
almost always make improvements on our original thought.
The same is true of engineering design; we draft a plan, but
changes are almost always made. Perhaps the customer
changes the performance specifications, or perhaps a sub-
stitution of building materials leads to a redesign. 

In this homework assignment, we consider numerical
methods that make it easier to reanalyze the design after
small changes are made. For definiteness, we focus on
truss design, but the same principles apply to any linear
model.

Truss Design
Consider the first truss of Figure 1. Beginning engineering
students learn to compute the force acting on each truss
member by considering two equations for each node in the
truss, ensuring that the sum of the horizontal forces is zero,
the sum of the vertical forces is zero, and the moment is
zero. They can “march” through the equations, solving for
the horizontal and vertical forces by a clever ordering. If the
design is changed—by moving a node, for example, as in the
second truss in the figure—then the resulting forces are just
as easy to determine.

For more complex models—for example, a finite element
model of the forces on a wing surface—marching no longer
works, and the system of equations must be solved using a
method such as Gauss elimination. We would like to have
an algorithm that enabled us to easily recompute the forces
if the wing’s shape changed slightly.

To introduce methods for solving modified models, let’s
forget the marching trick and return to the familiar truss ex-
ample. We start by writing a system of equations Af = � for
the unknown force on each member; the matrix of the sys-
tem has one column for each unknown force and two rows

per node (for horizontal and vertical forces). The load on
node E is put in the right-hand side. For Figure 1’s very sim-
ple first truss, for example, we have n = 10 forces to com-
pute, the solution to the linear system

(1)

(The subscript Ah, for example, denotes a horizontal force
at node A, and the subscript BC refers to the member con-
necting nodes B and C.) The truss members are all equal
length, so c = cos(�/3) and s = sin(�/3).

Several simple kinds of changes to the truss design
produce “small” changes in the system of equations. For
example,

• If we change the loading on the truss, then we keep the
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UPDATING AND DOWNDATING MATRIX
FACTORIZATIONS: A CHANGE IN PLANS
By Dianne P. O’Leary

W E SELDOM GET IT RIGHT THE FIRST

TIME. WHETHER WE’RE COMPOSING

AN EMAIL, SEASONING A STEW, PAINTING A PIC-

TURE, OR PLANNING AN EXPERIMENT, WE 
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same matrix but change the right-hand side �.
• If we add a new node along with two new truss members,

then our new matrix has two additional rows and columns
and contains the old matrix as a submatrix.

• If we remove a set of nodes and their truss members, then
we delete the columns of the matrix corresponding to the
forces exerted by the members, and we delete the pair of
rows corresponding to each removed node.

• If we move a node, then we change the two rows corre-
sponding to the horizontal and vertical forces on that
node, and we change the columns corresponding to its
members. 

For a problem with n = 10 unknowns, we could easily re-
compute the answer after any of these changes, but if n =
1,000,000, we might want to take advantage of our solution
to the original problem to more quickly obtain a solution to
the modified problem. In this homework assignment, we de-
velop the tools to do this.

Changes to the Right-Hand Side
If we need to analyze the truss for several different loadings,
then it’s a good idea to compute a factorization of the matrix
A once and save it for multiple uses. For example, if we com-
pute the LU decomposition with partial pivoting

PA = LU, (2)

where P is a permutation matrix that interchanges rows of
A, L is a lower triangular matrix, and U is an upper triangu-
lar matrix, then each of the loads can be handled by solving

Ly = P�

by forward-substitution, and then computing

Uf = y

by back-substitution. If A were a dense matrix, with very few
nonzeros, then the initial LU decomposition would cost
O(n3) operations, whereas forward- and back-substitution
would cost only O(n2). Taking advantage of the sparsity of A
can reduce the cost of both the LU decomposition and the
substitution (see “Solving Sparse Linear Systems: Taking the
Direct Approach,” Computing in Science & Eng., vol. 7, no. 5,
2005, pp. 62–67), but substitution will still be significantly
less costly than factorization when n is large.

EC

(b)

E

(a)

A C

50

B

A C

50

B

D

D

Figure 1. Truss design. (a) A truss with five nodes and
seven equal-length members, loaded with a force of 50
Newtons. Node A is fixed (supported horizontally and
vertically) and node E is rolling (supported only vertically).
(b) A change in the truss. Member CE is now two times the
length of the other members.

HANDLING SMALL CHANGES

The problem of efficiently handling small changes in the
model matrix arises in many situations other than engi-

neering design. For example, 

• Suppose we’re solving a system of linear inequalities Ax �

b, with A of dimension m � n (m � n), and we think that
the first n of them should be active: ai

Tx = bi, i = 1, …, n.
Suppose then that the solution to these equations violates
the kth inequality (k > n), and we want to add it to our
current system of equations and delete the jth equation.
Can we solve our new linear system easily? This problem
routinely arises in minimization problems when we have

linear inequality constraints, and it’s the basic computa-
tion in the simplex algorithm for solving linear program-
ming problems.

• Suppose that we’re solving a linear least-squares problem,
Ax � b, and we get some new measurements. This adds
rows to A and b. Can we solve our new least-squares prob-
lem easily?

• Suppose we’ve computed the eigenvalues and eigenvectors
of A, and then A is changed by the addition of a rank-1 ma-
trix Â = A + crT. What are the eigenvalues of Â?

Each of these problems (and similar ones) can be solved
cheaply by using the techniques discussed in this homework
assignment.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:48 from IEEE Xplore.  Restrictions apply.



68 COMPUTING IN SCIENCE & ENGINEERING

Changes to the Matrix
If we change the shape of the truss, then the matrix
changes. We can handle this in two ways: by using the
Sherman-Morrison-Woodbury formula or by updating a ma-
trix decomposition.

Sherman–Morrison–Woodbury Formula
Sometimes our matrix changes in a rather simple way, and
we want to reconsider our problem, making use of the orig-
inal decomposition without explicitly forming the update.

Suppose we have the factorization from Equation 2 and
now want to solve the linear system (A – zvT)f = �, where z
and v are column vectors of length n, so that zvT is an n � n
matrix. For example, if we decide to move node E as in the
truss of Figure 1, then we need to change column 6 in our
matrix. To do this, we set v to be the 6th unit vector (1 in po-
sition 6 and zeroes elsewhere) and z to be the difference be-
tween the new column and the old one.

In the next problem, we see how to apply this principle to
more than one set of changes in the matrix.

PROBLEM 1.

a. Suppose we want to change columns 6 and 7 in our ma-
trix A. Express the new matrix as A – ZVT, where Z and V
have dimension n � 2.

b. Suppose we want to change both column 6 and row 4
of A. Find Z and V so that our new matrix is A – ZVT.

In Problem 2, we see how this formulation of our new ma-
trix as a small-rank change in our old matrix leads to an ef-
ficient computational algorithm.

PROBLEM 2.

a. Assume that A and A – ZVT are both nonsingular. Show
that

(A – ZVT)–1 = A–1 + A–1Z(I – VTA–1Z)–1VTA–1

by verifying that the product of this matrix with A – ZVT is
the identity matrix I. This is called the Sherman-Morrison-
Woodbury formula.

b. Suppose we have an LU decomposition of A as in Equa-
tion 2. Assume that Z and V are n � k and k << n. Show that
we can use this decomposition and the Sherman-Morrison-
Woodbury formula to solve the linear system (A – ZVT)f = �

without forming any matrix inverses. (If A is dense, then we
perform O(n2) operations using Sherman-Morrison-Wood-
bury, rather than the O(n3) operations needed to solve the lin-
ear system from scratch.) Hint: Remember that we can
compute A–1y by solving a linear system using forward- and
back-substitution with the factors L and U.

In the following two problems, let’s experiment with the
Sherman-Morrison-Woodbury algorithm to see when it can
be useful.

PROBLEM 3.

Implement the Sherman-Morrison-Woodbury algorithm
from Problem 2b. Debug it by factoring the matrix in Equa-
tion 1, modeling the first truss in Figure 1, and then chang-
ing the model to the second truss.

PROBLEM 4.

For n taken to be various numbers between 10 and 1,000,
generate a random n � n matrix A. Find the number of up-
dates k0 that makes the cost of the Sherman-Morrison-
Woodbury method comparable to computing A\�. Plot k0
as a function of n.

Updating a Matrix Decomposition
The Sherman-Morrison-Woodbury formula lets us solve
modified linear systems without explicitly modifying our
matrix factorization. It’s very efficient when we need to make
only a few changes.

In some problems, though, we must do a long series of up-
dates to the matrix, and it’s better to explicitly update the fac-
torization. We could consider updating an LU factorization,
but this can be complicated because pivoting is necessary to
preserve stability. Instead, let’s use a factorization that’s sta-
ble without pivoting. This also enables us to consider ma-
trices that have more rows than columns, such as those that
arise in least-squares problems.

Suppose we’ve factored

A = QR,

where A is m � n with m � n, Q is m � m and orthogonal

Y O U R  H O M E W O R K  A S S I G N M E N T
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(QTQ = I ), and R is m � n and has zeros below its main diag-
onal. For definiteness, we’ll let A have dimensions 5 � 3.

As examples, let’s consider two kinds of common changes:

• Adding a row. In least squares, this happens when new data
comes in; in our truss problem it means that we have a
new node.

• Deleting a column. In least squares, this happens when we de-
cide to reduce the number of parameters in the model; in
our truss problem, it could result from removing a member.

Let’s look at both in more detail.

Adding a Row
Denote the new matrix as Â. Our decomposition can be
written as

(3)

To complete the decomposition, we need to reduce the a’s
to zeros. We can do this by using n Givens rotations—much
cheaper than recomputing the entire decomposition.

We’ll write the Givens matrix as

where c2 + s2 = 1. Thus, c and s have the geometric interpre-
tation of the cosine and sine of angle � ; multiplying a vector
by this matrix rotates the vector by an angle �.

Let’s see how we can use Givens rotation matrices.

PROBLEM 5.

a. Given a vector z � 0 of dimension 2 � 1, find G so that Gz
= xe1, where x = ||z|| and e1 is the vector with a 1 in the first
position and zeros elsewhere.

b. We will use the notation Gij to denote an m � m iden-
tity matrix with its ith and jth rows modified to include the

Givens rotation: for example, if m = 6, then

Multiplication of a vector by this matrix leaves all but rows
2 and 5 of the vector unchanged. Show that we can finish our
QR decomposition by (left) multiplying the R matrix in Equa-
tion 3 first by G16, then by G26, and finally by G36, where the
angle defining each of these matrices is suitably chosen. To
preserve the equality, we multiply the Q-matrix by GT

16GT
26GT

36
on the right, and we have the updated factorization.

Deleting a Column
If we delete column 1 from A, for example, we can write the
decomposition as

The resulting R is almost upper triangular; we just need ro-
tations to reduce the elements labeled r22 and r33 to zero. In
general, we need n – k rotations when column k is deleted.

Algorithms for deleting a row and adding a column are
similar to those for adding a row and deleting a column.
In the next problem, we construct algorithms for chang-
ing a column.

PROBLEM 6.

Write a Matlab function that updates a QR decomposition
of a matrix A when a single column is changed. Apply it to
the truss examples in Problem 3.

The Point of Updating
It might seem silly to worry so much about whether to update
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or recompute; computers are fast, and if we make one change
to the matrix, it really doesn’t matter which we do.

But when we need to do the task over and over again, per-
haps in a loop that solves a more complicated problem, it’s
essential to use appropriate updating techniques to reduce
the cost.

Unfortunately, the literature contains many unstable up-
dating algorithms, so it’s important to use stable and trusted
algorithms such as those given here and in the references in
the “Tools” sidebar.
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TOOLS

S tandard textbooks on scientific computing, such as
the one by Charles van Loan, discuss the QR factoriza-

tion and the use of Givens rotations.1

Other stable methods for modifying matrix factorizations
are considered by P.E. Gill, Gene Golub, Walter Murray, and
Michael Saunders.2 Gene Golub also discusses the solution
of eigenvalue problems when the matrix is modified.3
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Partial Solution to Last Issue’s Homework Assignment

COMPUTATIONAL SOFTWARE: WRITING YOUR LEGACY
By Dianne P. O’Leary

needs maintenance by someone other than its author. We
used a sample Matlab code for all our examples.

PROBLEM 1.

Add documentation to mgs.

Answer: 
See the program on the Web site (www.computer.org/

cise/homework).

PROBLEM 2.

Judge mgs according to each of the first six design principles.

Answer: 
• Data that a function needs should be specified in vari-

ables, not constants. This is fine; C is a variable. 
• Code should be modular, so that a user can pull out one

piece and substitute another when necessary. The pro-
gram mgs factors a matrix into the product of two other
matrices, and it would be easy to substitute a different fac-
torization algorithm. 

• On the other hand, considerable overhead is involved in
function calls, so each module should involve a substan-
tial computation to mask this overhead. This is also sat-
isfied; mgs performs a significant computation (O(mn2)
operations). 

• Input parameters should be tested for validity, and clear
error messages should be generated for invalid input. The
factorization can be performed for any matrix or scalar,
so input should be tested to be sure it isn’t a string, cell
variable, and so on. 

• “Spaghetti code” should be avoided. In other words, the
sequence of instructions should be top-to-bottom (in-
cluding loops), without a lot of jumps in control. The mgs
program is fine in this regard, although there is a lot of
nesting of loops. 

• The names of variables should be chosen to remind the

I N THE JANUARY/FEBRUARY ISSUE, WE DIS-

CUSSED SITUATIONS IN WHICH WE’RE

ASKED TO WORK WITH LEGACY CODE—CODE

THAT HAS BEEN IN USE FOR A WHILE AND NOW 
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reader of their purpose. The letter q is often used for an
orthogonal matrix, and r is often used for an upper trian-
gular one, but it would probably be better practice to use
uppercase names for these matrices. 

PROBLEM 3.

a. What does mgs do?
b. Develop a testing code for mgs.
c. Users have complained that mgs doesn’t seem to behave

well when the matrix C has more columns than rows. In par-
ticular, they’ve come to expect that q’ * q is an identity ma-
trix, which is no longer true. Investigate this bug complaint
and see what can be done.

Answer:
a. This program computes a QR factorization of the ma-

trix C using the modified Gram-Schmidt algorithm.
b. See the Web site (www.computer.org/cise/homework/).
c. This is corrected in mgsfact.m on the Web site. The

columns of q should be mutually orthogonal, but the num-
ber of columns in q should be the minimum of the row and
column dimensions of C. Nonzero columns after that are
just the result of rounding errors.

PROBLEM 4. 

The users have run a profiler on their software system to de-
termine timing for each part of their code, and they’ve found
that mgs takes 22 percent of the total time. Their typical in-
put matrices C have roughly 200 rows and 100 columns.
Change mgs to make it run faster. Test the original and mod-
ified versions, graphing the time required for problems with
200 rows and 50, 60, …, 200 columns.

Answer: 
The resulting program is on the Web site (www.

computer.org/cise/homework/), and Figure A shows the tim-
ing results. The program mgs has been modified in mgsfact
to use vector operations and internal functions like norm when
possible, and preallocate storage for q and r. The mgsfact
function runs 150 to 200 times faster than mgs on matrices
with 200 rows, using a Sun UltraSPARC-III with clock speed
750 MHz running Matlab 6. It’s an interesting exercise to de-
termine the relative importance of the three changes.

You also might think about how an efficient implementa-
tion in your favorite programming language might differ
from this one.
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Figure A. Time taken by the two algorithms for matrices
with 200 rows. The modified algorithm runs 150 to 200
times faster than the original on a Sun UltraSPARC-III.
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