
partial differential equations in two and three dimensions, but
we have limited venture capital funding, so we’re starting with
a very specific mission: to solve the Poisson equation

–uxx – uyy = f(x, y),

when (x, y) � � � R2, or

–uxx – uyy – uzz = f (x, y, z),

when (x, y, z) � � � R3. The complete problem specifica-
tions also include information about the behavior of the so-
lution u on the boundary of �.

Problem Solving
The standard method for solving such problems is to dis-
cretize using either finite differences or finite elements, and then
solve the resulting system of linear equations. To get accu-
rate estimates of the solution, the system is made very large
(involving thousands or millions of unknowns), so it’s im-
portant to be very efficient in our solution algorithm. Your
job is to evaluate some alternatives.

For testing purposes, we’ve developed two problems that
we believe are typical of what our customers will provide. In

the first problem, the domain is a sector of a circle, and the
differential equation is discretized using an adaptive finite
element grid. In the second, the domain is a 3D box with
discretization using finite differences. The Web site (www.
computer.org/cise/homework/) has Matlab functions to
generate these problems.

The n � n matrices A we consider have three important
properties:

• They are real symmetric, so element ajk = akj for j, k = 1, …,
n. This forces all the eigenvalues to be real.

• They are positive definite, so all the eigenvalues are
positive.

• They are sparse, meaning that most of the matrix entries
are zero and that the number of nonzero elements grows
as n rather than n2 as the discretization is refined.

The first two properties ensure that if we perform Gauss
elimination on the linear systems, we never need to pivot for
stability—interchange rows of the matrix to put a larger-
magnitude element on the main diagonal. Also, we can take
advantage of the symmetry of A and use the Cholesky decom-
position of the matrix, factoring A = LLT, where L is a lower
triangular matrix. This requires half the work of Gauss elim-
ination, but it’s only stable if A is positive definite.

Because we don’t need to pivot for stability, we are com-
pletely free to pivot to preserve sparsity; later, we’ll turn our
attention to why this is necessary and how to do it effec-
tively. In addition to direct methods such as the Cholesky de-
composition, we should also consider iterative methods such
as conjugate gradients, but we’ll focus on direct methods
here.

62 Copublished by the IEEE CS and the AIP 1521-9615/05/$20.00 © 2005 IEEE COMPUTING IN SCIENCE & ENGINEERING

O UR STARTUP COMPANY, POISSONISUS.COM,

HAS HIRED YOU AS A CONSULTANT TO

ADVISE US ON SOLVING LINEAR SYSTEMS OF

EQUATIONS. OUR BUSINESS IS TO SOLVE ELLIPTIC

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R H O M E W O R K A S S I G N M E N T

SOLVING SPARSE LINEAR SYSTEMS:
TAKING THE DIRECT APPROACH
By Dianne P. O’Leary

I n this homework assignment, we explore the importance of ordering when solving large, sparse systems of linear equa-
tions. Our examples are drawn from the solution of partial differential equations; such problems are a prime source of

such linear systems. Nothing that we do is specific to these problems, however, and you might prefer to work with a matrix
from a standard test set (for example, ‘wathen’ from Matlab’s gallery function or a matrix from the Matrix Market at
http://math.nist.gov/MatrixMarket/) or a matrix of particular interest in your work.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2005 63

Storing and Factoring Sparse Matrices
Several possible storage schemes exist for sparse matrices.
Matlab chooses a typical one: store the indices and values of
the nonzero elements in column order, so

is stored as

.

Storing a sparse matrix in this way takes 3nz storage loca-
tions, where nz is the number of nonzeros. For small ma-
trices, the choice of dense or sparse storage schemes
doesn’t matter much, but for problems with thousands or
millions of unknowns, it matters a lot! If our matrix has
only three nonzeros per row, for example, then we require
9n locations to store it in sparse format (rather than the n2

required for dense); these numbers are quite different for
large n.

If our problem involves a sparse matrix A, then we would
want L to be sparse, too, but this isn’t always the case. Con-
sider, for example, a linear system involving the “arrowhead”
matrix

where � denotes a nonzero value (we don’t care what it is) and
0 denotes a zero. The number of nonzeros is 3n – 2.

Suppose we use Gauss elimination (or the LU factoriza-
tion or the Cholesky factorization—they all have the same
trouble). In the first step, we would add some multiple of the
first row to every other row to put zeros in the off-diagonal

elements of column 1. Disaster! The matrix is now fully
dense with n2 nonzeros!

This problem has a simple fix, though. Let’s rewrite our
problem by moving the first column and the first row to the
end, thus producing a reordered system

We can express this reordering by using a permutation
matrix

A permutation matrix is just an identity matrix with its rows
reordered; we can use the reordering sequence r = [2, 3, 4,
5, 1] to represent this one.

In the next problem, we see the dramatic effect that re-
ordering has on sparsity.

PROBLEM 1.

a. Verify that the reordered system has the same solution as
the original one and that when we use Gauss elimination (or
the Cholesky factorization), no new nonzeros are produced
in our reordered system. (In particular, the Cholesky factor
has 2n – 1 nonzeros.)

b. Show that our reordered system is (PAPT)(Px) = Pb.

Reordering the variables and equations is a powerful tool
for maintaining sparsity during factorization, and we’ll in-
vestigate some strategies for determining good permutations
later. Notice that to preserve symmetry, we’ll always pair P
with PT in reordering A, but for nonsymmetric problems,
choosing a different column permutation in place of PT can
be more advantageous.

P =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

.

× ×
× ×

× ×
× ×

× ×
× × × × × ×

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

x
x
x
x
x
x

2

3

4

5

6

1

=

b
b
b
b
b
b

2

3

4

5

6

1

.

Ax ≡

× × × × × ×
× ×
× ×
× ×
× ×
× ×

 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

x
x
x
x
x
x

1

2

3

4

5

6

=

≡

b
b
b
b
b
b

1

2

3

4

5

6

b,

(,)
(,)
(,)
(,)
(,)
(,)

1 1 2
3 1 1
2 2 5
2 3 7
3 3 6
4 4 8

2 0 0 0
0 5 7 0
1 0 6 0
0 0 0 8

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

64 COMPUTING IN SCIENCE & ENGINEERING

Y O U R H O M E W O R K A S S I G N M E N T

Which Matrix Patterns Preserve Sparsity?
Finding the reordering that minimizes the number of
nonzeros in L is generally too expensive, so we rely on
heuristics that can give us an inexpensive algorithm to find a
reordering but that aren’t guaranteed to produce an optimal
ordering. Usually the heuristics do well, but sometimes they
produce a very bad reordering. The heuristics all aim to per-
mute the matrix to a form that has little fill-in (new nonzeros
produced in the factorization). As a guide to designing
heuristic strategies, let’s investigate nonzero patterns for
which sparsity is preserved.

PROBLEM 2.

a. A matrix A is a band matrix with bandwidth � if ajk = 0
whenever |j – k| > �. (An important special case is that of a
tridiagonal matrix, with � = 1.) Show that the factor L for A
also has bandwidth �.

b. Define a matrix’s profile to stretch from the first
nonzero in each column to the main diagonal element in the

column, and from the first nonzero in each row to the main
diagonal element. For example, if

then the profile of A contains its nonzeros as well as those
zeros marked with �:

Show that the factor L for a symmetric matrix A has no
nonzeros outside the profile of A.

From this problem, we can conclude that a good reorder-
ing strategy might try to produce a reordered matrix with a
small bandwidth or a small profile.

Representing the Sparsity Structure
We can encode a matrix’s sparsity in a graph. For example,
a symmetric matrix

has upper-triangular, nonzero, off-diagonal elements a13, a25,
a26, and a35 and corresponds to a graph with six nodes, num-
bered 1 to 6, and four edges that connect nodes (1,3), (2,5),
(2,6), and (3,5). (We omit the edges corresponding to the

A =

× ×
× × ×

× × ×
×

× × ×
× ×

0 0 0 0
0 0 0

0 0 0
0 0 0 0 0
0 0 0
0 0 0 0

profile()A =

× ×
× ⊗ ×

× ×
× ⊗ ⊗ × ⊗

× ⊗ ×
×

0 0 0 0
0 0 0
0 0 0 0

0
0 0 0
0 ⊗⊗ ⊗ ⊗ ×

.

A =

× ×
× ×

× ×
× ×

× ×
× ×

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

,

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 21 23 24 25

Figure 1. The graph corresponding to the matrix S in Figure 2.

0 5 10 15 20 25 0 5 10 15 20 25

Cholesky decomposition of S
0

5

10

15

20

25

0

5

10

15

20

25

nz = 129

spy (S)

nz = 105

Figure 2. Sparsity pattern. The finite difference matrix S for
Poisson’s equation on the unit square is discretized with a 5 �
5 grid of unknowns. The display was made with Matlab’s spy
function.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2005 65

main diagonal elements because these elements are always
nonzero for a positive definite matrix.)

In Figure 1, we draw the graph for the matrix S given in
Figure 2, corresponding to the finite difference matrix for
Poisson’s equation on the unit square and discretized with a
5 � 5 grid of unknowns. Notice that the degree of any node
(the number of edges it has) is at most four, and that there
are four nodes (nodes 1, 5, 21, and 25) of minimum degree,
which is two.

Some Reordering Strategies
We now have the jargon and concepts necessary to review
some reordering strategies.

Strategy 1: Cuthill-McKee
One of the oldest strategies is Cuthill-McKee, which uses the
graph to order the rows and columns:

• Find a node with minimum degree and order it first.
• Until all nodes are ordered

—For each node that was ordered in the previous step, or-
der all the unordered nodes connected to it, in order of
their degree.

Reverse Cuthill-McKee (doing a final reordering from last
to first) often works even better. Figure 3 shows the result
of the ordering on matrix S. The ordering tends to give a
matrix with small bandwidth.

Strategy 2: Minimum Degree
• Until all nodes are ordered

—Choose a node that has minimum degree, and order
that node next, removing it from the graph. (If there is
a tie, we choose any of the candidates.)

This strategy works rather well in practice, but it’s rela-
tively expensive because the degree counts are updated
every time a node is deleted. In Figure 4, we see the results
on our matrix S: the reordering gives a small profile, but not
small bandwidth.

Strategy 3: Nested Dissection
• Try to break the graph into two pieces plus a separator,

with
—approximately the same number of nodes in the two

pieces,
—no edges between the two pieces, and
—a small number of nodes in the separator.

• Do this recursively until all pieces have a small number
of nodes.

• Then order the nodes piece by piece
• Finally, order the nodes in the separators.

For our example, if we bisect the 5 � 5 grid graph vertically
and then bisect the remaining two pieces horizontally, this
produces the following renumbering:

.

Figure 5 shows the results. The matrix looks quite dis-
ordered, but the number of nonzeros in the factor is
smaller than for our original ordering because the pro-
file is small.

In the next problem, we construct the graph for a sparse
matrix and try these three reorderings on it.

1 2 17 5 6
3 4 18 7 8

22 23 19 24 25
9 10 20 13 14

11 12 21 15 16

5 10 15 20 25 0 5 10 15 20 250

0

5

10

15

20

25

0

5

10

15

20

25

nz = 105

S(p,p) after
Cuthill-McKee ordering

nz = 115

chol(S(p,p)) after
Cuthill-McKee ordering

Figure 3. Sparsity pattern after reordering by using reverse
Cuthill-McKee.

0 5 10 15 20 25 0 5 10 15 20 25
nz = 105

S(r,r) after
minimum degree ordering

nz = 116

chol(S(r,r)) after
minimum degree ordering

0

5

10

15

20

25

0

5

10

15

20

25

Figure 4. Sparsity pattern after reordering using the minimum
degree algorithm.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

66 COMPUTING IN SCIENCE & ENGINEERING

PROBLEM 3.

Draw the graph corresponding to the matrix

Try each of the three reorderings on this matrix. Compare
the sparsity of the Cholesky factors of the reordered matri-
ces with the sparsity of the factor corresponding to the orig-
inal ordering.

Strategy 4: Eigenvector Partitioning
• First, form an auxiliary matrix—the Laplacian of the graph

corresponding to our sparse matrix. This matrix B has the
same size and sparsity pattern as A. It has –1 in place of each
nonzero off-diagonal element of A, and the main diagonal
elements of B are set so that each of the row sums is zero.

• The matrix B is symmetric and has no negative eigen-
values. It has a zero eigenvalue (since Be = 0, where e is
the vector of all ones). We compute the eigenvector v
corresponding to its next smallest eigenvalue.

• Partition the graph into two pieces—one correspond-
ing to nodes with positive entries in v, and the other
containing the remaining nodes.

• If desired, repeat the algorithm recursively on each of
the two subgraphs formed by this partition.

This method is less intuitive and much more expensive, but
it produces useful orderings. Unlike the previous strategies,
we can’t determine the ordering by hand computation be-
cause it involves an eigenvector computation. Because of the
expense compared to the other strategies, you should proba-
bly use it only on matrices you plan to use multiple times.

The eigenvector computation is accomplished, for exam-
ple, by asking the Lanczos algorithm to produce approxima-
tions to the two smallest eigenvalues and their eigenvectors.
Figure 6 shows the results on our example. The matrix again
looks quite disordered, but the profile remains rather small.
This algorithm isn’t very effective on this matrix.

Results on bigger problems show trends more clearly. In-
stead of a 5 � 5 grid, let’s consider a 50 � 50 one, which gives
a matrix of size n = 2,500. Table 1 summarizes our results.
For this very regular graph, minimum degree works the best.

Now that we have our candidate algorithms, we can eval-
uate them using our test problems.

PROBLEM 4.

Use slit2.m and laplace3d.m, found on the Web site
(www.computer.org/cise/homework/), to generate three
linear systems (with n = 15). Solve the linear systems using
as many of these algorithms as possible:

• Cholesky on the original matrix.
• Cholesky using the reverse Cuthill-McKee ordering.
• Cholesky using the (approximate) minimum degree or-

dering.
• Cholesky using the nested dissection ordering.
• Cholesky using the eigenvector ordering.

× ×
× × ×

× × ×
× × × × ×

× ×

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 00 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0

×
× × × ×
× × × ×

× ×
× × 00 0 0

0 0 0 0 0 0
× ×

× × × ×

Y O U R H O M E W O R K A S S I G N M E N T

0 5 10 15 20 25 0 5 10 15 20 25

S(r, r) after
nested dissection ordering

chol(S(r, r)) after
nested dissection ordering

nz = 105 nz = 115

0

5

10

15

20

25

0

5

10

15

20

25

Figure 5. Sparsity pattern after reordering using nested
dissection.

0 5 10 15 20 25 0 5 10 15 20 25

S(r, r) after
eigenpartition ordering

chol(S(r, r)) after
eigenpartition ordering

nz = 105 nz = 122

0

5

10

15

20

25

0

5

10

15

20

25

Figure 6. Sparsity pattern after reordering using
eigenpartitioning.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2005 67

Make a table reporting, for each method,

• time to solve the system (include reordering, factorization,
and forward and back substitution);

• storage for the matrix factors; and
• the final relative residual ||b – Axcomputed||2/||b||2. (These

should all be well below the errors due to discretization,
so they won’t be a factor in your recommendation.)

If possible, run larger problems, too.
Considering the 2D and 3D problems separately, report to

the CEO of PoissonIsUs.com the performance of the various
methods and your recommendation for what ordering to use.

W hen problems get large enough to barely fit in
memory, even a good reordering strategy isn’t

enough to let us keep the Cholesky factor in memory, and
iterative methods must be considered as an alternative. We’ll
discuss them in a later homework assignment.

If you need to solve a linear system involving a matrix that
is symmetric but not positive definite, or is nonsymmetric,
then reordering for the stability of the factorization must
take priority over reordering for sparsity. See the “Tools”
sidebar for more information.

Tools

M atlab’s symrcm implements the reverse Cuthill-
McKee ordering. The Matlab program’s symamd

is an approximate minimum degree permutation; sym-
mmd is exact but more expensive. Nested dissection and
the eigenvector orderings aren’t built-in, but Matlab’s
eigs can be used for the eigenvector computation. (If
eigs complains about a singular matrix, send it the
Laplacian plus a multiple of the identity; this shifts the
eigenvalues but preserves the eigenvectors.) These two
orderings are also available in the Mesh Partitioning
and Graph Separator Toolbox written by John Gilbert
and Shang-Hua Teng (www.cerfacs.fr/algor/Softs/
MESHPART/).

For more information on sparse matrices, reordering
strategies, and graph representation, see the book by Alan

George and Joseph Liu discussing the symmetric positive
definite case.1

I.S. Duff and colleagues discuss the general case, includ-
ing the complications added by stability considerations.2

A. Pothen, H. Simon, and K.-P. Liou discuss the eigenvector
partitioning method;3 James Demmel gives an intuitive ap-
proach to the topic (www.cs.berkeley.edu/~demmel/
cs267/lecture20/lecture20.html).

References

1. A. George and J.W. Liu, Computer Solution of Large Sparse Positive

Definite Systems, Prentice Hall, 1981.

2. I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Ma-

trices, Oxford Press, 1986.

3. A. Pothen, H. Simon, and K.-P. Liou, “Partitioning Sparse Matrices

with Eigenvectors of Graphs,” SIAM J. Matrix Analysis and Applica-

tions, vol. 11, no. 3, 1990, pp. 430–452.

Ordering Nonzeros in L
Original 274,689
Reverse Cuthill-McKee 189,345
Minimum degree 68,828
Nested dissection 89,733
Eigenpartition 86,639

Table 1. Summary of different reordering strategies.

Any products your peers should know about? Write
a review for IEEE Pervasive Computing, and tell us
why you were impressed. Our New Products
department features reviews of the latest
components, devices, tools, and other ubiquitous
computing gadgets on the market.

Send your reviews and recommendations to
pvcproducts@computer.org

today!

Tried any
new gadgets lately?

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

they also provide valuable information about physical sys-
tems’ behaviors.

PROBLEM 1.

Define the domain � = (0, b) � (0, b). Consider the elliptic
partial differential equation

–uxx – uyy = �u

for (x, y) � �, with u(x, y) = 0 on the boundary of �.
Show that the function

wm�(x, y) = sin(m�x/b) sin(�� y/b),

where m and � are positive integers, satisfies this equation.
Determine the corresponding eigenvalue �m�.

Answer:
We can verify by direct computation that –�2wm�/�x2 –
�2wm�/�y2 is (m2 + �2)�2/b2 � wm�, so �m� = (m2 + �2)�2/b2.

PROBLEM 2.

In this problem, we study the elliptic eigenvalue problem
– � � (�u) = �u on the square (–1, 1) � (–1, 1) with zero
boundary conditions. We know the true eigenvalues, so
we can determine how well the discrete approximation
performs.

a. Form a finite difference or finite element approxima-
tion to the problem and find the eigenfunctions corre-
sponding to the five smallest eigenvalues.

• Describe in words the shape of each of these eigenfunc-
tions. How does the shape change as the eigenvalue in-
creases?

• Theory tells us that we have good approximations with
a coarse grid only for the eigenfunctions correspond-
ing to the smallest eigenvalues. How does the shape of
the eigenfunctions make this result easier to under-
stand?

b. Create five plots—for eigenvalues 1, 6, 11, 16, and 21—
of the error in the approximate eigenvalue versus 1/h2. (Use
at least four different matrix sizes, with the finest h < 1/50.)
Discuss:

• What convergence rate do you observe for each eigen-
value?

• How does it compare with the theoretical convergence
rate? (Explain any discrepancy.)

• Are all the eigenvalues well-approximated by coarse
meshes?

Answer:
a. The eigenvalues are

for j, k = 1, 2, … . One expression for the eigenfunction is
vjk = sin(j�(x + 1)/2)sin(k�(y + 1)/2).

This isn’t unique: some of the eigenvalues are multiple—
so, for example, �12 = �21, and any function av12 + bv21 for
arbitrary scalars a and b is an eigenfunction. Even for sim-
ple eigenvalues, we can multiply the function vjj by an arbi-
trary constant, positive or negative.

Figure A plots the first six vjk. Note that as the eigenvalue
increases, so does the number of oscillations in the eigen-
function. To capture this behavior in a piecewise linear ap-
proximation, we need a finer mesh for the eigenfunctions
corresponding to larger eigenvalues than we do for those
corresponding to smaller eigenvalues.

b. When using piecewise linear finite elements, the jth
computed eigenvalue lies in an interval [�j, �j + Cjh2],
where h is the mesh size used in the triangulation. This is
observed in our computation using the code
problem1b.m, found on the Web site (www.computer.
org/cise/homework). Figure B shows the error plots. The
horizontal axis is the number of triangles, which is ap-
proximately proportional to 1/h2.

The errors in the approximate eigenvalues are as follows:

λ πjk
j k

=
+2 2

2
4

68 Copublished by the IEEE CS and the AIP 1521-9615/05/$20.00 © 2005 IEEE COMPUTING IN SCIENCE & ENGINEERING

PARTIAL SOLUTION TO LAST ISSUE’S HOMEWORK ASSIGNMENT

EIGENVALUES: VALUABLE PRINCIPLES
By Dianne P. O’Leary

I N THE LAST ISSUE, WE STUDIED EIGENVALUE

PROBLEMS ARISING FROM PARTIAL DIFFEREN-

TIAL EQUATIONS. EIGENVALUES HELP US SOLVE

DIFFERENTIAL EQUATIONS ANALYTICALLY, BUT

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2005 69

Lambda Mesh1 Mesh 2 Mesh 3 Mesh 4

1 5.03e-02 1.27e-02 3.20e-03 8.02e-04

6 1.29e+00 3.25e-01 8.15e-02 2.04e-02

11 4.17e+00 1.04e+00 2.60e-01 6.50e-02

16 8.54e+00 2.12e+00 5.28e-01 1.32e-01

21 1.49e+01 3.67e+00 9.15e-01 2.29e-01

The error ratios are as follows:

Lambda Mesh 1vs2 Mesh 2vs3 Mesh 3vs4

1 3.95e+00 3.98e+00 3.99e+00

6 3.98e+00 3.98e+00 3.99e+00

11 4.02e+00 4.00e+00 4.00e+00

16 4.04e+00 4.01e+00 4.00e+00

21 4.05e+00 4.01e+00 4.00e+00

Therefore, the error is reduced by a factor of 4 as the side
of each triangle is reduced by a factor of 2, so the error is
O(h2), as expected, but the larger the eigenvalue, the finer
the mesh necessary to achieve a given accuracy.

1.0

0.5

0.0
100

100
50 50

0

100
100

50 50

0

1

0

–1
100

100
50 50

0

1

0

–1

100
100

50 50

0

1

0

–1
100

100
50 50

0

1

0

–1
100

100
50 50

0

1

0

–1

Figure A. The eigenfunctions corresponding to the eigenvalues � = 4.9348, 12.3370, and 12.3370 (top row) and � = 19.7392,
24.6740, and 24.6740 (bottom row).

104

104 105

103

103

102

102

101

100

101

102

1/h2 (approximately)

Er
ro

r
in

 e
ig

en
va

lu
e

�1
�6
�11
�16
�21

Figure B. The errors in the eigenvalue approximations as a
function of 1/h2; the horizontal axis is the number of triangles.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

70 COMPUTING IN SCIENCE & ENGINEERING

PROBLEM 3.

a. Suppose Aw = �w in � where

Aw = –� � (a�w),

and a > 0. Prove that �1 � 0. Hint: use integration by parts
to replace (w, Aw) with 	� a(x)�w(x) � �w(x)dx.

b. Suppose we have two domains �

~
�. Prove that �1(�)

� �1(
~
�). Hint: Notice that the eigenfunction for � can be ex-

tended to be a candidate for the minimization problem for
~
�.

Answer:
a. Suppose (for convenience of notation) that � � R2. (Other
dimensions are just as easy.) First, we apply integration by parts
(with zero boundary conditions) to see that if w � 0

because a1(x), a2(x) > 0. Suppose Aw = �w. Then, 0
(w, Aw) = �(w, w), so � � 0.

b. We know that

,

where the integrals are taken over � and w is constrained to
be zero on the boundary of �. Suppose the w that minimizes
the function is ~w and let’s extend ~w to make it zero over the
part of

~
� not contained in �. Then,

.

PROBLEM 4.

Determine the dimension of a square drum that has a fun-
damental frequency equal to 1 when c = 1. Use numerical
methods to find an elliptical domain �x2 + 2�y2 < 1 with the
same fundamental frequency.

Answer:
From Problem 1, we know that the smallest eigenvalue for
a square with dimension b is 2�2/b, so we want b = /2. Us-
ing Matlab’s Pdetoolbox interactively, we discover that �
� 1.663.

Dianne P. O’Leary is a professor of computer science and a faculty

member in the Institute for Advanced Computer Studies and the Applied

Mathematics Program at the University of Maryland. She has a BS in

mathematics from Purdue University and a PhD in computer science

from Stanford. O’Leary is a member of SIAM, the ACM, and AWM. Con-

tact her at oleary@cs.umd.edu; www.cs.umd.edu/users/oleary/.

2

λ λ1
0

1() min
(,)
(,)

(,)
(,)

� � �
� �

Ω = ≤ =
≠w

w w
w w

w w
w w

A A
(()Ω

λ1
0

() min
(,)
(,)

Ω =
≠w

w w
w w
A

= ∂
∂

+ ∂
∂

a x y
w
x

a x y
w
y

dx dy1

2

2

2

(,) (,)
ΩΩ∫∫ ≥ 0

= ∇ ⋅ ∇∫∫ w a w dx dy()
Ω

(,) ()w w w a w dx dyA = − ∇ ⋅ ∇∫∫Ω

Y O U R H O M E W O R K A S S I G N M E N T

Writers

For detailed information on submitting articles, write to cise@
computer.org or visit www.computer.org/cise/author.htm.

Letters to the Editors

Send letters to Jenny Ferrero, Contact Editor, jferrero@computer.org.
Provide an email address or daytime phone number with your letter.

On the Web

Access www.computer.org/cise/ or http://cise.aip.org for
information about CiSE.

Subscribe

Visit https://www.aip.org/forms/journal_catalog/order_form_fs.
html or www.computer.org/subscribe/.

Subscription Change of Address (IEEE/CS)

Send change-of-address requests for magazine subscriptions to
address.change@ieee.org. Be sure to specify CiSE.

Subscription Change of Address (AIP)

Send general subscription and refund inquiries to subs@aip.org.

Missing or Damaged Copies

Contact membership@computer.org. For AIP subscribers, contact
kgentili@aip.org.

Reprints of Articles

For price information or to order reprints, send email to cise@
computer.org or fax +1 714 821 4010.

Reprint Permission

To obtain permission to reprint an article, contact William Hagen,
IEEE Copyrights and Trademarks Manager, at copyrights@ieee.org.

www.computer.org/cise/

How to
Reach CiSE

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:46 from IEEE Xplore. Restrictions apply.

