
quickly. However, space is limited, so you can’t keep all your
important information there. Instead, you might carry cur-
rent papers for work or school in a backpack or briefcase and
store older papers in your desk or filing cabinet. Any papers
you don’t think you’ll need but are afraid to throw out might
be stored in an attic, basement, or storage locker.

We can think of your wallet, backpack, desk, and attic as
a hierarchy of storage spaces. The small ones give you fast
access to data that you often need; the larger ones give
slower access but more space. For the same reasons, com-
puters also have a hierarchy of storage units. Memory man-
agement systems try to store information that you will soon
need in a unit that gives fast access. This means that large
vectors and arrays are broken up and moved piece by piece
as needed. You can write a correct computer program with-
out ever knowing about memory management, but atten-
tion to memory management allows you to consistently
write programs that don’t have excessive memory delays.

In this homework assignment, we’ll consider a model of
computer memory organization. We’ll hide some detail but
give enough information to let us make decisions about how
to organize our computations for efficiency. We’ll use math-

ematical modeling to estimate a typical computer’s memory
parameters, and then we’ll see how important these para-
meters are relative to the speed of floating-point arithmetic.

A Motivating Example
Suppose we have an m � n matrix A and an n � 1 vector x,
and we want to form y = Ax. In Matlab, we just write A * x,
but let’s consider how this might be implemented.

We can define the vector y with inner products (also called
dot products) between rows of A and x: for i = 1, …, m,

yi = A(i, :) * x.

We can also define Ax in a column-oriented way: Ax = x(1)
* A(:, 1) + x(2) * A(:, 2) + … + x(n) * A(:, n). This scheme is
based on an operation called saxpy, which is an abbrevia-
tion for ax + y. We work left to right through our expres-
sion, taking a scalar times a vector and adding it to a
previously accumulated vector: initialize y to zero and then
compute y = y + x( j) * A(:, j) for j = 1, …, n.

Both algorithms have the same round-off properties and
take almost the same number of numeric operations: mn
multiplications and m(n – 1) or mn additions. But, surpris-
ingly, the time taken by the two algorithms is quite different.

PROBLEM 1. 

Program the two algorithms in Matlab. Time them for a
random matrix A and a random vector x for m = n = 1,024,
and then verify that they yield the same product Ax.
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COMPUTER MEMORY AND ARITHMETIC:
A LOOK UNDER THE HOOD
By Dianne P. O’Leary
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YOUR IDENTIFICATION AND CREDIT CARDS IN

YOUR WALLET, WHERE YOU CAN GET TO THEM

Editor: Dianne P. O’Leary, oleary@cs.umd.edu
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TOOLS

J ohn Hennessy and David Patterson give a good, detailed de-
scription of memory hierarchies in Chapter 5 of their book.1

In Matlab, the underlying matrix decomposition software
is drawn from the Lapack Fortran suite.2 It’s based on a set of
basic linear algebra subroutines (BLAS), which are provided
by hardware manufacturers to optimize operations such as

inner product, saxpy, matrix-matrix multiplication, and so
on. The Lapack routines implement stable algorithms and
provide high performance on a variety of hardware.

References
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Your results should have indicated that the second algo-
rithm is much faster than the first when m and n are large.
The speed difference is due to memory management; Matlab
stores matrices column by column, so if we want a fast imple-
mentation, we must use this fact in our algorithm’s design.

Memory Management
The computer memory hierarchy includes registers, cache,
main memory, and disk. Arithmetic and logical operations
are performed on the contents of registers, and the other
storage units act as temporary storage for data on its way to
or from the registers. It’s as if whenever you need to change
some data in your attic, you move it first to your desk, then
your backpack, and then your wallet, make the correction,
and then move it back through your wallet, backpack, and
desk, finally storing it back in the attic.

Figure 1 gives a small illustration of a memory hierarchy.
We’ll consider a one-level cache, although most machines
have a hierarchy of cache units. Let’s see how information
moves between main memory and cache. Suppose that m =
128 and n = 32, and suppose for ease of counting that the first
element in each matrix and vector lies in the first element of
some page of main memory. The matrix elements are stored
in the order A(1,1),...,A(128,1),A(1,2),...,A(128,2),
...,A(1,32),...,A(128,32). Cache memory is loaded by
block (also called a cache line); in this example, this means eight
elements at a time. So in the saxpy implementation, in which
we successively add xj * A(:, j) to y, the computer first loads
A(1,1),..., A(8,1) into one block of the cache, x(1),...,
x(8) into a second block (because it needs the value of x(1)),
and lets y(1),..., y(8) occupy a third block (see Figure 1a).
After x(1)*A(1:8,1) is added into y(1:8), we then need
A(9,1),..., A(16,1) and y(9),..., y(16). This would
fill five blocks of cache, though, and we only have four, so we
have to write over an old block—after assuring that any up-
dated values are changed in the main memory. In our case, the
old y-block or A-block disappears from cache (see Figure 1b).

Moving five blocks from main memory lets us do 16 of our
128 * 32 multiplications. We continue the count in Problem 2.

PROBLEM 2. 

Count the number of blocks that move from main memory
into cache for each of the two matrix-vector multiplication
algorithms with m = 128 and n = 32. If a cache block must be
written over, choose the least-recently-used block. How
does your answer change if matrices are stored row-by-row
(as in C, C++, or Java), rather than column-by-column (as in
Matlab or Fortran)?

Clearly, memory management matters in matrix multi-
plication! It’s certainly faster to use the algorithm that
moves fewer blocks into cache, but will it really make a
difference?

Determining Hardware Parameters
How much memory management truly matters depends on
memory parameters such as

• b, the number of blocks that cache memory can hold;
• �, the number of double-precision words in a block;
• �, the time needed to access a double-precision word in

cache (nanoseconds); and
• �, the extra time needed for access if the word isn’t al-

ready in cache (also known as the cache-miss penalty
[nanoseconds]).

To estimate the memory parameters, we can run a pro-
gram that constructs a long vector z of length m and then
steps through it, incrementing some elements. When we
step through every element, we’re almost always access-
ing a value that exists in cache. If we step through ele-
ments z(1), z(1 + s), z(1 + 2s), …, where the stride s is
bigger than the block size �, then we always get a cache-
miss penalty. By varying s, we can estimate the block size,
and by cycling through the computation several times, we
can estimate the cache’s size. Consider the following code
fragment:

A(1,1)

A(2,1)

A(3,1)

A(4,1)

A(5,1)

A(6,1)

A(7,1)

A(8,1)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

y(8)

Old data

Old data

Old data

Old data

Old data

Old data

Old data

Old data

(a)

y(9)

y(10)

y(11)

y(12)

y(13)

y(14)

y(15)

y(16)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

y(8)

A(9,1)

A(10,1)

A(11,1)

A(12,1)

A(13,1)

A(14,1)

A(15,1)

A(16,1)

(b)

Figure 1. Memory hierarchy. State of a cache memory of four blocks, eight words each, during two stages of the matrix-
vector product algorithm: (a) the saxpy implementation and (b) when blocks leave cache memory.
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steps = 0; 

i = 1; 

do 

{ z(i); 

steps = steps + 1; 

i = i + s; 

if (i > m) 

i = 1; 

end

}

while (steps < naccess)

The loop makes naccess accesses to the array, where naccess
is a suitably large number. If we time the loop, subtract off the
loop overhead (estimated by timing a similar loop with the
statement z(i) omitted), and divide the resulting time by
naccess, we can estimate the average time for one access.

We see how this works in Problem 3.

PROBLEM 3. 

Suppose our cache memory has parameters b = 4, � = 8, � =
1 ns, and � = 16 ns. Assume that we used the least-recently
used strategy for replacing blocks in cache and that we set
naccess=256 in the previously listed code fragment. Con-
sider the following table of estimated times per access in
nanoseconds and show how each entry is derived:

s m = 16 m = 32 m = 64 m = 128
1 1.125 1.250 3.000 3.000
2 1.125 1.250 5.000 5.000
4 1.125 1.250 9.000 9.000
8 1.125 1.250 17.000 17.000

16 1.063 1.125 1.250 17.000

If we work in a high-performance “compiled” language
such as Fortran or a C-variant, we can use our timings of
code fragments to estimate the cache-miss penalty. In “in-
terpreted” Matlab (or even compiled Matlab), overhead
masks the penalty.

Whenever we time a program, though, there are many
sources of uncertainty: 

• Other processes are running. Even if you’re running on a
laptop on which you’re the only user, the operating sys-
tem (Windows, Linux, and so on) still does many other
tasks, such as refreshing the screen, updating the clock,

and tracking the curser. Most systems have two timers,
one that gives the elapsed time (for example, tic, toc)
and one that tries to capture the time used by this process
alone (for example, cputime). 

• There is uncertainty in the timer, so the data you collect are
noisy. Most timers give trash unless they’re timing inter-
vals that are at least a millisecond (in fact, they’re much
better at intervals near one second). Therefore, the loop
you’re timing should do as many operations as possible,
but not so many that interruptions by other active
processes contaminate the elapsed time. 

• The time for arithmetic operations often depends on the values
of the operand. Dividing by a power of 2 is usually much
faster than dividing by other numbers, for example, and
adding zero is usually faster than other additions. 

• The computer uses pipelining. This occurs on many levels,
but the fundamental idea is that the execution of each in-
struction we give the computer is partially overlapped
with other instructions, so it’s difficult to assign a cost to
a single instruction. 

• Compilers optimize our code. A compiler might recognize,
for example, that z(i) isn’t changed by our code fragment
and thus will remove that statement from the loop. 

• Cache blocks might be prefetched. Programs often access data
in order, so computers might predict that the next se-
quential memory block should be loaded into cache while
you’re operating on the current one.

Because of factors like this, real data isn’t as clean as that in
Problem 3. If we run a program like the one considered in
Problem 3 on my Sun workstation, we get the results shown
in Table 1. Let’s try to estimate the cache parameters from
that data.

PROBLEM 4. 

Estimate the cache parameters from Table 1’s data.

EXTRA PROBLEM 1

Write a program in a high-performance language such as C
or Fortran to estimate the cache size, the cache’s block size,
the time to access a value in cache, and the cache-miss
penalty. Run it on your favorite computer. Find the manu-
facturer’s claims for at least some of these parameters and de-
termine whether your estimates agree or disagree, and why.

Y O U R  H O M E W O R K  A S S I G N M E N T
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Speed of Computer Arithmetic
The order in which we access the elements of a matrix af-
fects the time, but is it a significant effect? Let’s time some
arithmetic operations to see whether it matters.

PROBLEM 5.

Determine the time your computer requires for floating-
point operations (addition, subtraction, multiplication, di-
vision, and square-root) and integer operations (addition,
subtraction, multiplication, and division). One way is to look
up the peak speed claimed by the manufacturer; an alterna-
tive is to write a timing loop in a high-performance language
as in Extra Problem 1. Average the time over enough oper-
ations to get an accurate estimate, and then estimate the
variance in your measurements. Compare these times with
the memory access times obtained either from Extra Prob-
lem 1 or from the manufacturer’s data.

What we’ve discovered about the time for memory access
and floating-point operations gives us the information we
need to achieve speeds close to the manufacturer’s peak-
performance claims when doing matrix operations. The next
problem challenges you to write a matrix multiplication pro-
gram to do this.

EXTRA PROBLEM 2

Use the information you gathered about your machine’s
memory access properties to write the best program you
can for doing matrix-matrix multiplication on your com-
puter. Use a high-performance language. The inputs to
the function are two matrices A of dimension m � n and B
of dimension n � p, along with n, m, and p. The output of
the function is the m � p matrix F = AB. The program
should order the computations to minimize the number
of cache misses.

A n alternative to writing our own fast algorithms for ba-
sic matrix operations is to use the ones provided in the

basic linear algebra subroutine (BLAS) implementation dis-
cussed in the “Tools” sidebar. In Matlab, we access the one
for a matrix-vector product by typing A*x. For other matrix
tasks, we now know to keep our Matlab algorithms column-
oriented whenever possible.

Acknowledgments
I’m grateful to the staff in the Technical Support Depart-
ment at MathWorks for discussions about the sources of
overhead in Matlab’s interpreted and compiled instructions.

log2s log2m=

10 11 12 13 14 15 16 17 18 19 20
0 2 3 4 5 5 7 7 8 7 8 9
1 4 4 3 4 4 8 10 9 8 10 11
2 7 7 6 7 8 15 18 17 18 20 22
3 6 7 7 7 8 19 21 21 21 21 25
4 13 12 12 10 11 21 22 21 22 23 23
5 14 15 15 14 15 25 26 26 27 27 26
6 10 12 10 10 9 20 19 17 17 18 19
7 11 11 10 9 10 19 20 18 17 19 19
8 1 11 11 10 9 18 18 17 18 17 18
9 1 0 10 11 10 20 18 18 19 17 18
10 3 0 1 10 11 21 18 18 17 17 19
11 3 2 0 11 30 57 58 58 60 59 62
12 1 3 2 0 10 51 60 60 61 58 62
13 3 3 3 3 0 10 48 61 60 60 61
14 2 3 3 2 4 –1 10 50 59 61 60
15 3 2 2 2 3 2 0 11 49 60 59
16 2 3 4 3 4 3 4 0 9 49 61
17 3 2 2 2 2 3 3 4 0 9 51
18 3 3 3 4 3 2 3 4 1 0 10
19 3 3 2 3 2 3 2 4 3 2 0

*The negative entry that occurred when overhead was subtracted off indicates the data’s uncertainty.

Table 1. Average memory access times (nanoseconds) on my Sun workstation for various lengths m of (single-precision)
arrays and various strides s.*
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For definiteness, we focused on truss design, but the same
principles apply to any linear model.

PROBLEM 1.

a. Suppose we want to change columns 6 and 7 in our ma-
trix A. Express the new matrix as A – ZVT, where Z and V
have dimension n � 2.

b. Suppose we want to change both column 6 and row 4
of A. Find Z and V so that our new matrix is A – ZVT.

Answer:
a. Set the columns of Z to be the differences between the

old columns and the new ones, and set the columns of V to
be the 6th and 7th unit vectors.

b. The first column of Z can be the difference between
the old column 6 and the new one; the second can be the 4th
unit vector. The first column of V is then the 6th unit vec-
tor, and the second is the difference between the old row 4
and the new one.

PROBLEM 2.

a. Assume that A and A – ZVT are both nonsingular. Show
that

(A – ZVT)–1 = A–1 + A–1Z(I – VTA–1Z)–1VTA–1

by verifying that the product of this matrix with A – ZVT is
the identity matrix I. This is called the Sherman-Morrison-
Woodbury formula.

b. Suppose we have an LU decomposition of A. Assume
that Z and V are n � k and k << n. Show that we can use this
decomposition and the Sherman-Morrison-Woodbury for-
mula to solve the linear system (A – ZVT)f = � without form-
ing any matrix inverses. (If A is dense, then we perform
O(n2) operations using Sherman-Morrison-Woodbury,

rather than the O(n3) operations needed to solve the linear
system from scratch.) Hint: Remember that we can compute
A–1y by solving a linear system using forward- and back-
substitution with the factors L and U.

Answer:
a. This is verified by direct computation.
b. We use several facts to get an algorithm that is O(kn2)

instead of O(n3) for dense matrices: 

• x = (A – ZVT)–1b = (A–1 + A–1Z(I – VTA–1Z)–1VTA–1)b. 
• Forming A–1 from LU takes O(n3) operations, but form-

ing A–1b as U\(L\b) uses forward- and back-substitution
and just takes O(n2). 

• (I – VTA–1Z) is only k � k, so factoring it is cheap: O(k3).
However, forming it is more expensive: O(kn2).

• Matrix multiplication is associative. 

Using Matlab notation, once we’ve formed [L,U]=lu(A),
the resulting algorithm is

y = U \ (L \ b); 

Zh = U \ (L \ Z); 

t = (eye(k) - V’*Zh) \ (V’*y); 

x = y + Zh*t;

PROBLEM 3.

Implement the Sherman-Morrison-Woodbury algorithm
from Problem 2b. Debug it by factoring the matrix in the
first truss example and then changing the model to the sec-
ond truss example.

Answer: 
See sherman_mw.m on the Web site (www.computer.

org/cise/homework/).

PROBLEM 4.

For n taken to be various numbers between 10 and 1,000,
generate a random n � n matrix A. Find the number of up-
dates k0 that makes the cost of the Sherman-Morrison-
Woodbury method comparable to computing A\�. Plot k0
as a function of n.

Partial Solution to Last Issue’s Homework Assignment

UPDATING AND DOWNDATING
MATRIX FACTORIZATIONS: A CHANGE IN PLANS
By Dianne P. O’Leary

I N THE LAST ISSUE’S HOMEWORK ASSIGN-

MENT, WE CONSIDERED NUMERICAL METH-

ODS THAT MAKE IT EASIER TO REANALYZE A

DESIGN AFTER SMALL CHANGES ARE MADE. 
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Answer:
The solution is given in problem4.m on the Web site

(www.computer.org/cise/homework/); Figure A plots the re-
sults. In this experiment (run on a Sun UltraSPARC-III with
clock speed 750 MHz and Matlab 6), Sherman-Morrison-
Woodbury was faster for n � 40 when the update’s rank was
less than 0.25 n.

PROBLEM 5.

a. Given a vector z � 0 of dimension 2 � 1, find the Givens
rotation G so that Gz = xe1, where x = ||z|| and e1 is the vec-
tor with a 1 in the first position and zeros elsewhere.

b. We will use the notation Gij to denote an m � m iden-
tity matrix with its ith and jth rows modified to include the
Givens rotation: for example, if m = 6, then

Multiplication of a vector by this matrix leaves all but
rows 2 and 5 of the vector unchanged. Show that we can
finish our QR decomposition by (left) multiplying the R ma-
trix in Equation 3 first by G16, then by G26, and finally by
G36, where the angle defining each of these matrices is suit-
ably chosen. To preserve the equality, we multiply the Q-
matrix by G16

TG26
TG36

T on the right, and we have the
updated factorization.

Answer: 

a. .

Multiplying the first equation by c, the second by s, and
adding yields

(c2 + s2)z1 = cx,

so

c = z1/x.

Similarly, we can determine that

s = z2/x.

Because c2 + s2 = 1, we conclude that

z1
2 + z2

2 = x2,

so

b. The first rotation matrix is chosen to zero a61. The sec-
ond zeros the resulting entry in row 6, column 2, and the fi-
nal one zeros row 6, column 3.

PROBLEM 6.

Write a Matlab function that updates a QR decomposition
of a matrix A when a single column is changed. Apply it to
the truss examples in Problem 3.

Answer: 
See problem6.m and qrcolchange.m on the Web site

(www.computer.org/cise/homework/).
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Figure A. Results of Problem 4. Sherman-Morrison-
Woodbury was faster for n � 40 when the rank of the
update was less than 0.25 n.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:48 from IEEE Xplore.  Restrictions apply.


