
exploit structure in our matrix. We exploited sparsity; in this
homework, we’ll consider a set of problems that have an ad-
ditional type of structure.

The Poisson Equation
Recall the Poisson equation from our last homework:

–uxx – uyy = f(x, y),

with (x, y) � � � R2 and with appropriate boundary condi-
tions specified. One strategy for solving it is to discretize the
equation by choosing mesh points. We can then write an
equation for each mesh point by approximating the deriva-
tives uxx and uyy by finite differences, thus giving us a system
of linear equations Au = f to solve for estimates of each mesh
point’s value of u.

In one of our examples, � was a unit square with the mesh
points chosen so they were equally spaced; we also had zero
boundary conditions. For a 5 � 5 grid of mesh points, for ex-
ample, we might order them as in Figure 1. If we let xj = jh
and yk = kh, with h = 1/6 = 1/(n + 1), we can create two vec-
tors u � [u(x1, y1), …, u(xn, y1), u(x1, y2), …, u(xn, y2), … u(x1,

yn), …, u(xn, yn)]T and f = [f(x1, y1), …,  f(xn, y1), f(x1, y2), …,
f(xn, y2), … f(x1, yn), …, f(xn, yn)]T, and write our approxima-
tion to –uxx at all mesh points as

In this equation, the ith component of the 25 � 1 vector u is
our approximation to u at the ith mesh point. The matrix 0
is a 5 � 5 matrix of zeros, and the matrix T is

.

Similarly, our approximation to –uyy at all mesh points is
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FAST SOLVERS AND SYLVESTER
EQUATIONS: BOTH SIDES NOW
By Dianne P. O’Leary

I N OUR LAST HOMEWORK, WE SOLVED LARGE

SPARSE SYSTEMS OF LINEAR EQUATIONS AND

LEARNED THAT TO KEEP STORAGE AND COMPU-

TATIONAL COSTS LOW, IT’S VERY IMPORTANT TO

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R  H O M E W O R K  A S S I G N M E N T

In this Homework

W e’re using the structure of a problem with n2 unknowns to reduce the amount of computation from O(n6) (using
the Cholesky decomposition) to O(n4) (exploiting sparsity) and then to O(n3) (using the Sylvester structure), a

substantial savings when n is large. But knowing just a bit more about the problem’s structure allows further reduction,
down to O(n2 log2n) when n is a power of two. Because we’re computing n2 answers, this is close to optimal, and it illus-
trates the value of exploiting every possible bit of structure in our problems.
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where I is the identity matrix of dimension 5 � 5. So, we
want to solve the linear system

(Ax + Ay)u = f. (1)

This gives us a problem with a sparse matrix, and because
our usual grids are n � n, where n is much bigger than five,
it’s important to exploit the sparsity.

But in our particular problem—an equally spaced grid
over a square (or a rectangle)—we have even more structure
that we can exploit; Problem 1 shows how to write our prob-
lem more compactly.

PROBLEM 1. 

Show that we can write Equation 1 as

(ByU + UBx) = F, (2)

where the matrix entry ujk is our approximation to u(xj, yk),
fjk = f(xj, yk), and By = Bx = (1/h2)T. 

The Sylvester Equation
Equation 2 is called a Sylvester equation. (It’s also called a Lya-
punov equation because By = Bx

T.) It looks daunting because the
unknowns, U, appear on both the left and right sides of other
matrices, but as we just showed, the problem is equivalent to
a system of linear equations. The Sylvester equation formu-
lation gives us a compact representation of our problem in
terms of the data matrix F and two tridiagonal matrices of di-
mension n. (In fact, because Bx = By, we really only have one
tridiagonal matrix.)

Using the Schur Decomposition
One way to solve our problem efficiently is by using the Schur
decomposition of a matrix. We’ll consider this algorithm in the
next problem.

PROBLEM 2.

a. Consider the Sylvester equation LU + UR = C, where L is
lower triangular and R is upper triangular. Show that we can
easily determine the elements of the matrix U either row-
by-row or column-by-column. How many arithmetic oper-
ations does this algorithm require?

b. By examining your algorithm, determine necessary and
sufficient conditions on the main diagonal elements of L and

R (that is, their eigenvalues) to ensure that a solution to the
Sylvester equation exists.

c. Suppose we want to solve the Sylvester equation AU +
UB = C, where A, B, and C of dimension n � n are given. (A
and B are unrelated to the previously described matrices.)
Let A = WLW * and B = YRY *, where W and Y are unitary
matrices with WW * = W *W = I, YY * = Y *Y = I; L is lower
triangular; and R is upper triangular. (This is called a Schur
decomposition of the two matrices.) Show that we can solve
the Sylvester equation by applying the algorithm derived in
part (a) to the equation LU

�
+ U

�
R = C

�
, where U

�
= W *UY and

C
�

= W *CY.

The reason for using the Schur decomposition in Prob-
lem 2 is that the most compact form we can achieve using a
unitary matrix transformation is the triangular form. To pre-
serve stability, we’ve considered only unitary transforms.
One disadvantage of the Schur algorithm applied to real
nonsymmetric matrices is that we must perform complex
arithmetic, and the resulting computed matrix U could have
a small imaginary part due to round-off error, even though
the true matrix is guaranteed to be real.

Using the Eigendecomposition
We can solve Equation 2 by using the eigendecomposition
instead of the Schur decomposition. This is less efficient
for general matrices but more efficient when Bx and By
have eigenvectors related to the discrete Fourier trans-
form’s vectors, as in our case, plus it’s stable for symmetric
matrices, because the eigenvector matrix is real orthogo-
nal. In fact, the Schur decomposition reduces to the eigen-
decomposition when A and B are real symmetric: the
matrices L and R are then also symmetric and thus diago-
nal. Let’s see how we can solve our problem with an eigen-
decomposition.

Suppose that Bx and By are any two symmetric matrices
that have the same eigenvectors, so

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 1. A 5 � 5 grid of mesh points.
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Bx = V�xVT and By = V�yVT,

where the columns of V are the eigenvectors (normalized to
length 1), and the entries of the diagonal matrices �x and �y
are the eigenvalues. (Note that because Bx and By are sym-
metric, the columns of V are orthogonal, so VTV = VVT = I.)
Substituting our eigendecompositions, Equation 2 becomes

V�xVTU + UV�yVT = F,

and multiplying this equation by VT on the left and by V on
the right, we get

�xVTUV + VTUV�y = VTFV.

Letting Y = VTUV, we have an algorithm: 

• Form the matrix
�
F = VTFV. 

• Solve the equation �xY + Y�y =
�
F, where �x and �y are di-

agonal. 
• Form the matrix U = VYVT.

PROBLEM 3. 

Determine a way to implement the second step of the algo-
rithm using only O(n2) arithmetic operations.

Because we have n2 entries of U to compute in solving our
problem, the second step is optimal order, so the algorithm’s
efficiency depends on the implementation of the first and third
steps. In general, each matrix–matrix product of n � n matri-
ces takes O(n3) operations, so our complete algorithm would

also take O(n3). In some special cases, though, we can compute
the matrix products more quickly, which is true for our model
problem, since there are formulas for the eigenvalues and
eigenvectors of Bx. We exploit this fact in Problem 4.

PROBLEM 4.

a. Denote the elements of the vector vj by

,

where we choose �j so that ||vj|| = 1. Show that Bxvj = �jvj,
where

b. Show that we can multiply a vector by the matrix V or
VT via a discrete Fourier (sine) transform or inverse Fourier
(sine) transform of length n. The discrete sine transform of
a vector x is

We can accomplish this in O(n log2 n) operations if n is
a power of two and also in some larger (but still modest)
number of operations if n is a composite number with
many factors.

Using the multiplication algorithm from Problem 4, we
can solve Equation 2 in O(n2 log2 n) operations when n is a
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Tools

I n Matlab, the functions dst and idst from the PDE Tool-
box are useful for solving Problem 5. If the PDE Toolbox

isn’t available, you can manipulate the results of a fast Fourier
transform to obtain the desired result. Also of use is schur,
which has an option to return either an upper triangular (and
possibly complex) factor or a real block upper triangular fac-
tor with 1 � 1 or 2 � 2 blocks on the main diagonal.

The method used in Problem 4 is extendable. There are
fast solvers for solving 3D Poisson problems; for problems
on rectangles, circles, and other simple domains; and for
problems with different boundary conditions.1

The Schur algorithm for the Sylvester equation comes
from Richard Bartels and G. W. Stewart.2

When we discuss number of operations, we consider the
traditional algorithms for matrix product. Faster versions ex-

ist, but Webb Miller showed that the stability isn’t as good.3

The Sylvester equation also arises in state space design in
control theory4 and in image processing.5
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power of two, considerably less than the O(n3) operations
generally required, or the O(n4) required for the sparse
Cholesky decomposition applied to our original matrix
problem. (The reordering strategies discussed in the last is-
sue would reduce the factorization complexity somewhat,
but wouldn’t achieve O(n2 log2 n).)

PROBLEM 5.

Write a well-documented program to solve the discretiza-
tion of the differential equation using Problem 2’s Schur-

based algorithm and the algorithm developed in Problem 4.
(Debug the Schur-based algorithm using randomly gener-
ated real non-symmetric matrices.) Test your algorithms for
n = 2p, with p = 2, …, 9, and choose the true solution matrix
U randomly. Compare the results of the two algorithms with
backslash for accuracy and time.
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this homework.

TIONS. WE FIRST TOOK A LINEAR SYSTEM

of size n = 6 and reordered it as

using the permutation matrix

PROBLEM 1.

a. Verify that the reordered system has the same solution as
the original one and that when we use Gauss elimination
(or the Cholesky factorization) on it, no new nonzeros are
produced. (In particular, the Cholesky factor has 2n – 1
nonzeros.)

b. Show that our reordered system is

PAPT(Px) = Pb.

Answer: 
For part (a), we notice that in Gauss elimination, we need
only five row operations to zero elements in the lower tri-
angle of the matrix, and the only row of the matrix that
changes is the last row. Because this row has no zeros, no
new nonzeros can be produced.

For part (b), because PTP = I, we see that

Ax = b � PAx = Pb � PAPT(Px) = Pb,

which verifies that the reordered system has the same solu-
tion as the original one.

PROBLEM 2.

a. A matrix A is a band matrix with bandwidth � if ajk = 0
whenever |j – k| > �. (An important special case is that of a
tridiagonal matrix, with � = 1.) Show that the factor L for A
also has bandwidth �.

b. Define a matrix’s profile to stretch from the first nonzero
in each column to the main diagonal element in the column,
and from the first nonzero in each row to the main diagonal
element. For example, if

P =
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0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0




















.

× ×
× ×

× ×
× ×

× ×
× × × × × ×











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0








































x
x
x
x
x
x

2

3

4

5

6

1





=



























b
b
b
b
b
b

2

3

4

5

6

1

,

Ax ≡

× × × × × ×
× ×
× ×
× ×
× ×
× ×






 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









































x
x
x
x
x
x

1

2

3

4

5

6








=



























≡

b
b
b
b
b
b

1

2

3

4

5

6

b

PARTIAL SOLUTION TO LAST ISSUE’S HOMEWORK ASSIGNMENT

SOLVING SPARSE LINEAR SYSTEMS: TAKING THE DIRECT
APPROACH

By Dianne P. O’Leary

I N THIS PROBLEM, WE WERE TO GIVE ADVICE

TO THE CEO OF POISSONISUS.COM ABOUT HOW

TO SOLVE SPARSE SYSTEMS OF LINEAR EQUA-
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then the profile of A contains its nonzeros as well as those
zeros marked with �:

Show that the factor L for a symmetric matrix A has no
nonzeros outside the profile of A. 

Answer: 
For part (b), the important observation is that if element
k is the first nonzero in row �, then we start the elimina-
tion on row � by a pivot operation with row k, after row
k already has zeros in its first k – 1 positions. Therefore,
an induction argument shows that no new nonzeros can
be created before the first nonzero in a row. A similar
argument works for the columns. Part (a) is a special case
of this.

PROBLEM 3. 

Draw the graph corresponding to the matrix

Try each of the three reorderings on this matrix. Compare
the sparsity of the Cholesky factors of the reordered matri-
ces with the sparsity of the factor corresponding to the orig-
inal ordering.

Answer: 
Figure A shows the graph. The given matrix is a permuta-
tion of a band matrix with bandwidth 2; reverse Cuthill-
McKee determined this and produced an optimal ordering.
The reorderings and number of nonzeros in the Cholesky
factor (nz(L)) are

Method Ordering nz(L)
Original 1 2 3 4 5 6 7 8 9 10 27
Reverse Cuthill-McKee 1 5 3 9 7 4 6 10 2 8 22
Minimum degree 2 8 10 6 1 3 5 9 4 7 24
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Figure A. Graph of the matrix in Problem 3.
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Figure B. Results of using the original ordering for (a) S and
(b) the Cholesky factor of S.
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Figure C. Results of reordering using reverse Cuthill-McKee for
(a) S(r, r) after Cuthill-McKee ordering and (b) chol(S(r, r)).
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Nested dissection (1 level) 8 2 10 6 4 9 3 5 1 7 25
Eigenpartition (1 level) 1 3 5 9 2 4 6 7 8 10 25

(Note that these answers aren’t unique, due to tiebreaking.)
Figures B through F show the resulting matrices and factors.

PROBLEM 4. 

Use slit2.m and laplace3d.m (with n = 15) to generate
three linear systems. Solve the linear systems using as many
of these algorithms as possible: 

• Cholesky on the original matrix.
• Cholesky using the reverse Cuthill-McKee ordering. 
• Cholesky using the (approximate) minimum degree or-

dering. 
• Cholesky using the nested dissection ordering. 
• Cholesky using the eigenvector ordering. 

Make a table reporting, for each method, 

• time to solve the system (include reordering, factorization,
and forward and back substitution);

• storage for the matrix factors; and
• the final relative residual ||b – Axcomputed||2/||b||2. (These

should all be well below the errors due to discretization,
so they won’t be a factor in your recommendation.) 

If possible, run larger problems, too.
Considering the 2D and 3D problems separately, report to

the CEO of PoissonIsUs.com the performance of the various
methods and your recommendation for what ordering to use.

Answer:
Using a double-precision word (two words, or 8 bytes) as the
unit of storage and seconds as the unit of time, Tables 1
through 3 present these results.

A ll the algorithms produced solutions with small resid-
ual norm. On each problem, the approximate mini-

mum degree algorithm gave factors requiring the lowest
storage, preserved sparsity the best, and, on the last two
problems, used the least time. (Note that local storage used
within Matlab’s symrcm, symmmd, symamd, and the toolbox
specnd wasn’t counted in this tabulation.) It’s quite expen-
sive to compute the eigenpartition ordering, so this method

should only be used if the matrices will be used multiple
times, to amortize cost. To complete this study, it would be
important to try different values of n, to determine the stor-
age and time’s rate of increase as n increased.

To judge performance, several hardware parameters are
significant, including computer (Sun Blade 1000 Model
1750), processor (Sun UltraSPARC-III), clock speed (750
MHz), and amount of RAM (1 Gbyte). The software spec-
ifications of importance include the operating system (So-
laris 8) and the Matlab version (6.5.1). Benchmarking is a
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Figure D. Results of reordering using minimum degree. (a) S(r,
r) after minimum degree ordering and (b) chol(S(r, r)).

nz = 34

0

2

4

6

8

10

0 2 4 6 8 10
(a) nz = 25

0

2

4

6

8

10

0 2 4 6 8 10
(b)

Figure E. Results of reordering using nested dissection. (a) S(r,
r) after nested dissection ordering and (b) chol(S(r, r)).
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Figure F. Results of reordering using eigenpartitioning. (a) S(r,
r) after eigenpartition ordering and (b) chol(S(r, r)).
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difficult task, depending on the choice of hardware, software,
and test problems, and our results on this problem certainly
raise more questions than they answer.
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tact her at oleary@cs.umd.edu; www.cs.umd.edu/users/oleary/.
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Algorithm Storage Time Residual_norm 
Cholesky 28565072 1.02e+02 6.98e-14 
Cholesky, R-Cuthill-McKee 16773590 3.79e+01 6.10e-14
Cholesky, minimum degree 8796896 4.08e+01 4.39e-14
Cholesky, approximate mindeg 7549652 3.08e+01 3.66e-14

(Too many recursions in eigenpartition method specnd.)

Table 3. Solving Laplace equation on box, with n = 15,625.

Algorithm Storage Time Residual_norm 
Cholesky 660640 1.14e+00 4.04e-15 
Cholesky, R-Cuthill-McKee 143575 7.21e-02 2.82e-15
Cholesky, minimum degree 92008 5.18e-02 1.96e-15
Cholesky, approximate mindeg 76912 1.70e-01 1.68e-15
Cholesky, eigenpartition 90232 4.59e+00 1.86e-15

Table 1. Solving Laplace equation on circle sector with n = 1,208.

Algorithm Storage Time Residual_norm 
Cholesky 6204481 3.21e+01 7.73e-15 
Cholesky, R-Cuthill-McKee 1113694 7.08e-01 5.30e-15
Cholesky, minimum degree 486751 2.78e-01 2.85e-15
Cholesky, approximate mindeg 444109 2.34e-01 2.81e-15

(Too many recursions in eigenpartition method specnd from the Mesh Partitioning and Graph Separator Toolbox of Gilbert and Teng
http://www.cerfacs.fr/algor/Softs/MESHPART/.)

Table 2. Solving Laplace equation on circle sector with n = 4,931.
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