
(GS) method was intolerably slow, but various forms of
preconditioned conjugate gradient (CG) algorithms gave
us reasonable results.

The test problems we used were discretizations of el-
liptic partial differential equations, but for these prob-
lems, we can use a faster class of methods called multigrid
algorithms. Surprisingly, the GS method (or some
variant) is one of the two main ingredients in these
algorithms!

To introduce the ideas, let’s drop back to a somewhat
simpler problem, one that we considered in May/June
2005 (“Finite Differences and Finite Elements: Getting to
Know You,” vol. 7, no. 3, pp. 72–79).

A Simple Example
Suppose we want to solve the differential equation

–uxx(x) = f (x)

on the domain x � [0, 1], with u(0) = u(1) = 0. We know
from the earlier homework assignment that we can ap-
proximate the solution by defining a mesh xj = jh, where h
= 1/(n + 1) for some integer n. Then we can determine ap-
proximate values uj � u(xj), j = 1, …, n using finite difference
or finite element approximations. If we choose finite differ-
ences, we have

,

so we obtain a system of equations Au = f with u = [u1,
…, un]T, f = [ f (x1), …, f (xn)]T, and A equal to the tridi-
agonal matrix

Recall that in the GS method, we take an initial guess u(0)

for the solution and then update the guess by cycling
through the equations, solving equation i for the ith variable
ui, so that given u(k), our next guess u(k+1) becomes

In our case, this reduces to

where we define

for all k.
It’s easy to see how GS can be so slow on a problem like

this. Suppose, for example, that we take u(0) = 0, and that f
is zero except for a one in its last position. Then, u(1) is zero
except for its last entry, u(2) is zero except for its last two en-
tries, and it takes n iterations to get a guess that has a
nonzero first entry. Because the true solution has nonzeros
everywhere, this isn’t good!

The real problem is that although GS is good at fixing the
solution locally, the information is propagated much too
slowly globally, across the entire solution vector. So if we’re
going to use GS effectively, we need to couple it with a
method that has good global properties.

A Multigrid Algorithm
When we set up our problem, we chose a value of n, prob-
ably guided by the knowledge that the error in the finite dif-
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MULTIGRID METHODS
Managing Massive Meshes

By Dianne P. O’Leary

I N OUR LAST HOMEWORK ASSIGNMENT, WE

INVESTIGATED ITERATIVE METHODS FOR

SOLVING LARGE, SPARSE, LINEAR SYSTEMS OF

EQUATIONS. WE SAW THAT THE GAUSS-SEIDEL

Editor: Dianne P. O’Leary, oleary@cs.umd.edu
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ference approximation is proportional to h2. A whole family
of finite difference approximations exists, defined by differ-
ent choices of h, and we denote the system of equations ob-
tained using a mesh length h = 1/(n + 1) by

Ahuh = fh.

Figure 1 shows the meshes on the interval [0, 1] corre-
sponding to h = 1/2, 1/4, 1/8, and 1/16.

A large value of h gives a coarse grid. The dimension n of
the resulting linear system of equations is very small,
though, so we can solve it fast using either a direct or an it-
erative method. Our computed solution uh will have the
same overall shape as the true solution u but will lose a lot
of local detail.

In contrast, if we use a very fine grid with a small value of
h, the linear system of equations is very large and much more
expensive to solve, but our computed solution uh will be very
close to u.

To get the best of both worlds, we might use a coarse-grid
solution as an initial guess for the GS iteration on a finer
grid. To do this, we must set values for points in the finer
grid that aren’t in the coarse grid. If someone gave us a so-
lution to the system corresponding to h, then we could ob-
tain an approximate solution for the system corresponding
to h/2 by interpolating those values: 

• For points in the finer mesh that are common to the
coarser mesh, we just take their values. 

• For points in the finer mesh that are midpoints of two
points in the coarser mesh, we take the average of these
two values. 

This defines an interpolation operator Ph that takes values in a
grid with parameter h and produces values in the grid with
parameter h/2. Because our boundary conditions are zero,
for example,
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Figure 1. Four levels of nested grids on the interval [0, 1].
The coarsest grid, with h = 1/2, consists of blue points;
adding the orange points gives h = 1/4. Including the
purple points gives h = 1/8, and including all of the points
gives the finest grid, with h = 1/16.

TOOLS

The multigrid idea dates back to R.P. Fedorenko in 1964.
A good introduction is given in a tutorial by William

Briggs, Van Emden Henson, and Steve McCormick.1 Multi-
grid ideas are useful even when there is no natural geomet-
ric “grid” underlying the problem; the resulting method is
called algebraic multigrid and is briefly discussed in the previ-
ously mentioned tutorial.1

It’s also useful to use multigrid if only a portion of the grid
is refined from one level to the next; for example, we might
want to refine only in regions in which the solution is so
rapidly changing that the current grid can’t capture its be-

havior accurately enough. These adaptive methods are also
discussed in the previously mentioned tutorial.1

A multigrid approach to solving the Helmholtz equation
with negative � appears in the SIAM Journal on Scientific
Computing.2 Watch for articles in the next issue of CiSE (No-
vember/December 2006), which will cover multigrid.
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1. W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid Tutorial,

2nd ed., SIAM Press, 2000.
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hanced by Krylov Subspace Iteration for Discrete Helmholtz Equa-
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The process of solving the problems on the sequence of
nested grids gives us a nested iteration algorithm for our sam-
ple problem.

NESTED ITERATION ALGORITHM

Set k = 1, h = 1/2, and .
Until the approximation is good enough,

Set k = k + 1, n = 2k – 1, and h = 1/(n + 1).
Form the matrix Ah and the right-hand side fh, and then
use the GS iteration, with the initial guess , 
to compute an approximate solution to Ahuh = fh.

The termination tolerance for the norm of the residual
on grid h should be proportional to h2 because

that matches the size of the local error.
This algorithm runs from coarse grid to finest and is use-

ful (although rather silly for one-dimensional problems). But
there’s a better way.

The V-Cycle
We can do better if we run from finest grid to coarsest grid
and then back to finest. This algorithm has three ingredients: 

• An iterative method that converges quickly if most of the
error is high frequency—oscillating rapidly—which hap-
pens when the solution’s overall shape is already identi-
fied. GS generally works well. 

• A way to transfer values from a coarse grid to a fine one—
interpolation or prolongation.

• A way to transfer values from a fine grid to a coarse one—
restriction. We let Rh be the operator that takes values on
grid h/2 and produces values on grid h.

We already have matrices Ph for interpolation, and (for tech-
nical reasons related to preserving the self-adjointness of the
problems considered here) we choose . We’ll de-
fine the V-Cycle idea recursively.

V-CYCLE ALGORITHM

vh = V-Cycle(vh, Ah, fh, �1, �2):
1. Perform �1 GS iterations on Ahuh = fh using vh as the

initial guess, obtaining an approximate solution that we
still call vh. 

2. If h is the coarsest grid parameter, then compute vh to
solve Ahvh = fh and return. 

3. Otherwise,
Let v2h = V-Cycle(0, A2h, R2h(fh – Ahvh), �1, �2).
Set vh = vh + P2hv2h.

4. Perform �2 GS iterations on Ahuh = fh, using vh as the
initial guess, ultimately obtaining an approximate solu-
tion that we still call vh. 

In using this algorithm, we can define A2h = R2h AhP2h.
This definition is the key to extending the multigrid al-
gorithm beyond problems that have a geometric grid; see
the “Tools” sidebar for a reference on algebraic multigrid
methods. But for now, let’s see how it works on our origi-
nal problem.

PROBLEM 1. 

Work through the V-Cycle algorithm to see exactly what
computations it performs on our simple example for the grid
sequence in Figure 1. Estimate the amount of work, measured
by the number of floating-point multiplications performed. 

The standard multigrid algorithm solves Ahuh = fh by re-
peating the V-Cycle until convergence. We start the itera-
tion by initializing uh = 0. Then, until convergence, we
compute �uh = V-Cycle(0, Ah, rh, �1, �2), where rh = fh –
Ahuh, and then update uh = uh + �uh.

Cost of Multigrid
Guided by Problem 1, we can estimate the work for multi-
grid applied to a more general problem. One step of the GS
iteration on a grid of size h costs about nz(h) multiplications,
where nz(h) is the number of nonzeros in Ah. We’ll call nz(h)
multiplications a work unit.

Note that nz(h) � 2nz(2h) because A2h has about half as

R Ph h
T=

f uh h hA− �

�uh

P2 2h h�u

�uh = 0
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Figure 2. Blue grid points define a coarse mesh.
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many rows as Ah. So performing one GS step on each grid
h, h/2, …, 1 costs less than nz(h)(1 + 1/2 + 1/4 + …) � 2nz(h)
multiplications � 2 work units.

So the cost of a V-Cycle is at most two times the cost of
(�1 + �2) GS iterations on the finest mesh plus a modest
amount of additional overhead.

PROBLEM 2.

Convince yourself that the storage necessary for all the ma-
trices and vectors is also a modest multiple of the storage
necessary for the finest grid.

We know that standard iterative methods such as GS are
very slow (take many iterations), so multigrid’s success relies
on the fact that we need only a few iterations on each grid,
thus the total amount of work to solve the full problem to a
residual of size O(h2) is a small number of work units.

Because it’s rather silly to use anything other than sparse
Gauss elimination to solve a system involving a tridiagonal
matrix, we won’t implement the algorithm for our one-
dimensional (1D) problem. Note, however, that our algo-
rithm readily extends to higher dimensions: we just need to
define Ah and Ph for a nested set of grids to use the multigrid
V-Cycle algorithm.

Multigrid for Two-Dimensional Problems
Our first challenge in applying multigrid to 2D problems is
to develop a sequence of nested grids. Because we discussed
finite difference methods for the 1D problem, let’s focus on
finite element methods for the 2D problem, using a trian-
gular mesh and piecewise-linear basis functions.

It’s most convenient to start from a coarse grid and obtain our
finest grid through successive refinements. Consider the initial
grid in Figure 2, which divides the unit square into eight tri-
angles with height h = 1/2. The grid points are marked in blue.

Consider taking the midpoints of each side of one of the
triangles and then drawing the triangle with those points as
vertices. If we do this for each triangle, we get the orange
grid points and triangles in Figure 3. Each of the original
blue triangles is replaced by four triangles, each having one
or three orange sides (triangle height h = 1/4).

If we repeat this process, we get the purple grid points in
Figure 4 and a mesh length h = 1/8.

Writing a program for mesh refinement on a general tri-
angular grid takes a bit of effort; see refine.m on the Web
site (www.computer.org/cise/homework/).

Interpolating from one grid to the next finer one is easy.
For example, given the blue grid values, we obtain values for
the blue and orange grids by following two rules: blue grid
points retain their values, and orange grid values are defined
as the average of the nearest two values on the blue edge
containing it. As before, we take the restriction operator to
be the transpose of the interpolation operator.

So we have all the machinery necessary to apply multigrid
to 2D problems; we’ll experiment with it in the next problem.

PROBLEM 3.

Write a program that applies the multigrid V-Cycle itera-
tion to the 2D problems used in the homework assignment
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Figure 3. Blue and orange grid points define a finer mesh.
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Figure 4. Blue, orange, and purple grid points define the
finest mesh.
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given in the previous issue of CiSE. The Matlab program
generateproblem.m produces a structure called mesh that
contains, in addition to the matrices and right-hand side in-
formation, the operators P and the coordinates p of the mesh
points. The differential equation is

–uxx(x, y) – uyy(x, y) + �u(x, y) = f (x, y)

for (x, y) � [–1, 1] � [–1, 1] (myproblem=1) or for this domain
with a hole cut out (myproblem=2). The boundary condi-
tions are that u is zero on the square’s boundary, and (for the
second case) the normal derivative is zero at the hole’s
boundary.

Set � = 0 and compare the time for solving the problem
using multigrid to the methods defined in the last issue.

If the partial differential equation is elliptic, as it is for � =
0, it isn’t too hard to achieve convergence in a small number
of work units. In fact, multigridders would say that if you
don’t achieve it, you’ve chosen either your iteration or your
interpolation/restriction pair “incorrectly.”

For problems that aren’t elliptic, though, things get a bit
more complicated, as we see in the next problem.

PROBLEM 4.

Repeat your experiment from Problem 3, but use � = 10 and
100 and then � = –10 and –100. (When � � 0, the differen-
tial equation is called the Helmholtz equation.) The differen-
tial equation remains elliptic for positive � but not for
negative. How was convergence of multigrid affected?

We see that the problem is much harder to solve for neg-
ative values of �. There are two reasons for this: the matrix
Ah is no longer positive definite, so we lose a lot of good
structure, and we need finer grids to represent the solution
accurately. To restore convergence in a small number of work
units for the nonelliptic problem, we must make the algo-
rithm more complicated—for example, we might use multi-
grid as a preconditioner for a Krylov subspace method,
bringing us back to the methods used in the last homework
assignment. The “Tools” sidebar provides a reference on this.
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in linear algebra class take too long, so we need to use a
different type of algorithm.

PROBLEM 1. 

Use Gauss-Seidel to solve the linear systems of equations gen-
erated by the Matlab function generateproblem found on the
Web site (www.computer.org/cise/homework). (Set the input
parameter kappa to zero, and note that you only need a part
of the structure generated by this function: the matrices
mesh(k).A, the right-hand side vectors mesh(k).b, and the
convergence tolerance mesh(k).tol.) Use an initial guess x(0)

= 0. The mathematical model of heat distribution isn’t exact,
so we can stop the iteration when the residual’s norm is some-
what smaller than the error in the model. We approximate this
by stopping when the residual’s norm has been reduced by a
factor of mesh(k).tol. As the number of unknowns in the lin-
ear system grows, this error decreases. Graph the number of
iterations and the solution time as a function of the number of
unknowns, choosing a range of problem sizes appropriate for
your computer. Compare the time and storage with that for
direct solution of the linear systems.

PROBLEM 2. 

Use the PCG algorithm to solve the linear systems of equa-
tions considered in Problem 1. Use an initial guess x(0) = 0
and set M = I. Graph the number of iterations and the so-
lution time as a function of the number of unknowns and
compare this and the storage with the results of Problem 1.

PROBLEM 3.

Use the PCG algorithm to solve the linear systems of equa-

tions considered in Problem 1. Use an initial guess x(0) = 0 and
set M to be incomplete Cholesky preconditioners generated
by cholinc with various choices for its parameters droptol
and opts. Compare with the results of Problems 1 and 2.

PROBLEM 5.

Use the PCG algorithm to solve the linear systems of equa-
tions considered in Problem 1. Use an initial guess x(0) = 0
and set M to be the symmetric Gauss-Seidel preconditioner.
Compare with the results of Problems 1 and 2.

PROBLEM 6.

Repeat your experiments after reordering the matrices using
the approximate minimum degree (AMD) reordering and
compare the results of all experiments.

Answers:
The solution to these five problems appears on the Web

site (www.computer.org/cise/homework/) in solution20.m.
Figures A and B illustrate the results for the square domain.
Gauss-Seidel took too many iterations to be competitive, and
the parameter cut is the drop-tolerance for the incomplete
Cholesky factorization. The AMD-Cholesky factorization
was the fastest algorithm for this problem, but it required 5.4
times the storage of the conjugate gradient (CG) algorithm
and 2.6 times the storage of the ICCG-PCG algorithm for
the problem of size 16,129. Without reordering, Cholesky
was slow and very demanding of storage, requiring almost
30 million double-precision words for the largest problem
(almost 70 times as much as for the AMD reordering).

Results for the domain with the circle cut out were simi-
lar; see Figures C and D.

Gauss-Seidel took a large amount of time per iteration.
This is an artifact of the implementation because it’s a bit
tricky to get Matlab to avoid working with the zero elements
when accessing a sparse matrix row-by-row. Challenge: look
at the code in gauss_seidel.m and try to speed it up. A bet-
ter version will be provided in the solution to the multigrid
homework assignment in the next issue.

Partial Solution to Last Issue’s Homework Assignment

ITERATIVE METHODS FOR LINEAR SYSTEMS
Following the Meandering Way

By Dianne P. O’Leary

S OLVING A LINEAR SYSTEM OF EQUATIONS

IS ONE OF THE EASIEST COMPUTATIONAL

TASKS IMAGINABLE, BUT WHEN THE MATRIX IS

VERY LARGE, THE ALGORITHMS WE LEARNED 
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PROBLEM 4.

Consider our stationary iterative method (SIM)

Mx(k+1) = Nx(k) + b or x(k+1) = M–1Nx(k) + M–1b.

Show that x(k+1) = x(k) + M–1r(k), and therefore the step the
SIM takes is

x(k+1) – x(k) = M–1r(k).

Answer:
Manipulating these equations a bit, we get

x(k+1) =  x(k) + (M–1N – I)x(k) + M–1b

= x(k) + M–1(N – M)x(k) + M–1b

= x(k) + M–1(b – Ax(k))

= x(k) + M–1r(k).

Dianne P. O’Leary is a professor of computer science and a fac-

ulty member in the Institute for Advanced Computer Studies and

the Applied Mathematics Program at the University of Maryland.

She has a BS in mathematics from Purdue University and a PhD in

computer science from Stanford. O’Leary is a member of SIAM,

the ACM, and AWM. Contact her at oleary@cs.umd.edu; www.

cs.umd.edu/users/oleary/.
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Figure A. The number of iterations for the various methods applied to the square domain. (1) The original ordering and
(2) the approximate minimum degree (AMD) ordering.
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Figure B. Timings for the various methods applied to the square domain. (1) The original ordering and (2) the
approximate minimum degree (AMD) ordering.
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Figure C. Number of iterations for the various methods applied to the domain with the circle cut out. (1) The original
ordering and (2) the approximate minimum degree (AMD) ordering. 
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Figure D. Timings for the various methods applied to the domain with the circle cut out. (1) The original ordering and
(2) the approximate minimum degree (AMD) ordering.
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