
blind deconvolution, but this time we’ll impose some con-
straints on the error matrix E, leading to a more difficult
problem to solve but often a more useful reconstruction.

Counts
Recall that we have the counts of Figure 1, measured by a
spectrometer (to view the figure, see the solution to last is-
sue’s homework on page 63). Suppose we have particles
whose energy ranges from elo to ehigh, and we define some in-
termediate energy levels elo = e0 < e1 < … < enb–1 < enb = ehigh.
This creates nb bins, where the count for the jth bin is the
number of particles determined to have energies between ej–1
and ej. Our spectrometer records nb counts, one for each bin.

One way to model this system is to try to determine the
correct counts fj, the correct blurring given the measured
counts gj, j = 1, …, nb.

This gives us a matrix equation (K + E)f � g + r, where E
accounts for errors in modeling the spectrometer’s blur, and
r accounts for errors in counts. The matrix entry kj� is the
probability that a particle whose energy is in the interval
[e�–1, e�] is assigned to bin j ( j, � = 1, …, nb).

We assume that there is significant error in both g and K,
but we note that in our data, each bin’s properties are the
same, so the rows of K have a pattern: for example, if the m
� n matrix K were 5 � 5, we would notice that

so there would be only m + n – 1 = 9 distinct entries in K. A
matrix of this form is called a Toeplitz matrix, and it is deter-
mined by the entries in its first row and column. Under this
assumption, it might make sense to assume that the error
matrix E also has this same structure, and therefore also de-
pends on m + n – 1 parameters instead of mn. We will gather
these parameters in a vector called ê.

Using the Euclidean Norm
In the previous homework, we solved the problem

, (1)

where

r = g – (K + E)f. (2)

With our new constraint that E be Toeplitz, our old solu-
tion isn’t feasible, so we minimize the function, subject to
the constraint, over all choices of f and ê.

Our goal is to find an effective algorithm to solve this
problem, and we’ll do it in several steps. The first is to de-
rive a useful alternative expression for the matrix-vector
product Ef.

PROBLEM 1.

Show that Ef can be written as Fê, where  ̂e is the vector that
has entries  ̂ei, and F is a matrix whose entries depend on the
entries in the vector f. In other words, find a matrix F so that
Ef = Fê.

Let’s use Newton’s method to solve our minimization
problem. Recall that if we minimize some function s(x), then
the Newton direction is the solution p to the linear system

H(x)p = –�s(x),

where �s(x) is the gradient of s with respect to x, and H(x)

min
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BLIND DECONVOLUTION: 
A MATTER OF NORM
By Dianne P. O’Leary

W E CONTINUE THE SPECTROSCOPY

PROBLEM FROM THE LAST ISSUE,

TRYING TO RECONSTRUCT A TRUE SPECTRUM

FROM AN OBSERVED ONE. AGAIN, WE’LL USE
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is the Hessian matrix, containing the second derivatives: hij(x)
= �2s(x)/�xi�xj. Let’s derive a formula for p.

PROBLEM 2.

Derive the Newton direction for Equation 1. To do this, use
the definitions of E (in terms of ê) and r (Equation 2), and
then differentiate the function in Equation 1 with respect to
ê and f. 

Although the formula from Problem 2 is mathematically
correct, it isn’t the best computationally; Problem 3 provides
a better alternative.

PROBLEM 3.

Show that this Newton direction is approximately the same
as the solution to the least squares problem

,

where D is a diagonal matrix of size (m + n – 1) � (m + n – 1)
with entries equal to the square roots of 1, 2, …, n, …, n, 
n – 1, …, 1. (In particular, the least squares solution is very
close to the Newton direction if the model is good, so that
||r|| is small.)

If we were to use this model on our spectroscopy data, the
solution would be quite contaminated by error. Therefore,
we make one further modification: we solve the problem

,

where the last term is a Tikhonov regularization term (as in
“Image Deblurring: I Can See Clearly Now,” vol. 5, no. 3,
May/June 2003, pp. 82–84), with a fixed parameter �, added
to control the size of f. In this case, the approximate New-
ton direction is computed from the solution to the least
squares problem

,

Now we put these pieces together to solve our problem.

PROBLEM 4. 

Write a function [f,ehat,r,itn] = stls(K,g,

lambda,tol) that uses a variant of Newton’s method to solve
our Toeplitz-constrained problem in a stable and efficient way.
Use the least squares problem from earlier to compute the ap-
proximate Newton direction. Start the iteration with ê = 0 and 
f = 0. Stop the iteration when the norm of the approximate New-
ton step is smaller than tol, and set itn to the number of iter-
ations. Provide documentation for your function. Use it on the
data from the Web site (www.computer.org/cise/homework),
setting � = 0.06 and tol = 10–3. Plot the solution, and print the
residual norm, the solution norm, and the number of iterations.

Using Other Norms
If the errors in our data aren’t distributed normally, we have
several reasonable alternatives to the choice of the Euclid-
ean norm for the minimization function. For example, in-
stead of minimizing

,

we might instead minimize

, (3)

where if p = 1, the norm is defined as the sum of the absolute
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Tools

Y ou can use Matlab’s linprog to solve the linear
programming problems.

Choices of vector norms are discussed in many ele-
mentary textbooks, but James Ortega gives a particularly
nice discussion.1

Armin Pruessner and I discuss the use of regularization
plus norm choice.2 References to earlier work using regu-
larization or norm choice can be found in that article, too.
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values of the components, and if p = �, the norm is the max-
imum of the absolute values of the components. Either of
these choices has the effect of reducing the effects of outliers
in our measurements.

To derive an algorithm to solve this problem for p = 1 or
�, and to match our previous algorithm when p = 2, we rea-
son this way. We need to satisfy the constraint

F ê = Ef,

even after we replace f by f + �f and  ̂e by  ̂e + �ê, so we require

(F + �F) ( ê + � ê) = (E + �E) (f + �f),

where �E is formed from � ê, and �F is formed from �f so
that �F ê = E�f and F� ê = �Ef. This means that

�F� ê = �E�f.

Now let’s examine the residual after we replace f by f + �f
and  ê by ê + � ê:

rnew = g – (K + E + �E)(f + �f)
= g – (K + E)f – �Ef – (K + E)�f – �E�f.

If both �f and � ê are small, then the last term is negligible,
and we can approximate

rnew � r – F� ê – (K + E)�f,

so that our minimization function (Equation 3) is approxi-
mated by

.

So, to compute our step, we need to minimize a function
of this form; our next task is to develop an algorithm that
does this.

PROBLEM 5.

a. Show that when p = 1, minimizing

over all choices of �f and � ê is equivalent to solving the lin-
ear programming problem

subject to

–�–1 � F� ê + (K + E)�f – r � �–1

–�–2 � D� ê + D ê � �–2

–�–3 � ��f + �f � �–3

where �–1 	 Rm�1, �–2 	 Rq�1, and �–3 	 Rn�1.

b. Derive a similar linear program to compute  ê + � ê, �f
when p = �.

Let’s see how the choice of norm affects our computed
spectrum.

PROBLEM 6. 

Write a function [f,ehat,r,itn] = stln1(K,g,
lambda,tol) that uses a variant of Newton’s method
to solve the problem when p = 1. Use the linear program
to compute an approximate Newton direction. Start the
iteration with ê = 0 and f = 0. Stop the iteration when
the norm of the approximate Newton step is smaller
than tol, and set itn to the number of iterations. Use
it on the data from the Web site (www.computer.org/
cise/homework), setting � = 0.06 and tol = 10–3. Plot
the solution, and print the residual norm, the solution
norm, and the number of iterations.

Repeat for the case p = �.

Comparing Our Results
Recall that our goal is to reconstruct the spectrum of the parti-
cles fed into the spectrometer. Take some time now to compare
the results we obtained using various problem formulations.

PROBLEM 7.

Compare the results from Problems 4 and 6 with those of
the last issue by answering these two questions: How does
the quality of results compare? How does the amount of
work compare?
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PARTIAL SOLUTION TO
LAST ISSUE’S HOMEWORK ASSIGNMENT

BLIND DECONVOLUTION:
ERRORS, ERRORS EVERYWHERE
By Dianne P. O’Leary

C ONSIDER FIGURE 1’S DATA, REPRESENT-

ING COUNTS MEASURED BY A SPEC-

TROMETER, MODELED BY Kf � g.

PROBLEM 1.

Program the least squares algorithm and try it on the data
of Figure 1 for various values of ñ, the number of singular
values retained. The matrix K is 27 � 22, and we assume that
the true counts for the first two and the last three bins are
zero. Note how ill-conditioned the original matrix K is (by
recording �1/�n).

Answer:
See the posted program problem1_and_3.m at www.

computer.org/cise/homework. The program isn’t diffi-
cult, but it’s important to make sure that you do the
singular value decomposition (SVD) only once (at a cost
of O(mn3)) and then form each of the trial solutions at a
cost of O(n2). This requires using the associative law of
multiplication.

In fact, it’s possible to form each solution by updating a
previous one (by adding the newly nonneglected term) at a
cost of O(n), which would be an even better algorithm, left
as an exercise.

PROBLEM 2. 

Suppose we have the singular value decomposition (SVD)
of [K, g] = 

~
U

~



~VT. Assume that K has rank n and that ~vnn >
~vn+1,n+1 � 0. Show that the solution to

,

subject to the constraint

[ K + E g + r ] = 0

is

[E   r] = – ~�n+1
~un+1

~vT
n+1,

with

,

where ~un+1 is the (n + 1)st column of
~
U, and ~vn+1 is the (n +

1)st column of
~

V.

Hint:
a. First show that this solution satisfies the constraint and

that the resulting ||[E r]||F = ~�n+1.
b. Show that ||

~
UTA ~V||F = ||A||F for any matrix A of size

m � (n + 1).
c. Transform the problem to minimizing ||[

~
E, ~r]||F sub-

ject to (
~

 +

~
E)

~
f = 0 for some vectors

~
f and ~r and matrix

~
E,

solve the problem in this coordinate system, and show that
no solution gives a value of the minimization function
smaller than ~�n+1.

Answer:
a. We know that

[K g] = ,

so using the formula for [E r], we see that
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Figure 1. (Simulated) data from a spectrometer. Given that
some particles have at most five different energy levels,
determine these energies and the relative abundance of the
particles.
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[K g] + [E r] = .

Now, since ~vn+1 is orthogonal to ~vi for k = 1, …, n, it follows
that

([K g] + [E r]) .

Note that ||[E, r]||F = ~�n+1.
b. This can be proven using the fact that ||A||F

2 = tr(ATA),
where tr(B) is the trace of the matrix B, equal to the sum of
its diagonal elements (or the sum of its eigenvalues). We can
use the fact that tr (AB) = tr (BA).

We can also prove it just from the definition of the Frobe-
nius norm and the fact that ||Ux||2 = ||x||2 for all vectors x
and orthogonal matrices U. Using this fact, and letting ai be
the ith column of A, we see that

||UA||F
2 = .

Similarly, letting be the ith row of A,

||AV||F
2 = ,

and the conclusion follows.
c. From the constraint

[K + E g + r] = 0,

we see that

U
~ T [K + E g + r]

~
V

~
VT = 0,

so

(
~
� + 

~
E)

~
f = 0

where

~
E = U

~ T [E, r]
~
V and 

~
f =

~
VT .

From part b, we know that minimizing ||[E, r]||F is the same
as minimizing || 

~
E||F.

Therefore, to solve our problem, we want to make the
smallest change to 

~

 that makes the matrix 

~

 +

~
� rank de-

ficient, so that the constraint can be satisfied by a nonzero
~
f. Changing the (n + 1, n + 1) element of  

~

 from ~�n+1 to 0

certainly makes the constraint feasible (by setting the last
component of 

~
f nonzero and the other components zero).

Any other change gives a bigger ||
~
�||F. Thus, the small-

est value of the minimization function is  ~�n+1, and since
we verified in part a that our solution has this value, we’re
finished.
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âi
T

Ua a Ai i F
i

n

i

n

2
2

2
2 2

11
= =

==
∑∑

f
u v v

−








 = − =

= + +
+∑1

1

1 1 1
1% % %

%
%σ i i i

T

i

n

n n
nv ,

0

σ i i i
T

i

n

=

+

∑
1

1
~~~ u v

H O M E W O R K  A S S I G N M E N T

(b)(a)

(d)(c)

1 2 3 4 5
1

0

1

2

3

4

1 2 3 4 5
1

0

1

2

3

4

1 2 3 4 5
1

0

1

2

3

4

1 2 3 4 51

0
1
2
3
4
5

Figure A. Computed least squares solutions (counts versus
energies) for various values of the cutoff parameter ñ. The
solutions retain (a) 12 singular values, (b) 15 singular values,
(c) 17 singular values, and (d) 21 singular values.
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Figure B. The L-curve for least squares solutions.
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If you don’t find this argument convincing, we can be
more precise by using a fact found in standard texts. For any
matrix B and vector z for which Bz is defined: ||Bz||2 �
||B||2 ||z||2, where ||B||2 is defined to be the largest singu-
lar value of B. Therefore, 

� ||B||2 � ||B||F, because we can see from part b and the
SVD of B that the Frobenius norm of B is just the square
root of the sum of the squares of its singular values. 

� If ( 
~

 + 

~
�)

~
f = 0, then  

~



~
f = –

~
�

~
f.

� ~� 

n+1||

~
f||2

2 = � i=1
n+1 ~� 


n+1
~
f i

2 � � i=1
n+1 ~� i

2 ~
fi

2 = ||
~



~
f||2

2. 
� Therefore, ~�n+1||

~
f||2 � ||

~
�

~
f||2 = ||

~
�

~
f||2 � ||

~
�||2||f||2 �

||
~
E||F||

~
f||2, so we conclude that ||E~||F > �

�
n+1, and we

have found a minimizing solution.

PROBLEM 3.

Write a Matlab function to solve Model 2 using this trun-
cated technique for various values of ~n. The input values
should be K, g, and a range of ~n values. Include appropri-
ate documentation, and use your function to solve our
problem. 

Answer: 
See the posted program problem1_and_3.m at www.

computer.org/cise/homework.

PROBLEM 4.

Write a brief summary of the results you obtained using
Model 1 and Model 2 to solve the problem of Figure 1. Give
your best estimate of the number of different peaks (energy
levels) in the original data ftrue, the relative heights of the
peaks, and the centers of the peaks. Make a convincing ar-
gument to justify your estimate and your choice of parame-
ters (� and ~n) for each method. 

Answer:
Model 1: Least Squares
To estimate the variance of the error, note that in the least

squares model, the last five components of the right-hand
side UTg can’t be zeroed by any choice of f, so if we believe
the model, we believe that these are entirely due to error. All
other components should have at least some data in addition
to noise. Therefore, estimate the variance using the last five

to get �2 =1.2349 � 10–4.
The condition number of the matrix, the ratio of

largest to smallest singular value, is 61.8455. This is a
well-conditioned matrix! Most spectroscopy problems
have a very ill-conditioned one (having a condition num-
ber of 103 or more). This is a clue that an error probably
exists in the matrix, moving the small singular values away
from zero.

We try various choices of ñ, the number of singular val-
ues retained, and show the results in Figure A. The dis-
crepancy principle predicts the residual norm to be

= 0.0577. This is most closely matched by retain-
ing 21 singular values, which gives seven peaks, contra-
dicting the given information that there are at most five
peaks. It also produces some rather large magnitude neg-
ative peaks, and we know that counts need to be nonneg-
ative. Thus, the least squares model doesn’t seem to fit
the data well.

An alternate way to pick ñ is to use the L-curve. This is a
plot of the log of the solution norm versus the log of the
residual norm. It’s called an L-curve because its shape often
resembles that of the letter L. What we really want is a small
residual and a solution norm that isn’t unreasonably big. We
could take the value of ñ at the corner of the L-curve, be-
cause if we take a smaller ñ, the residual norm increases
quickly, and if we take a larger one, the solution norm in-
creases quickly. This plot, shown in Figure B, advises that
we should retain 15 to 17 singular values, and referring to

δ m

Tools

Y ou can find more information about the L-curve
(originally due to Chuck Lawson and Richard Han-

son) in Per Christian Hansen’s work;1 the total least
squares (TLS) truncation we used in this problem is dis-
cussed in a 1997 article.2

The standard reference on TLS is the book by Sabine
Van Huffel and Joos Vanderwalle.3

An alternate way to “regularize” TLS is given in a
1999 work.
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Figure A, this yields four peaks, consistent with our given
information.

(The theoretical properties of the L-curve, as well as any
other method that doesn’t require the variance to be given
in advance, aren’t good, but this method is often more ro-
bust to errors in assumptions about the model, such as un-
derestimating the variance or not accounting for errors in
the matrix.)

An alternate heuristic is to look for a value of ñ that makes
the residual look most like white noise, but because our er-
ror isn’t normally distributed, this heuristic doesn’t have

much meaning for our problem.
An excellent way to approach this problem is to generate

your own test data, for which you know the true solution,
and use it to gain insight into the choice of ñ.

Model 2: Total Least Squares (TLS)
Figure C shows sample solutions. The discrepancy princi-

ple doesn’t give much insight for TLS, so we use more heuris-
tic methods, giving us even less confidence in our choice.

For example, from Figure D we see that the L-curve cor-
ner occurs when 15 singular values are retained, giving a so-
lution that looks very much like the L-curve least squares
solution. Because the number of peaks is reasonable, and be-
cause there are only a small number of negative values in the
solution (and these have small magnitude), we might accept
this solution.

Now we need to extract the energies and estimated counts
for the four types of particles. I have normalized them so
that the count for the lowest energy peak is one. For the
computed estimate to energy levels and counts,

Bin centers 2.55 3.25 3.55 3.85
Relative counts 1.00 1.39 1.91 0.90

A spectroscopist would actually estimate the counts by
taking the integral under each of the four peaks, and then
estimate the energy by the centroid of the peak, but this is
difficult since three of the peaks aren’t well separated.

T he program used to generate the data is posted at
www.computer.org/cise/homework. The variance of

the error is 10–4. The true energy levels and counts are

Energy 2.54 3.25 3.53 3.85
Relative counts 1 1.5 2 1

So, despite all the errors, our computed solution estimates
the energy levels to two digits and the relative counts to
within 10 percent.
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Figure D. The L-curve for total least squares solutions.
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Figure C. Computed total least squares solutions (counts
versus energies) for various values of the cutoff parameter ñ.
The solutions retain (a) 12 singular values, (b) 15 singular
values, (c) 17 singular values, and (d) 21 singular values.
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