
situation, we’re the inventors. Other times, we work on a
problem for which considerable software development has
been done, often over a period of many years. The existing
software might have had many authors, some of whom have
moved on to other positions. In this situation, our job is
more akin to detective work. We study the existing code,
run examples to see how it behaves, and come to understand
both what it does and how it does it.

In this homework assignment, we consider the second sit-
uation, in which we’re asked to work with a legacy code—one
that has been in use for a while and now needs maintenance
by someone other than its author. We use the following
Matlab function as an example:

function [r, q] = posted (C)

[m,n] = size(C); 

for k = 1:n

for j=1:m 

x(j) = C(j,k); 

end 

xn = 0; 

for j=1:m, 

xn = xn + x(j)*x(j); 

end 

r(k,k) = sqrt(xn); 

for j=1:m, 

q(j,k) = C(j,k)/r(k,k); 

end 

for j = k+1:n 

r(k,j) = 0; 

for p=1:m 

r(k,j) = r(k,j) + q(p,k)’*C(p,j); 

end 

for p=1:m 

C(p,j) = C(p,j) - q(p,k)*r(k,j); 

end 

end 

end

Let’s consider some principles of documentation and de-
sign, and see how they apply to posted.

Documentation
Documentation provides you and other potential users of
your code with an easy source of information about the
software’s use and design. Although you completely un-
derstand the code you write today, by next year, next
month, or even next week, you’ll be surprised at how dif-
ficult it is to reconstruct your reasoning if you fail to doc-
ument it.

Ideally, the documentation at the top of the module pro-
vides basic information to help a potential user decide
whether the software is of interest. It should include

• the code’s purpose (why: this is certainly the first thing a
user wants to know);

• the author’s name (why: it gives users someone to whom
they can report bugs and send questions);

• the date of the original code and a list of later modifica-
tions (why: it gives information such as whether the code
is likely to run under the current computer environment
and whether it might include the latest advances);

• a description of each input parameter (why: so that a user
knows what information must be provided and in what
format);

• a description of each output parameter (why: so the user
knows what information the software will yield); and

• a brief description of the method and references (why:
to help the user decide whether the method fits his or
her needs).

Inline documentation identifies the major sections of the
code and provides some detail on the method used. It’s im-

78 Copublished by the IEEE CS and the AIP        1521-9615/06/$20.00 © 2006 IEEE COMPUTING IN SCIENCE & ENGINEERING

COMPUTATIONAL SOFTWARE: 
WRITING YOUR LEGACY
By Dianne P. O’Leary

I N SCIENTIFIC COMPUTING, WE SOMETIMES

BEGIN WITH A CLEAN SLATE; WE’RE GIVEN

A NEW PROBLEM TO SOLVE, AND WE WRITE

SOFTWARE TO ACCOMPLISH THE TASK. IN THIS

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

Y O U R  H O M E W O R K  A S S I G N M E N T

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.



JANUARY/FEBRUARY 2006 79

portant in specifying the algorithm, identifying bugs, and
providing information to someone who might need to mod-
ify the software to solve a slightly different problem.

Note that the documentation should be an integral part
of the code; in other words, it isn’t enough to include it in a
separate document because a potential user might not have
access to that document.

PROBLEM 1.

Guided by the principles just listed, add documentation to
posted. Hint: upon completion, q * r = C.

Software Design
Software should be designed according to a principle artic-
ulated by Albert Einstein: “Make everything as simple as
possible, but not simpler.”

• Code should be modular, so that a user can pull out a
piece and substitute another when necessary. A mini-
mization code, for instance, should call on a separate func-
tion to get a function value, so that it can be used to
minimize any function.

• On the other hand, considerable overhead is involved in
function calls, so each module should involve a substan-
tial computation to mask this overhead. Don’t write a sep-
arate function to add five numbers, for example.

• Input parameters should be tested for validity, and clear
error messages should be generated for invalid input. If a
value defined to be the number of iterations is a negative
or complex number, for instance, the user should be in-
formed of this error.

• Data that a function needs should be specified in variables,
not constants. A subroutine to solve a linear system, for
example, should work for any matrix size, rather than hav-
ing a size specified.

• Spaghetti code should be avoided. In other words, the se-

quence of instructions should be top-to-bottom (includ-
ing loops), without a lot of jumps in control.

• The names of variables should be chosen to remind the
reader of their purpose. For example, lambda is better
than l as the name of a Lagrange multiplier.

• The code should be reasonably efficient. In particular, it
shouldn’t take an order of magnitude more time or stor-
age than necessary. If a code to solve a linear system with
n variables takes O(n4) operations or O(n3) storage, for ex-
ample, it isn’t so useful.

• And, of course, the program should be correct.

PROBLEM 2.

Judge posted according to each of the first six design prin-
ciples just listed. (We’ll consider its efficiency and correct-
ness later.)

Validation and Debugging
It would be comforting to have proof that each piece of code
we use is correct. Although considerable effort has gone into
developing methodologies for proving correctness, there are
formidable limitations. If correctness means matching a set
of specifications for the code, how do we know the specifi-
cations are correct? What does correctness mean when we
consider the effects of round-off error? And even if each
module is correct, can we ensure that the modules interact
with each other correctly?

Rather than a proof of correctness, in most situations we set-
tle for a validation of correctness on a limited set of inputs that
we believe span the range of possibilities. Proper design of this
testing code is just as important as proper design of the code
being tested, and it’s a critical part of the debugging process:

• The testing code should be well-documented and easy
to read.

TOOLS

O rganizations often have their own standards for docu-
mentation of programs. One of the most widely ad-

mired and underutilized systems is Donald Knuth’s Literate
Programming,1 used, for example, in his TeX document type-
setting language. Knuth’s programming style is also a model
of clarity and good design.

Becoming a good programmer requires practice as well as
good models. Jon Bentley’s book2 is an excellent source of
deceptively simple problems with beautiful solutions.

Mastery of the capabilities of the programming language
is essential to writing good software; Matlab Guide discusses

performance optimization for Matlab.3

Considerable research was done in the 1970s to prove
program correctness, but it isn’t yet a mainstream activity.4

References

1. D.E. Knuth, Literate Programming, Ctr. for the Study of Language and

Information, 1992.

2. J. Bentley, Programming Pearls, 2nd ed., Addison-Wesley, 2000.

3. D.J. Higham and N.J. Higham, Matlab Guide, SIAM Press, 2000.

4. P. Cousot, “Methods and Logics for Proving Programs,” Handbook of

Theoretical Computer Science, J. van Leeuwen, ed., Elsevier, 1990, pp.

843–993.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.



80 COMPUTING IN SCIENCE & ENGINEERING

• The test should exercise every statement in the target
code, include all typical kinds of correct input, and test all
conceivable input errors.

• The testing code should compare the output against some
trusted result and create a log of the test results.

• The testing code should be archived so that it can be used
later in case the target code is modified.

In addition to testing code, a powerful way to debug a code
is to write it one day and then read it carefully the next,
reasoning through each statement’s results to be sure that
it performs as intended. Programmers in the 1960s and
1970s had a major incentive to do such desk checks: run-

ning the program once often involved waiting until the
next morning to see the results, so it was important to get
it right the first time. With today’s machines, we usually
have the luxury of seeing results from our programs much
more quickly. It’s tempting just to run and modify the pro-
gram until the answers look good, but this is no substitute
for a careful reading.

Let’s apply these validation principles to posted.

PROBLEM 3.

a. What does posted do?
b. Develop a testing code for posted.
c. Users have complained that posted doesn’t seem to be-

have well when the matrix C has more columns than rows.
In particular, they’ve come to expect that q’ * q is an iden-
tity matrix, which is no longer true. Investigate this bug
complaint and see what can be done.

Efficiency
Finally, we turn our attention to making posted more effi-
cient. The main sources of inefficiency in posted arise from

• failing to use the vector capabilities of Matlab (for exam-
ple, writing a loop to perform q(:,k)’*C(:,j));

• failing to use built-in functions such as norm; and
• failing to initialize matrices such as r to all zeros, and in-

stead forcing Matlab to allocate new space each time
through the loop.

Let’s eliminate these inefficiencies.

PROBLEM 4. 

The users have run a profiler on their software system to de-
termine timing for each part of their code, and they’ve found
that posted takes 22 percent of the total time. Their typi-
cal input matrices C have roughly 200 rows and 100
columns. Change posted to make it run faster. Test the
original and modified versions, graphing the time required
for problems with 200 rows and 50, 60, …, 200 columns.

After redesign, documentation, and validation, you should
have a program that runs 100 times faster than posted and
provides a much more useful legacy.

Y O U R  H O M E W O R K  A S S I G N M E N T

fill

www.computer.org/internet/

Stay on Track
IEEE Internet Computing reports emerging

tools, technologies, and applications

implemented through the Internet to support a

worldwide computing environment.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.



JANUARY/FEBRUARY 2006 81

decomposition) to O(n2 log2n) when n is a power of two.
Because we’re computing n2 answers, this is close to opti-
mal, and it illustrates the value of exploiting every possi-
ble bit of structure in our problems.

Let n = 5 and define the n2 � n2 matrix Ax by

where h = 1/(n + 1), and let

and

where I is the identity matrix of dimension n � n. We want
to solve the linear system

(Ax + Ay)u = f, (1)

The entries in the vector u are approximations to values of
a function u at points (x, y) in a square grid, and entries in
f contain values of a function f: u � [u(x1, y1), …, u(xn, y1),

u(x1, y2), …, u(xn, y2), … u(x1, yn), …, u(xn, yn)]T and f =
[f(x1, y1), …, f(xn, y1), f(x1, y2), …, f(xn, y2), … f(x1, yn), …,
f(xn, yn)]T.

PROBLEM 1.

Show that we can write Equation 1 as

(ByU + UBx) = F, (2)

where the matrix entry ujk is our approximation to u(xj, yk),
fjk = f(xj, yk), and By = Bx = (1/h2)T.

Answer:
Equating the ( j, k) element on each side of Equation 2, we
obtain

f(xj, yk) = 1/h2(–u(xj–1, yk) + 2u(xj, yk) – u(xj+1, yk) – u(xj, yk–1)
+ 2u(xj, yk) – u(xj, yk+1)),

which is the same as equation (k – 1)n + j of Equation 1.

PROBLEM 2.

a. Consider the Sylvester equation LU + UR = C, where L
is lower triangular and R is upper triangular. Show that we
can easily determine the elements of the matrix U either
row-by-row or column-by-column. How many arithmetic
operations does this algorithm require?

b. By examining your algorithm, determine necessary and
sufficient conditions on the main diagonal elements of L and
R (that is, their eigenvalues) to ensure that a solution to the
Sylvester equation exists.

c. Suppose we want to solve the Sylvester equation AU
+ UB = C, where A, B, and C of dimension n � n are
given. (A and B are unrelated to the previously described
matrices.) Let A = WLW * and B = YRY *, where WW * =
W *W = I, YY * = Y *Y = I; L is lower triangular; and R is
upper triangular. (This is called a Schur decomposition of
the two matrices.) Show that we can solve the Sylvester
equation by applying the algorithm derived in part (a) to
the equation LU

�
+ U

�
R = C

�
, where U

�
= W *UY and C

�
=

W *CY.

A

I I 0 0 0
I I I 0 0
0 I I I 0
0 0 I I I
0 0 0 I

y
h

= 1

2
2

2
2

2

2

-
- -

- -
- -

- II























,

T =

−
− −

− −
− −

−












2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2












A

T 0 0 0 0
0 T 0 0 0
0 0 T 0 0
0 0 0 T 0
0 0 0 0 T

x
h

=

















1

2





,

Partial Solution to Last Issue’s Homework Assignment

FAST SOLVERS AND SYLVESTER
EQUATIONS: BOTH SIDES NOW
By Dianne P. O’Leary

I N THE LAST ISSUE, WE USED THE

STRUCTURE OF A PROBLEM WITH n2 UN-

KNOWNS TO REDUCE THE AMOUNT OF COM-

PUTATION FROM O(n6) (USING THE CHOLESKY

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.



82 COMPUTING IN SCIENCE & ENGINEERING

Answer:
a. Using Matlab notation for subvectors, the algorithm
is the following:

for i = 1 : n,
for j = 1 : n,
U(i, j) = (C(i, j) – L(i, 1 : i – 1) * U(1 : i – 1, j)
–U(i, 1 : j – 1) * R(1 : j – 1, j))/(L(i, i) + R(j, j))

end
end

The number of multiplications is

and the other operations are also easy to count.
b. The algorithm fails if L(i, i) + R( j, j) = 0 for some value

of i and j. The main diagonal elements of triangular ma-
trices are the matrix’s eigenvalues, so it’s necessary and suf-
ficient that L and –R have no common eigenvalues.

c. If AU + UB = C, then WLW*U + UYRY* = C.

Multiplying on the left by W * and on the right by Y, we
obtain LU

�
+ U

�
R = C

�
.

PROBLEM 3. 

Determine a way to solve the equation �xY + Y�y = F,
where �x and �y are diagonal, using only O(n2) arithmetic
operations. 

Answer: 
The algorithm of Problem 2a reduces to U(i, j) = F(i, j)/
(L(i, i) + R( j, j)) for i, j = 1, …, n, which requires n2 additions
and divisions.

PROBLEM 4.

a. We know the eigenvalues and eigenvectors of Bx. Denote

the elements of the vector vj by

where we choose �j so that ||vj|| = 1. Show that Bxvj = �jvj,
where

b. Show that we can multiply a vector by the matrix V or
VT via a discrete Fourier (sine) transform or inverse Fourier
(sine) transform of length n. The discrete sine transform of
a vector x is

Answer: 
a. Recall the identities

sin(a ± b) = sin a cos b ± cos a sin b.

If we form Bx times the jth column of V, then the kth ele-
ment is

= λ j k jv , .

= −
+







1
2 2

12h

j
n

vk jcos ,
π

= −
+





 +

α π πj

h

j
n

kj
n2 2 2

1 1
cos sin

= −
+ +

+
+ +




α π π π πj

h

kj
n

j
n

kj
n

j
n2 1 1 1 1

sin cos cos sin

+
+

−
+ +

−
+

2
1 1 1 1

sin sin cos cos
kj
n

kj
n

j
n

kj
n

π π π π
ssin

j
n

π
+


1

= −
−

+
+

+
−

+
+

α π π πj

h

k j
n

kj
n

k j
n2

1
1

2
1

1
sin

( )
sin sin

( )
11







− + −− +v v v

h
k j k j k j1 1

2

2, , ,

y x jk nk j
j

n
= +

=
∑ sin( / ( )).π 1

1

λ

π

j

j
n

h
j n=

−
+







2 2
1

2

cos
for = 1, 2, …, .

v
kj
nkj j=

+
α π

sin ,
1

( ) ( ),i j n n
j

n

i

n
− + − = −

==
∑∑ 1 1 12

11

Y O U R  H O M E W O R K  A S S I G N M E N T

An error appears in the last line of Problem 4 in “Fast
Solvers and Sylvester Equations” (last issue’s homework
assignment); it is corrected here, on page 82. We regret
any confusion this error might have caused. —Eds.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.



JANUARY/FEBRUARY 2006 83

Stacking these elements, we obtain Bxvj = �jvj.
b. This follows by writing the kth component of Vy.

PROBLEM 5. 

Write a well-documented program to solve the discretiza-
tion of the differential equation using Problem 2’s Schur-
based algorithm and the algorithm developed in Problem
4. (Because the matrices are symmetric, the lower and up-
per triangular matrices are actually diagonal.) Test your al-
gorithms for n = 2p, with p = 2, …, 9, and choose the true
solution matrix U randomly. Compare the results of the two
algorithms with backslash for accuracy and time.

Answer: 
See the Web site (www.computer.org/cise/homework/) for
the programs. Figures A and B show the results. All the algo-
rithms give accurate results, but as n gets large, the efficiency
of Problem 4’s fast algorithm becomes more apparent.

Dianne P. O’Leary is a professor of computer science and a fac-

ulty member in the Institute for Advanced Computer Studies and

the Applied Mathematics Program at the University of Maryland.

She has a BS in mathematics from Purdue University and a PhD in

computer science from Stanford. O’Leary is a member of SIAM,

the ACM, and AWM. Contact her at oleary@cs.umd.edu; www.cs.

umd.edu/users/oleary/.

100 200 300 400 500 600
n

0

100 200 300 400 500 600
n

0

Matlab backslash
Schur algorithm
Fast sin transform

Matlab backslash
Schur algorithm
Fast sin transform

Ti
m

e 
(s

ec
)

Ti
m

e 
(s

ec
)

102

10–2

10–4

100

20

40

60

80

100

Figure A. The time (in seconds on a Sun UltraSPARC-III
with clock speed 750 MHz running Matlab 6) taken by the
three algorithms as a function of n. The bottom plot uses
logscale to better display the times for the fast sin
transform.

0 100 200 300 400 500 600

100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0
x 10–12

n

n

(E
rr

or
 n

or
m

) 
/ 

n

0

0.5

1.0

1.5

2.0

2.5

3.0
x 10–9 

(R
es

id
ua

l n
or

m
) 

/ 
n 

Matlab backslash
Schur algorithm
Fast sin transform

Matlab backslash
Schur algorithm
Fast sin transform

Figure B. The accuracy of the three algorithms as a
function of n.

FUTURE TOPICS:

The Business of
Software Engineering

Software Inspections

Usability
Visit us on the Web at

www.computer.org/intelligent

UPCOMING ISSUES:

AI’s Cutting Edge

Self-Managing Systems

The Future of AI

Interactive Entertainment

UPCOMING ISSUES:

AI’s Cutting Edge

Self-Managing Systems

The Future of AI

Interactive Entertainment

UPCOMING ISSUES:

AI’s Cutting Edge

Self-Managing Systems

The Future of AI

Interactive Entertainment

UPCOMING ISSUES:

AI’s Cutting Edge

Self-Managing Systems

The Future of AI

Interactive Entertainment

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:47 from IEEE Xplore.  Restrictions apply.


