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MONTE CARLO MINIMIZATION AND
COUNTING: ONE, TWO, ..., TOO MANY

By Isabel Beichl, Dianne P. O’Leary, and Francis Sullivan

Monte Carlo methods use sampling to produce approximate solutions to problems for which other methods
aren’t practical. In this homework assignment, we study three uses of Monte Carlo methods: for function

minimization, discrete optimization, and counting.

n the long run, the stock market always goes up—or so

we're told. Thus, a sure way to increase your wealth is

to buy some shares of everything sold on the New York
Stock Exchange. But wait a minute, you say—that’s not
practical, and it would cost way too much money. Isn’t there
some way to buy a sample of shares in a way that guarantees
it goes up along with the market? Well, yes, actually, there
is—you could buy mutual funds. Of course, there’s a risk
that the fund you buy won’t do a good job of sampling and
will go down instead of up, but that probably won’t happen
with a well-established fund that uses a good sampling al-
gorithm, one that really does follow the market.

Monte Carlo methods embody this sampling philosophy
in a set of remarkably versatile algorithms that prove them-
selves useful when other methods aren’t practical for solv-
ing difficult numerical problems. When well-designed, they
can tell you a lot about what’s going on without forcing you
to look at every possibility. We focus in this case study on
three uses of Monte Carlo methods: for function mini-
mization, for discrete optimization, and for counting.

Function Minimization

A strictly convex function f{x) in the interval, a<x <b, at-
tains a minimum that we can find with a variety of methods,
including the many versions of Newton’s method, conjugate
gradients, and (if derivatives aren’t available) pattern search
algorithms. For nonconvex functions, such as that in Figure
1, these algorithms find a local minimizer such as x = 0.4 but
aren’t guaranteed to find the global minimizer x* = 1.8.

Minimization Using Monte Carlo Techniques

Monte Carlo methods provide a good means for generating
starting points for nonconvex optimization problems. In its
simplest form, a Monte Carlo method generates a random
sample of points in the function’s domain. We can then use
our favorite minimization algorithm starting from each of

these points and, among the minimizers found, report the
best one. By increasing the number of Monte Carlo points,
we increase the probability that we’ll find the global mini-
mizer. Algorithm 1 summarizes this method. Note that our
“favorite” minimization algorithm can be as simple as re-
porting the starting point.

ALGORITHM 1. MONTE CARLO MINIMIZATION

We want to minimize the function f(x) over the region a <

x<b.

for each random point x; generated in the region,
Use an algorithm to approximate a local minimizer of f(x),
starting at x;, restricting the search to the region defined
by aandb.
If the resulting minimizer gives a lower function value
than all previous minimizers, remember it.

end

Just as more information helps in choosing a mutual fund,
this Monte Carlo method can be improved somewhat by us-
ing extra information about the function f{x) that we’re min-
imizing. Suppose we know a Lipschitz constant L for our
function, so that for all x and y in the domain,

lfx) -f(y) <Llx-yll.

"To make the example specific, let’s suppose L = 1 and that we
know f(1) = 2 and f(4) = 0. Because we know f(4) = 0, we
know the global minimizer gives a function value of at most
zero. Thus, we’re no longer interested in looking at intervals
that will have function values greater than zero. Our Lip-
schitz relation tells us that f can’t decrease faster than a
straight line with slope —1. In Figure 2, the blue shaded area
shows where the function fmust lie. In the interval marked
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with a red line, we know fisn’t less than f(4), so we can ex-
clude this interval (-1, 3) and not search in it for the mini-
mizer.

This idea forms the basis of a more complicated, but
somewhat more efficient, algorithm, Algorithm 2.

ALGORITHM 2. MONTE CARLO MINIMIZATION
USING LIPSCHITZ INFORMATION

We want to minimize the function f{x) over the interval [4,
b]. Initially, the list of excluded intervals is empty.
for each random point x;
Determine whether the point «; is in an excluded interval
or in some subinterval of [, b] outside the excluded inter-
vals.
if x;isn’t in an excluded interval, then
Use an algorithm to approximate a local minimizer of f{x),
starting at «;, restricting the search to the subinterval.
If the resulting minimizer gives a lower function value
than all previous minimizers, remember it.
Use the Lipschitz condition to generate a new excluded
interval (see the example in Figure 2) and update the list.
end
end

In Problem 1, we can experiment with our two algorithms
for Monte Carlo minimization.

PROBLEM 1.

Consider the function myf.m on the Web site (www.
computer.org/cise/homework/), with domain 0 <x <7.

(a) Generate 500 uniformly distributed points on the in-
terval [0, 7] in Algorithm 1, using £fmincon for the local
minimizer. Make a graph illustrating the minimizer corre-
sponding to each starting point.

(b) L =90.3 is a Lipschitz constant for the function myf .m.
Use Algorithm 2 on the interval [0, 7]. Compare the two
methods’ performance.

(c) (Extra) Try Monte Carlo minimization on your fa-
vorite function of » variables for 7 > 1.

Minimization Using Simulated Annealing

Suppose we have a box of particles that we have allowed to
cool slowly. Naturally, we expect the system’s potential energy
to be small—for example, if you make ice in your freezer, the
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Figure 1. Nonconvex functions. A standard minimization
algorithm might find the minimizer x = 0.4 if we start at x
= 0.5. Monte Carlo minimization seeks the rightmost
minimum, at x = 1.8, because it’s the global minimum.
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Figure 2. Lipschitz constant. If we know f(1) = 2 and are
given a bound of 1 on the Lipschitz constant, then we
know the function lies in the blue shaded region.
Therefore, if we find that f(4) = 0, then we don’t need to
search the interval (-1, 3) for the minimizer of f.

crystal structure that results has a lower potential energy than
most of the alternatives. If we drop the temperature too fast,
the system can easily get stuck in a configuration that has a
higher potential energy; the crack lines we often see in ice
cubes illustrate this. The physical process of slow cooling is
called annealing, and, with luck, it can lead to something close
to a perfect ice cube. The annealing process works because
if the temperature is high, each particle has a lot of kinetic
energy and can easily move to positions that increase the sys-
tem’s potential energy. This helps the system avoid getting
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Figure 3. Simulated annealing. We sometimes allow moves
that increase the function value, such as that illustrated by
the shorter arrow, as well as moves that decrease the
function value, such as the one from x=0.2to x=0.6. At
high temperature, uphill moves are likely to be accepted,
whereas at low temperature, they’re likely to be rejected.
At high temperature, we might also allow larger moves,
which can help us escape from valleys that don’t contain
the global minimum.

stuck in configurations that are local minimizers but not
global ones. However, as the temperature decreases, it be-
comes less likely that a particle will make a move that gives
an increase in energy, which lets the system do the fine-tun-
ing needed to produce an optimal final configuration.

This motivates an algorithm: if we want to minimize some
function other than energy, can we simulate the annealing
process? Figure 3 illustrates the idea. We need some artifi-
cial definition of temperature, a means of generating a new
configuration and deciding whether to keep it, and a cooling
schedule for reducing the temperature. Algorithm 3 offers a
way to implement this.

ALGORITHM 3. SIMULATED ANNEALING

Initialize the temperature T to some large number. Choose
a number o between 0 and 1 and a small positive number .
while 7> ¢,
Generate a random move from the current x to a new X.
(Moves should be larger on average when the temperature
is high.)
ift=f(x)-f(x) <0, then
Our new point improves the function value and we
accept the move, setting x = X.
else
We accept the move with probability ¢ /7.
end
Decrease the temperature, replacing 7 by oT.
end

The simulated annealing algorithm has a long history. An
idea in a paper Nicholas Metropolis coauthored in 1953 first
inspired it, so the algorithm sometimes bears his name. The
underlying idea for the Metropolis algorithm is called the
Monte Carlo Markov Chain, or MCMC. Strictly speaking,
simulated annealing isn’t actually an MCMC method be-
cause it doesn’t satisfy a technical condition called detailed
balance, but it “feels” like MCMC.

Let’s see how it works.

Use the simulated annealing algorithm to minimize my£ .m.

Although all three of our minimization algorithms are
slow, they have two virtues: one, when compared to standard
minimization algorithms, they give a better probability of
finding a global rather than a local minimizer, and two, they
don’t require derivative values for f. In fact, they don’t even
require that f” be differentiable.

Minimization of Discrete Functions

Many optimization problems are simple to state but difficult
to solve—the traveling salesperson problem (TSP) is a good
example. This person needs to visit # cities exactly once but
also wants to minimize the total distance traveled and finish
the trip back at the starting point. To solve the problem, we
need to permute the list of cities to obtain an itinerary with
the shortest total distance.

If, for definiteness, we specify the first city visited, then
among (7 — 1)! permutations of the other cities, we want to
choose the best. We have an enormous number of possibil-
ities for moderate values of 7, so it isn’t practical to test each
of them. Rather, we can find an approximate solution either
by generating random permutations and choosing the best
(a Monte Carlo algorithm) or by using simulated annealing.

One step of a simulated annealing algorithm for TSP
might look like Algorithm 4.

ALGORITHM 4. SIMULATED ANNEALING FOR TSP

Start with an initial ordering of cities and an initial temper-
ature 7.
Randomly choose two cities.
if interchanging those cities decreases the length of
the circuit then
Interchange them!
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else
Interchange them with a probability that depends
on the amount of increase and the current
temperature.

end

Decrease the temperature.

The art of the method is in determining the probability
function and the temperature sequence appropriate to the
specific problem.

(a) Matlab provides a naive Monte Carlo solution algorithm
for the TSP. Given an ordering of the cities, it randomly
generates a pair of cities and interchanges them if this in-
terchange lowers the total distance. Experiment with the
demonstration program travel.mand display the program
using type travel to see how this works.

(b) Write a program to solve a TSP using simulated an-
nealing, and compare your algorithm with that used in part (a).

Monte Carlo Methods for Counting

Counting is fundamental to our civilization: it’s something
we learn as young children, so what could be so difficult
about counting that would lead us to use Monte Carlo meth-
ods? Well it all depends on how many things we’re asked to
count and our ability to keep track of them! George Gamow
recognized this in the title of his famous book, One, Two,
Three.. Infinity.

Choosing a random sample of reasonable size and using
it to estimate the exact counts of a much larger population
has a long history in science, but it’s even more widely used
in commerce and public policy: Monte Carlo samples are
the basis for opinion polls, census methodologies, traffic vol-
ume surveys, and many other information estimates.

Consider Figure 4 and suppose it’s the lattice of a crystal
containing two types of molecules: dimzers, which fill two ad-
jacent sites, and mzonomers, which occupy only one site. De-
fine C(k) to be the number of distinct arrangements of 4
dimers. (Clearly C(0) = 1 and C(k) is nonzero only if £ is an
integer between 0 and half the number of sites in the lattice.)
This function C(k) is related to the partition function, which
is studied in statistical physics and quantum mechanics and
from which we can derive many physical properties. In it,
each and every arrangement of d dimers would have its own

(@) (b)

(© (d

Figure 4. Crystal lattice. (a) A lattice of six dimers (blue)
and 23 monomers (green), (b) the result of adding a
dimer in row 1, (c) the result of deleting a dimer in row 3,
and (d) the result of swapping a horizontally oriented
dimer in row 3 for a vertical one.

associated energy E(d) and would occur with probability
exp(=E(d)/kT), where k is a physical constant and 7T is tem-
perature. The partition function is Z(T) = Xexp(-E(d)/kT),
where the sum is over all arrangements. For the
monomer—dimer problem, all arrangements of & dimers
have the same energy, so we group them together and use
C(k) to count them.

For very small lattices, we can actually list and count all
the arrangements. For larger lattices, though, the C(k) aren’t
known exactly, and counting all the possibilities is too ex-
pensive. Instead, we can use Monte Carlo methods to esti-
mate them. The basic idea is to obtain a random
arrangement of dimers, assume that monomers occupy all
the other sites, determine the number of dimers &, and add
one to the count of occurrences of £ dimers. We repeat this
process for as long as we can.

One difficulty with this idea is in randomly generating ac-
ceptable arrangements of dimers in which the dimers don’t
overlap. To avoid generating mostly unacceptable arrange-
ments, algorithms usually start with an acceptable arrange-
ment and make a small change to it. The trouble with this is
that the two arrangements are highly correlated, so our sam-
ple is no longer uniformly random. (It’s a bit like deciding
to take a survey of world opinion by talking to the first 100
people you meet on a single street corner in Washington,
DC, at noon on a Wednesday.) To fix this deficiency for the
dimer problem, we make many changes—to the point that
the two arrangements are no longer correlated—before we
record a count.

However, this still doesn’t quite guarantee that we’ll get
good samples well spread over the set of arrangements. This
is because many more arrangements have the lattice half-
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F or more background information on probability, con-
sult a standard text.’ Kirkpatrick, Gelatt, and Vecchi
discuss simulated annealing in more detail in a Science
article.?

Michael Heath® and Donald Knuth* give information on
the generation of (pseudo-) random samples, as do http://
random.mat.sbg.ac.at/literature/ and http://random.mat.
sbg.ac.at/links/rando.html.

To test random number generators, consult Knuth’s
book or http://stat.fsu.edu/~geo/diehard.html.

Finally, you can find more information on random
counting algorithms and the estimation of partition func-
tions in papers by Claire Kenyon, Dana Randall, and Alis-
tair Sinclair,® Isabel Beichl and Francis Sullivan,® Russel
Caflisch,” and Beichl, Dianne O’Leary, and Sullivan.®
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covered with dimers than those that have zero or one dimer,
so we’ll probably see many copies of the zero-dimer arrange-
ment before we generate enough arrangements to obtain a
good estimate of the number of half-covered arrangements.
Therefore, we must run the algorithm for a long time and
deal with possible repetitions. We might find, for example,
that we had zero dimers in five of our trials and three dimers
in 52; because we know the lattice has only one arrangement
of zero dimers, our best guess at the number of arrange-
ments of three dimers is 52/5 = 10.4.

The KRS counting algorithm (named for its creators,
Claire Kenyon, Dana Randall, and Alistair Sinclair) is based
on this idea and uses three types of changes, as Figure 4 il-

lustrates. The resulting method is Algorithm 5. We’ll use
the KRS algorithm to estimate C(k) for some simple lattices.

ALGORITHM 5. KRS ALGORITHM

Start with a lattice filled with monomers and choose a prob-
ability a.
repeat
Choose an adjacent pair of sites.
If both sites have monomers, add this dimer with
probability c.
If the sites are occupied by a single dimer, delete it with
probability c.
If one site is occupied with a dimer, swap that dimer for
this one with probability c.
If it has been long enough since our last recording, add
the resulting configuration to the record.
until enough steps are completed

(a) Compute the partition function coefficients fora 2 x 2
lattice by explicit counting. Repeat for a 3 x 2 lattice. Con-
sider the 4 x 4 case, and see why it becomes difficult to ex-
plicitly count the number of arrangements.

(b) Implement the KRS algorithm, and use it to estimate
the partition function for a 4 x 4 lattice. Try various choices
of probabilities and updating intervals. Repeat for a lattice
as large as possible (perhaps 10 x 10).

U sing Monte Carlo for minimization and counting is al-

ways expensive, but when carefully implemented, the
resulting estimates can be very reliable. The “Tools” sidebar
offers pointers for further reading.

Engineering and
Applying the Internet

[T Compiind

\;vww.computer.org/interﬁet/
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Figure A. Results of Problem 2. The top example is typical of well-conditioned problems, whereas the bottom example is
ill-conditioned, so the solution is quite sensitive to noise in the data. The graphs at left plot the linear equations, those in
the middle plot residuals to perturbed systems, and those at the right plot the corresponding solution vectors.

Partial Solution to
Last Issue’s Homework Assignment

SENSITIVITY ANALYSIS: WHEN
A LITTLE MEANS A LOT

By Dianne P. O’Leary

n the last issue’s installment of Your Homework Assign-
ment, we investigated the use of several tools for sensi-
tivity analysis.

Suppose x; and x, are the roots of the quadratic equation
X’ +br+c=0.

(a) Use implicit differentiation to compute dx/db.

(b) We know that the roots are

= %(—bi\/lyz —4c) .

Differentiate this expression with respect to b, and show
that the answer is equivalent to the one you obtained in (a).

(c) Find values of 4 and ¢ for which the roots are very sen-
sitive to small changes in # and values for which they aren’t
sensitive.

Answer:
(a) 2xdx + bdx + xdb = 0, so

@__ X
db 2x+b

(b) Differentiating, we obtain

w_ 1,16
db 2 224

Substituting the roots x; , into the expression obtained in
(a) gives the same result as this.

(c) The roots will be most sensitive when the derivative is
large, which occurs when the discriminant v/4? — 4 is almost
zero, and the two roots almost coincide. In contrast, a root is
insensitive when the derivative is close to zero. In this case,
the root itself might be close to zero, so although the absolute
change will be small, the relative change could be large.

Consider the linear system Ax = b with

o)

where 6=0.002.

JANUARY/FEBRUARY 2007

77

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:52 from IEEE Xplore. Restrictions apply.



-13
7.90%10 1.4 6X10"°
1.2 «
7'85§ *e * ** -
L e o 10
7.801F, ° we + ***i N 0.8 ’.i‘j
- - ¥ L ~ 4 -
><7.75”* . Joe . - .| <06 > ’/‘
** »: . *.” «** o : 0.4 "»*'
7.70 N ! o
* R | 0.3 "" #
7.65 ! 2
0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004 1.0006 1.0008 1.001 0 0.2 04 06 08 10 1.2 14 0.90 0.95 1.00 1.05 1.10 1.15
X! X! X
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 | mmn o srimmeons s ots sarsmmms v s samon 5 sanond 0.0 - " o . W ] 0.0 S R S K R
-0.2 -0.2 -0.2
-0.4 -0.4 -0.4
-0.6 -0.6 -0.6
-0.8 -0.8 -0.8
-1.0 -1.0 -1
-3.003 -3.002 -3.001 -3.000 -2.999 -2.998 -2.997 -1.002 -1.0015 -1.001 -1.0005 -1 -0.9995 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90
cTx cTx cTx

Figure B. Results of Problem 3. The graphs on the top plot the perturbed solutions to the three problems, whereas those
on the bottom plot the optimal function values, which are increasingly sensitive to small changes in the data. Note the

vastly different vertical scales in the graphs on the top.

(a) Plot the two equations defined by this system, and
compute the condition number of A (cond (a)).

(b) Compute the solution x* to Ax = b, and also compute
the solution to the nearby systems

(A+ED)xD) =p

fori=1, ..., 1,000, where the elements of E? are normally
distributed with mean 0 and standard deviation 7=.0001. (You
can do this by setting each & = tau*randn(2,2).) Plotx? -
x*. This plot reveals the forward error in using (4 + E¥)) as an
approximation to 4. In a separate figure, plot the residuals b
— AxY (the backward error) for each computed solution.

(c) Repeat (a) and (b) with the linear system Ax = b with

PRI
Cle-1 1w [ 2]
(d) Discuss your results. Why do the forward error plots
for the two problems look so different? How does the con-

dition number relate to what you see in the forward error
plots? What do the backward error plots tell you?

Answer:
The solution is given in ex1insys.m (found on the Web

site; http://computer.org/cise/homework), and Figure A
shows the results. From the graphs on the left, we see that if
we “wiggle” the first linear system’s coefficients a little bit,
then the intersection of the two lines doesn’t change much;
in contrast, because the two equations for the second linear
system almost coincide, small changes in the coefficients can
move the intersection point a great deal.

The middle graphs show that despite this sensitivity, the so-
lutions to the perturbed systems satisfy the original systems quite
well—to within 5 x 10~ residuals. This means that the backward
ervor in the solution is small; we’ve solved a nearby problem x =
b + rin which the norm of r is small. This is characteristic of
Gauss elimination, even on ill-conditioned problems.

The graphs on the right are quite different, though. The
changes in the solutions x for the first system are all of the same
order as the residuals, but for the second system, they’re nearly
500 times as big as the perturbation. Note that for the well-
conditioned problem, the solutions give a rather circular cloud
of points, whereas the ill-conditioned problem has a direction,
corresponding to the right singular vector for the small sin-
gular value, in which large perturbations occur.

The condition number of the matrix captures this behav-
ior; it’s about 2.65 for the first matrix and 500 for the sec-
ond, so we expect changes in the right-hand side for the
second problem might produce a relative change 500 times
as big in the solution x.

78

COMPUTING IN SCIENCE & ENGINEERING

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:52 from IEEE Xplore. Restrictions apply.



PROBLEM 3.

Investigate the sensitivity of the linear programming problem

minc’ x
X

subject to
Ax<b, x; 20, xy 20.

(a)LetA=[1,1],b=1,and ¢’ = [-3, -1]. Solve the linear
program (using, for instance, Matlab’s 1inprog) and use the
Lagrange multipliers (also called dual variables) to evaluate
the sensitivity of ¢/x to small changes in the constraints. II-
lustrate this sensitivity using a Monte Carlo experiment,
solving 100 problems with A replaced by A + E?, where the
elements of E? are uniformly distributed on the interval [z,
7], with 7= 0.001. (You can do this by setting each E =
tau* (rand(1,2)-.5).) Plotall the solutions in one figure
and all the function values ¢’x in another.

Repeat for two more examples:

(b)A=[1,1],b=1,c" = [-1.0005,-0.9995].

(©A=10.01,5],b=0.01,¢c" = [-1,0].

Explain how the Lagrange multiplier for the constraint
Ax < b gives insight into the sensitivity observed in the cor-
responding Monte Carlo experiment.

Answer:

The solution is given in exlinpro.m, and Figure B shows
the results. For the first example, the Lagrange multiplier
predicts that the change in ¢x should be roughly three times
the size of the perturbation, which the Monte Carlo experi-
ments confirm. The Lagrange multipliers for the other two
examples (1.001 and 100, respectively) are also good predic-
tors of the change in the function value. But note that some-
thing odd happens in the second example. Although the
function value isn’t very sensitive to perturbations, the solution
vector is quite sensitive: it’s sometimes close to [0, 1] and
sometimes close to [1, 0]! The solution to a (nondegenerate)
linear programming problem must occur at a vertex of the
feasible set. In our unperturbed problem, we have three ver-
tices: [0, 1], [1, 0], and [0, 0]. Because the gradient of ¢’x is
almost parallel to the constraint Ax < b, we sometimes find
the solution at the first vertex and sometimes at the second.

Therefore, in optimization problems, even if the function
value is relatively stable, we might encounter situations in
which the solution parameters have very large changes.

1.7

1.6

1.5+

1 .
0o 5

10 15 20 25 30 35 40 45 50
t

Figure C. Results of Problem 4. The black curves result
from setting a = 0.006 and a = 0.009. The blue curves have
random rates chosen for each year, and the red curves are
the results of trials with the random rates ordered from
largest to smallest. For the green curves, the rates were
ordered smallest to largest.

PROBLEM 4.

Consider the very simple differential equation for y(¥):

y'=ay,

where y(0) = 1 and a(z) is given. Let’s investigate the equa-
tion’s sensitivity to our knowledge of 4.

"To make the problem concrete, we can divide the US pop-
ulation growth rate into two pieces: a rate of 0.006 due to
births and deaths, and a rate of 0.003 due to migration. De-
termine how much the population will increase over the next
50 years if this rate stays constant, and how much it will in-
crease if we set migration to zero. Then perform Monte
Carlo experiments, assuming that the birth/death rate is
normally distributed with mean 0.006 and standard devia-
tion 0.001, and the migration rate is uniformly distributed
between 0 and 0.003. Also experiment with what happens if
years of high growth rate come early, followed by years of
low growth rate, and vice versa. Plot and discuss the results.

Answer:

The results are computed by exode .m and shown in Fig-
ure C. The Monte Carlo results predict that growth is
likely to be between 1.4 and 1.5. The two black curves pro-
duced under the assumption that the rates are known ex-
actly give very pessimistic upper and lower bounds on the
growth: 1.35 and 1.57, respectively. This is typical of for-
ward error bounds. Notice that the solution is the product
of exponentials,
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=49

y(50)= [T @,

=1

where 4(7) is the growth rate in year 7. Because exponentials
commute, the final population is invariant with respect to
the ordering of the rates, but the intermediate population
(and thus the demand for social services and other resources)
is quite different under the two assumptions.
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Using the two linear systems from Problem 2, perform a
Monte Carlo experiment that computes the solution to the
nearby systems

AxD =b+e

fori=1, ..., 1,000, where the elements of e are normally dis-
tributed with mean 0 and standard deviation 7= 0.0001.
Compute 95 percent confidence intervals on each compo-
nent of the solution to the two linear systems, and see how
many of the components of the Monte Carlo samples lie
within the confidence limits.

Answer:

The solution is given in exlinsys.m. The confidence in-
tervals for the first example are x; € [-1.0228, -1.0017],
x, € [1.0018, 1.0022] and for the second example are x; €
[0.965, 1.035], x; € [-1.035,-0.965]. Those for the second
example are 20 times larger than for the first because they’re
related to the size of A™!, but in both cases roughly 95 per-
cent of the samples lie within the intervals, as expected.

Remember that these intervals should be calculated using
a Cholesky factorization or the backslash operator. Using
inv or raising a matrix to the —1 power is slower when 7 is

large and generally less accurate. S

Disclaimer
Mention of commercial products does not imply endorse-

ment by NIST.

Isabel Beichl is a mathematician in the Information Technology Lab-
oratory at the National Institute of Standards and Technology. Con-
tact her at isabel.beichl@nist.gov.

Dianne P. O’Leary is a professor of computer science and a faculty
member in the Institute for Advanced Computer Studies and the Ap-
plied Mathematics Program at the University of Maryland. She has
a BS in mathematics from Purdue University and a PhD in computer
science from Stanford. O’Leary is a member of SIAM, the ACM, and
AWM. Contact her at oleary@cs.umd.edu; www.cs.umd.edu/
users/oleary/.

Francis Sullivan is the director of the IDA Center for Computing Sci-
ences in Bowie, Maryland. From 2000 through 2004, he served as
CiSE magazine’s editor in chief. Contact him at fran@super.org.
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