2. C. Kenyon, D. Randall, and A. Sinclair, “Approximating the Number of
Monomer-Dimer Coverings of a Lattice,” J. Statistical Physics, vol. 83,
nos. 3 and 4, 1996, pp. 637–659.

Isabel Beichl is a mathematician in the Information Technology Lab-

oratory at the National Institute of Standards and Technology. Con-

tact her at isabel.beichl@nist.gov.

Dianne P. O’Leary is a professor of computer science and a faculty

member in the Institute for Advanced Computer Studies and the

Applied Mathematics Program at the University of Maryland. She

has a BS in mathematics from Purdue University and a PhD in com-

puter science from Stanford. O’Leary is a member of SIAM, the

ACM, and AWM. Contact her at oleary@cs.umd.edu; www.cs.

umd.edu/users/oleary/.

Francis Sullivan is the director of the IDA Center for Computing Sci-

ences in Bowie, Maryland. From 2000 through 2004, he served as

CiSE magazine’s editor in chief. Contact him at fran@super.org.

Sc
or

e

11.0

11.5

11.4

11.3

11.2

11.1

10.9

10.8

10.7

Trial number x 104
0 1 2 3 4 5 6 7 8 9 10

Figure G. Score evolution, repeating the experiment from
Figure F.

0.8 0.9 1.00 0.70.60.50.40.30.20.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure H. Best tour obtained via simulated annealing,
logarithmic cooling.

1 2 3 4 5 6 7 8 9
0

500

1,000

1,500

2,000

2,500

3,000

3,500

k

C
(k

)

KRS
Explicit count

Figure I. Counts obtained by the KRS algorithm and by
explicit counting for a 4 � 4 lattice. For KRS, we set the
probabilities to 0.5, the number of steps between records
to � = 4, and the total number of steps to 105. Because �
was so small, the samples were highly correlated, but the
estimates are still quite good.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is pub-
lished bimonthly by the AIP and the IEEE Computer Society. IEEE
Headquarters, Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE
Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box
3014, Los Alamitos, CA 90720-1314, phone +1 714 821 8380; IEEE
Computer Society Headquarters, 1730 Massachusetts Ave. NW, Wash-
ington, DC 20036-1903; AIP Circulation and Fulfillment Department,
1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502. 2007 annual
subscription rates: $45 for Computer Society members (print plus online),
$76 (sister society), and $100 (individual nonmember). For AIP society
members, 2007 annual subscription rates are $45 (print plus online). For
more information on other subscription prices, see www.computer.org/
subscribe/ or https://www.aip.org/forms/journal_catalog/order_form
_fs.html. Computer Society back issues cost $20 for members, $96 for non-
members; AIP back issues cost $22 for members.

Postmaster: Send undelivered copies and address changes to Computing
in Science & Engineering, 445 Hoes Ln., Piscataway, NJ 08855. Periodicals
postage paid at New York, NY, and at additional mailing offices. Canadian
GST #125634188. Canada Post Corporation (Canadian distribution)
publications mail agreement number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8 Canada.
Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy beyond the limits of US
copyright law for private use of patrons those articles that carry a code at
the bottom of the first page, provided the per-copy fee indicated in the
code is paid through the Copyright Clearance Center, 222 Rosewood Dr.,
Danvers, MA 01923. For other copying, reprint, or republication
permission, write to Copyright and Permissions Dept., IEEE Publications
Administration, 445 Hoes Ln., PO Box 1331, Piscataway, NJ 08855-1331.
Copyright © 2007 by the Institute of Electrical and Electronics Engineers
Inc. All rights reserved.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:53 from IEEE Xplore. Restrictions apply.

