
explore the nuts and bolts of the two methods for a simple
two-point boundary value problem:

–(a(x)u�(x))� + c(x)u(x) = f (x) for x � (0, 1),

with the functions a, c, and f given, and u(0) = u(1) = 0.
We will assume that a(x) � a0, where a0 is a positive num-

ber, and c(x) � 0 for x � [0, 1].

The Finite Difference Method
Let’s rewrite our equation as

–a(x)u��(x) – a�(x)u�(x) + c(x)u(x) = f (x) (1)

and approximate each derivative of u by a finite difference:

,

.

(We’ll compute a�(x) analytically, so we won’t need an ap-
proximation to it.)

The finite difference approach is to choose mesh points xj

u x
u x h u x u x h

h
O h''( )

( ) ( ) ( )
( )= − − + + +2

2
2

u x
u x u x h

h
O h'( )

( ) ( )
( )= − − +
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N UMERICAL SOLUTION OF DIFFERENTIAL
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METHODS: FINITE DIFFERENCES AND FINITE EL-

EMENTS. IN THIS HOMEWORK ASSIGNMENT, WE
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Tools

T o debug your programs, it’s helpful to experiment
with the simplest test problem and a small number of

mesh points. Look ahead to Problem 6 for sample problems.
Problem 2 uses the Matlab function spdiags to con-

struct a sparse matrix. If you have never used sparse matri-
ces in Matlab, print the matrix A to see that its data struc-
ture contains the row index, column index, and value for
each nonzero element. If you have never used spdiags,
type help spdiags to see the documentation, and then
try it on your own data to see exactly how the matrix ele-
ments are defined.

Use Matlab’s quad to compute the integrals for the en-
tries in the matrix and right-hand side for the finite element
formulations.

Before tackling the programming for Problems 5 and 6,
take some time to understand exactly where the nonzeros
are in the matrix, and exactly what intervals of integration
should be used. The programs are short, but it’s easy to
make mistakes if you don’t understand what they compute.

In Problem 7, we measure work by counting the number
of multiplications. One alternative is to count the number
of floating-point computations, but this usually gives a
count of about twice the number of multiplications, be-
cause multiplications and additions are typically paired in
computations. Computing time is another very useful mea-
sure of work, but it can be contaminated by the effects of
other users or computer processes.

In determining and understanding the convergence rate
in Problem 7, plotting the solutions or the error norms
might be helpful.

Mark Gockenbach gives a good introduction to the the-
ory of finite difference and finite element methods;1 for a
more advanced treatment, see, for example, Stig Larsson
and Vidar Thomée’s book.2

References

1. M.S. Gockenbach, Partial Differential Equations: Analytical and Nu-
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= jh, where h = 1/(M – 1) for some large integer M, and then
solve for uj � u(xj) for j = 1, …, M – 2. We write one equation
for each unknown, by substituting our finite difference ap-
proximations for u�� and u� into Equation 1, and then evalu-
ating the equation at x = xj.

PROBLEM 1. 

Let M = 6, a(x) = 1, and c(x) = 0 and write the four finite dif-
ference equations for u at x = 0.2, 0.4, 0.6, and 0.8.

You will notice that the matrix constructed in Problem
1 has nonzeros on only three bands including the main
diagonal; all other matrix elements are zero. The full ma-
trix requires (M – 2)2 storage locations, but, if we’re care-
ful, we can instead store all the data in O(M) locations by
agreeing to store only the nonzero elements, along 
with their row and column indices. This is a standard
technique for storing sparse matrices, those whose elements
are mostly zero.

Let’s see how this finite difference method is
implemented.

PROBLEM 2. 

The Matlab function finitediff1.m on the Web site
(www.computer.org/cise/homework/) implements the fi-
nite difference method for our equation. The inputs are
the parameter M and the functions a, c, and f that define
the equation. Each of these functions takes a vector of
points as input and returns a vector of function values.
(The function a also returns a second vector of values of
a�.) The outputs of finitediff1.m are a vector ucomp
of computed estimates of u at the mesh points xmesh,
along with the matrix A and the right-hand side g from
which ucomp was computed, so that A ucomp = g. Add
documentation to the function finitediff1.m so that a
user could easily use it, understand the method, and mod-
ify the function if necessary.

There is a mismatch in finitediff1.m between our ap-
proximation to u��, which is second order in h, and our ap-
proximation to u�, which is only first order. We can compute
a better solution, for the same cost, by using a second-order
(central difference) approximation to u�, so let’s make this
change to our function.

PROBLEM 3.

Define a central difference approximation to the first deriv-
ative by

.

a. Use the Taylor series expansions

,

,

where �1 is some point between x and x + h, and �2 is some
point between x and x – h, to show that the difference be-
tween u�(x) and our approximation is O(h2) if u has a contin-
uous third derivative.

b. Modify the function of Problem 2 to produce a func-
tion finitediff2.m that uses this approximation in place
of the first-order approximation.

The Finite Element Method
We’ll use a Galerkin approach to solving our problem with
finite elements. In particular, we notice that

–(a(x)u�(x))� + c(x)u(x) = f(x) for x � (0, 1)

implies that

�0

1
(–(a(x)u�(x))� + c(x)u(x))v(x)dx = �0

1
f(x)v(x)dx

for all functions v. Now we use integration by parts on the
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Figure 1. Hat functions. The nonzero pieces of the three linear
(�) and four quadratic (�) basis functions for three interior
mesh points and four subintervals (M = 5).
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first term, recalling that our boundary values are zero, to ob-
tain the equation

�0

1
a(x)u�(x)v�(x) + c (x)u(x)v(x)dx = �0

1
f (x)v(x)dx.

If a, c, and f are smooth functions (that is, their first few de-
rivatives exist), then the solution to our differential equation sat-
isfies the boundary conditions and has a first derivative, with the
integral of (u�(x))2 on [0, 1] finite. We call the space of all such
functions H0

1, which is also the space from which we draw v.
But how does this help us solve the differential equation?

We’ll first choose a subspace Sh of H0
1 that contains functions

that are good approximations to every function in H0
1 , and

then we’ll look for a function uh � Sh so that

�0

1
a(x)uh�(x)vh�(x) + c(x)uh(x)vh(x)dx = �0

1
f(x)vh(x)dx

for all functions vh � Sh. This will give us an approximate
solution to our problem.

A common choice for Sh is the set of functions that are
continuous and linear on each interval [xj–1, xj] = [(j – 1)h, jh],
j = 1, …, M – 1 (piecewise linear elements), where h = 1/(M
– 1). We can construct our solution using any basis for Sh,
but one basis is particularly convenient: the set of hat func-
tions �j, j = 1, …, M – 2, where

These are designed to satisfy �j(xj) = 1 and �j(xk) = 0 if j � k
(see Figure 1 for an illustration). Note that �j is nonzero
only on the interval (xj–1, xj+1), but it is defined everywhere.

Now we can express our approximate solution uh as

for some coefficients uj, which happen to be approximate
values for u(xj).

If we define

a(u, v) = �0

1
(a(x)u�(x)v�(x) + c (x) u(x)v(x))dx,

(f, v) = �0

1
f (x)v(x)dx,

then our solution u satisfies

a(u, v) = (f, v)

for all v � H0
1. Next, we demand that our approximate solu-

tion uh � Sh satisfy

a(uh, vh) = ( f, vh)

for all vh � Sh. In Problem 4, we reduce this to a linear sys-
tem of equations that can be solved for the coefficients uj ;
we implement our ideas in Problem 5.

PROBLEM 4.

a. Since the functions �j form a basis for Sh, any function vh
� Sh can be written as

for some coefficients vj. Show that if

a(uh, �j) = (f, �j) for j = 1, …, M – 2, then

a(uh, vh) = (f, vh) for all vh � Sh.

b. Putting the unknowns uj in a vector u, we can write the
resulting system of equations as Au = g where the (j, k) en-
try in A is a(�j, �k) and the jth entry in g is (f, �j). Write this
system of equations for M = 6, a(x) = 1, and c(x) = 0, and then
compare with your solution to Problem 1.

PROBLEM 5. 

Write a function fe_linear.m that has the same inputs
and outputs as finitediff1.m but computes the finite ele-
ment approximation to the solution using piecewise linear
elements. Remember to store A as a sparse matrix.

It can be shown that the computed solution is within O(h2)
of the exact solution, if the data is smooth enough. We can
get better accuracy if we use higher-order elements; for exam-
ple, piecewise quadratic elements would produce a result
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within O(h3) for smooth data. A convenient basis for this set
of elements is the piecewise linear basis plus M – 1 quadratic
functions �j that are zero outside [xj–1, xj] and satisfy

�j(xj) = 0
�j(xj–1) = 0
�j(xj–1 + h/2) = 1 

for j = 1, …, M – 1. See Figure 1 for an illustration.

PROBLEM 6. 

Write a function fe_quadratic.m that has the same inputs and
outputs as finitediff1.m but computes the finite element ap-
proximation to the solution using piecewise quadratic elements.
To keep the number of unknowns comparable to the number in
the previous functions, let the number of intervals be m = �M/2�.
When M = 10, for example, we have five quadratic basis func-
tions (one for each subinterval) and four linear ones (one for each
interior mesh point). If you order the basis elements as �1, �1, …,
�m–1, �m–1, �m, then the matrix A will have five nonzero bands
including the main diagonal. Compute one additional output
uval, which is the finite element approximation to the solution
at the m – 1 interior mesh points and the m midpoints of each in-
terval, where the 2m – 1 equally spaced points are ordered small-
est to largest. (In our previous methods, this was equal to ucomp,
but now the values at the midpoints of the intervals are a linear
combination of the linear and quadratic elements.)

Now we have four solution algorithms, so we define a set
of functions for experimentation:

u1(x) = x(1 – x)ex,

u2(x) = 

u3(x) = 

a1(x) = 1,
a2(x) = 1 + x2,

a3(x) = 

c1(x) = 0,
c2(x) = 2,
c3(x) = 2x.

For each particular choice of u, a, and c, we define f using
Equation 1.

PROBLEM 7.

Use your four algorithms to solve seven problems: 

• a1 with cj (j = 1, 2, 3) and true solution u1. 
• aj (j = 2, 3) with c1 and true solution u1. 
• a1 and c1 with true solution uj (j = 2, 3).

Compute three approximations for each algorithm and
each problem, with the number of unknowns in the prob-
lem chosen to be 9, 99, and 999. For each approximation,
print ||ucomputed – utrue||�	 where utrue is the vector of true val-
ues at the points jz, and where z = 1/10, 1/100, or 1/1,000,
respectively.

Discuss the results: 

• How easy is it to program each of the four methods? Es-
timate how much work Matlab does to form and solve the
linear systems. (The work to solve the tridiagonal systems
should be about 5M multiplications, and the work to solve
the five-diagonal systems should be about 11M multipli-
cations, so you just need to estimate the work in forming
each system.)

• For each problem, note the observed convergence rate
r: if the error drops by a factor of 10r when M is in-
creased by a factor of 10, then the observed convergence
rate is r. 

• Explain any deviations from the theoretical convergence
rate: r = 1 and r = 2 for the two finite difference imple-
mentations, and r = 2 and r = 3 for the finite element im-
plementations when measuring (u – uh, u – uh)1/2.

I n doing this work, we begin to understand the complex-
ities of implementation of finite difference and finite

element methods. We have left out many features that a
practical implementation should contain. In particular, the
algorithm should be adaptive, estimating the error on each
mesh interval and subdividing the intervals (or raising the
order of polynomials) where the error is too high. And we
need to handle partial differential equations, too. Luckily,
there are good implementations of these methods for two-
and three-dimensional domains, so we don’t need to write
our own.
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where r = g – (K + E)f, and K and E are Toeplitz matrices.

PROBLEM 1. 

Show that Ef can be written as Fê, where ê is the vector that
has entries êi, and F is a matrix whose entries depend on the
entries in the vector f. In other words, find a matrix F so that
Ef = Fê. 

Answer: 
Writing out the expression Ef component by component

and, for each component, solving for the ith row of F, to
make (Ef)i equal to that row times ê, we find that F is a
Toeplitz matrix of size m 
 (m + n – 1) with first row equal
to [ fn, fn–1, …, f1, 0, …, 0] and first column equal to [ fn, 0,
…, 0].

PROBLEM 2. 

Derive the Newton direction for Equation 1. To do this,
use the definitions of E (in terms of ê) and r, and then dif-
ferentiate Equation 1 with respect to ê and f.

Answer: 
Let d = [1, , …, , …, , , …, 1] be a

vector of length m + n – 1 and let D be the diagonal matrix
with entries d. Then

.

We need the gradient and Hessian matrix of this function.
Noting that Eij = ên+i–j, and letting �ij = 0 if i � j and 1 if i = j,
we compute

,

,

,

,

where out-of-range entries in summations are assumed to
be zero and R is a matrix whose nonzero entries are com-
ponents of r. So

PROBLEM 3. 

Show that this Newton direction is approximately the same
as the solution to the least squares problem
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.

(In particular, the least squares solution is very close to the
Newton direction if the model is good, so that ||r|| is small.)

Answer: 
The least squares problem is of the form

where

and A and b are the given matrix and vector. So to minimize
||Ax – b||2 = (Ax – b)T(Ax – b), we set the derivative equal
to zero, obtaining

ATAx – ATb = 0,

and the solution to this equation is a minimizer if the second
derivative ATA is positive definite (which requires that A have
full column rank). Returning to our original notation, we get

and this matches the expression Hp = –g from Problem 2 ex-
cept that the matrix R (which should be small if the model
is good) is omitted.

PROBLEM 4.

Write a function [f,ehat,r,itn] = stls(K,g,

lambda,tol) that uses a variant of Newton’s method to
solve our Toeplitz-constrained problem in a stable and ef-
ficient way. Use the least squares problem above to com-
pute the approximate Newton direction. Start the iteration
with ê = 0 and f equal to the least squares solution. (Start-
ing with f = 0 can cause difficulties.) Stop the iteration
when the norm of the approximate Newton step is smaller
than tol, and then set itn to the number of iterations.
Provide documentation for your function. Use it on the

data from the Web site (www.computer.org/cise/
homework), setting � = 0.06 and tol = 10–3. Plot the solu-
tion, and print the residual norm, the solution norm, and
the number of Newton iterations.

Answer:
See the Matlab code posted on the Web site (www.

computer.org/cise/homework).

PROBLEM 5. 

a. Show that when p = 1, minimizing

over all choices of �f and �ê is equivalent to solving the lin-
ear programming problem

subject to

– –�1 � F�ê + (K + E)�f – r � –�1
– –�2 � D�ê + Dê � –�2
– –�3 � ��f + �f � –�3,

where –�1 � Rm
1 and  –�2 � Rq
1, and  –�3 � Rn
1.
(Note that we have added a regularization component to

the p = 1 norm from the original problem statement.)
b. Derive a similar linear program to compute �ê, �f

when p = �.

Answer: 
a. Given any �ê, �f, let
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Then �ê, �f,  –�1,  –�2, and  –�3 form a feasible solution to the
linear programming problem, and

Therefore, a solution to the linear programming problem
minimizes the norm, and a minimizer of the norm is a solu-
tion to the linear programming problem, so the two are
equivalent.

b. By similar reasoning, we obtain

subject to

– –�1 � F�ê + (K + E)�f – r � –�1

– –�1 � D�ê + Dê � –�1
– –�1 � ��f + �f � –�1,

where 1 is a column vector with each entry equal to 1, and
of dimension m in the first two inequalities, q in the second
two, and n in the last two.

PROBLEM 6. 

Write a function [f,ehat,r,itn] = stln1(K,g,

lambda,tol) that uses a variant of Newton’s method to
solve the problem when p = 1. Use the linear program to
compute an approximate Newton direction. Start the itera-
tion with ê = 0 and f = 1. Stop the iteration when the norm
of the approximate Newton step is smaller than tol, and set
itn to the number of iterations. Use it on the data from the
Web site (www.computer.org/cise/homework), setting � =
0.06 and tol = 10–3. Plot the solution, and print the resid-
ual norm, the solution norm, and the number of iterations.

Repeat for the case p = �.
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Figure A. Results from the structured total least squares (STLS) algorithm for various values of �. The solid curves are the
computed solutions, and the dotted curves represent the data.
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Answer: 
See the Matlab code posted at www.computer.org/

cise/homework.

PROBLEM 7. 

Compare the results from Problems 4 and 6 with those of the
last issue by answering these two questions: How does the
quality compare? How does the amount of work compare?

Answer: 
Figures A and B show results for various values of �. The

estimated energy levels and counts are

Bin centers 2.55 3.25 3.55 3.85
True counts 1.00 1.50 2.00 1.00
Least squares 1.00 1.39 1.91 0.90
STLS 1.00 1.20 1.59 0.64
STLN, 1-norm 1.00 0.96 1.36 0.60

The structured total least norm (STLN) algorithm using

the �-norm produced counts that were sometimes quite
negative; nonnegativity constraints could be added to im-
prove the results.

All the structured algorithms had a linear convergence
rate, rather than the quadratic rate expected from New-
ton’s method, because the residual r in this problem is
large, which means the approximate Newton direction
isn’t very accurate.

Least squares works best on this data set, because the
Toeplitz assumption used by the structured algorithms’
STLS (structured total least squares) and STLN is violated
by the way the data was generated. It’s worthwhile to gen-
erate a new data set that satisfies this assumption, and then
experiment further.
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Figure B. Results from the structured total least norm (STLN) algorithm, using the 1-norm and the �-norm, for various values of �.
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