
spectroscopy—the attempt to reconstruct a true spectrum
from an observed one. The problem we’re considering is
sometimes called blind deconvolution, because we’re trying to
unravel not only the spectrum, but the function that caused
the blurring. These problems also arise in image deblurring.

Spectroscopy
Consider the data in Figure 1, which represents counts mea-
sured by a spectrometer. Suppose we have particles whose
energy ranges from elo to ehigh and define some intermediate
energy levels elo = e0 < e1 < … < enb–1 < enb

= ehigh. This creates
nb bins, where the count for the jth bin is the number of par-
ticles determined to have energies between ej–1 and ej. Our
spectrometer records nb counts, one for each bin; in the
figure, we’ve passed a curve through these counts.

Ideally, the count in bin j is exactly the number of
particles with energies in the range [ej–1, ej]. But some
blurring occurs due to the measurement process, and a
particle in that energy range might instead be included in
the count for a different nearby bin. The probability that
a particle with energy e is assigned to bin j is often mod-
eled as a normal distribution with mean (ej + ej–1)/2 and
variance sj

2.
One way to model this system is to try to determine the

correct counts fj and the correct blurring given the measured
counts gj, j = 1, …, nb and estimates of the values sj.

This gives us a matrix equation (K + E) f � g + r, where E
accounts for errors in modeling the spectrometer’s blur, and
r accounts for errors in counts. The matrix entry kj� is com-
puted as the probability that a particle whose energy is in
the interval [e�–1, e�] is assigned to bin j ( j, � = 1, …, nb).

There are several sources of differences between the true
spectrum and the recorded spectrum:

• We effectively assign energy (ej + ej–1)/2 to all particles in
bin j, which isn’t correct. 

• A count’s value depends on the number of particles with
the energies that it represents, but there is some smear-
ing, so it also depends on the number of particles with
nearby energies.

• The values of the counts often have some error because
they’re finite-precision representations rather than the in-
finite-precision “real ones.” In our data, the counter is in-
cremented by 0.1 for every 100 particles detected.

Therefore, if we model our problem by Kf � g, the solution
to this problem doesn’t give us the true spectrum; we have
uncertainty in K as well as in g! In this homework, we’ll in-
vestigate the effects of such error and some ways to cope
with it.

Models
We could assume that the main error is in our estimates of
the sj values and try to estimate both the correct values of
the variances and the correct counts. We’ll take a different
approach that is appropriate even when the probabilities
aren’t exactly normal and need a correction applied to them.
Our approach is useful whenever both K and g have errors
whose relative variance is known or can be estimated. We’ll
experiment with two models:

• Model 1, least squares. Most of the error is in g (so E is as-
sumed to be zero).

• Model 2, total least squares. There is significant error in
both g and K.

We’ve used Model 1 in a previous homework (see the
“Tools” sidebar). As in that problem, the matrix K (m � n)
can be quite ill-conditioned, so small changes in the mea-
sured counts g make large changes in the resulting f. There-
fore, as in that homework, we’ll add regularization to make
the problem better conditioned, so we focus on the trun-
cated singular value decomposition (SVD) as a tool for do-
ing this.

Our major algorithmic task is to figure out how to solve
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these problems without much computational effort. We
don’t want to have to start over again if we change our mind
about how many singular values to drop. In fact, we want to
compute an SVD only once.

Let’s consider each case in turn.

Model 1: Least Squares (E = 0).
Define K = U�VT, where 

• U has dimension m � m and UTU = I, the identity matrix. 
• � has dimension m � n, the only nonzeros are on the main

diagonal, and they are nonnegative real numbers �1 � �2
� … � �n.

• V has dimension n � n and VTV = I.

In Model 1, we determine f by solving the least squares
problem

,

where

,

the dimensions of the zero columns are m � (n – ñ), and ñ �
n is the number of singular values retained, so �ñ is a diago-
nal matrix with entries �1, …, �ñ. The solution to the prob-
lem isn’t unique if ñ < n, but the solution of minimal norm
is found by taking

.

(Here, the dimensions of the zero columns are n � (m – ñ).)
Thus, we can compute different estimates of the solution,
for various values of ñ, without recomputing the SVD.

Which value of ñ should we pick? One rule of thumb
(called the discrepancy principle) is to choose the value of ñ
that makes the residual norm ||g – Kfñ|| close to its ex-
pected value. If the errors in the data values g are indepen-
dent and normally distributed with mean zero and variance
�2, then this expected value is . To estimate the value
�2, we use other rules of thumb. For many ill-posed prob-
lems, for example, the left singular vectors corresponding
to very small singular values are highly oscillatory, so they
capture white noise in the measured data. Therefore, if we
assume that these components are entirely due to noise, and
if we believe that the noise has mean zero, we might esti-
mate the variance by computing the variance of the last few

components of = UTg using the formula

for some value of close to m.

PROBLEM 1.

Program this algorithm and try it on the data of Figure 1 for
various values of ñ. The matrix K is 27 � 22, and we assume
that the true counts for the first two and the last three bins
are zero. Note how ill-conditioned the original matrix K is
(by recording �1/�n). 

Model 2: Total Least Squares (TLS)
If we allow both E and r to be nonzero, how can we solve the
problem?

First, we need a way to measure the size of these quanti-
ties. One reasonable way is to use the Frobenius norm of the
errors:

.

(If we expect the errors eij
2 to be much different in size than

the errors r i
2, we might want to use weights for each term in

this expression, but for this homework, we’ll just leave them
equally weighted.)

Let’s rewrite Kf � g as
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Figure 1. (Simulated) data from a spectrometer. Given that these
are particles with at most five different energy levels, determine
these energies and the relative abundance of the particles.
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[ K g ] � 0.

Notice these facts: 

• If this equation were exactly satisfied, matrix [K, g] would
have a singular value of zero, and [fT, –1]T would be a cor-
responding right singular vector.

• We need a matrix [E, r] to add to [K, g] to make

[ K + E g + r ] = 0. 

• Among all such matrices [E r], we need the one with small-
est Frobenius norm.

Finding this matrix is a well-studied problem.

PROBLEM 2.

Suppose we have the SVD of [K, g] = U~
�
~V~T. Assume that

K has rank n and that  ṽnn > ṽn+1, n+1 � 0. Show that the solu-
tion to

,

subject to the constraint

[ K + E g + r ] = 0

is

[ E r ] = , with

,

where ũn+1 is the (n + 1)st column of U~ and v~n+1 is the 
(n + 1)st column of V~ .

Hint:
a. First show that this solution satisfies the constraint and

that of the resulting ||[E r ]||F =�̃n+1.
b. Show that

||U~TAV~||F = ||A||F

for any matrix A of size m � (n + 1).
c. Then transform the problem to minimizing ||[E~, r~]||F

subject to (�~ + E~)f~ = 0 for some vectors f̃ and r̃ and matrix  
Ẽ, solve the problem in this coordinate system, and show
that no solution gives a value of the minimization function
smaller than �̃n+1.

If we want to truncate our model at ñ, the solution becomes

where V~12 consists of rows 1 through n and columns ñ + 1
through n + 1 of V~, and V~22 contains the last row of these
columns of  V~.

f = −
1
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Tools

T his homework is related to an earlier homework problem,1,2 but in that case, the matrix K was assumed to be
known exactly.

The current homework relies on your ability to manipulate the singular value decomposition (SVD).3,4

Instead of using truncated SVD for regularization, we might use Tikhonov. This method is quite well studied for least
squares problems;5 for total least squares (TLS), additional analysis appears in a paper by Gene Golub, Per Christian Hansen,
and Dianne P. O’Leary.6

The standard reference for TLS is the book by Sabine Van Huffel and Joos Vandewalle.7 Ricardo Fierro and colleagues8

give further information on the truncated TLS algorithm used in Problem 3.
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PROBLEM 3.

Write a Matlab function to solve Model 2 using this trun-
cated technique for various values of ñ. The input values
should be K, g, and a range of ñ values. Include appro-
priate documentation, and use your function to solve our
problem. 

Finally, we’re ready to answer our original question.

PROBLEM 4. 

Write a brief summary of the results you obtained using
Model 1 and Model 2 to solve the problem of Figure 1. Give
your best estimate of the number of different peaks (energy
levels) in the original data ftrue, the relative heights of the
peaks, and the centers of the peaks. Make a convincing ar-
gument to justify your estimate and your choice of parame-
ters (� and ñ) for each method.
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TER CIRCLE—AND ON A PARTITION FUNCTION.

PROBLEM 1.

Suppose we want to estimate the area of a quarter circle with
radius r:

.

Let r = 0.5 and use two methods:

• Method 1, testing whether randomly generated points in
the rectangle [0, r] � [0, r] are inside or outside the quar-
ter circle � and multiplying the fraction inside by r2, the
area of the rectangle.

• Method 2, computing the average value of f (x) and mul-
tiplying by r, the length of � = [0, r].

Compare the quality of the two estimates for 10, 100,
1,000, 10,000, and 100,000 points by measuring the error
and the convergence rate.

How many function evaluations does your favorite in-
tegration routine use to get an estimate of comparable
quality?

Answer:
Sample code is given on the CiSE Web site (www.

computer.org/cise/homework). Method 2 gives somewhat
better results because it averages the function values them-
selves rather than just using them to decide whether a point
is inside or outside the region. Three-digit accuracy is
achieved for 100,000 points in Method 1 and for 1,000 and
100,000 points for Method 2. The convergence rate for
Method 1 is consistent with , because the product of
the error with is approximately constant for large n,
but for Method 2, the results are somewhat more variable.
Matlab’s function quad uses 13 function evaluations to get

three-digit accuracy.
Clearly, for low-dimensional integration of smooth func-

tions, Monte Carlo methods are not the methods of choice.
Their value becomes apparent only when the dimension d
is large so that methods like quad would be forced to use a
lot of function evaluations.

PROBLEM 2.

Compute new estimates of the integral of Problem 1 using
Method 3, importance sampling, taking 10 samples of f (x)
to determine the function p(x). Compare with your previ-
ous results.

Answer:
Sample code is available on the CiSE Web site. Impor-

tance sampling produces better estimates at lower cost: see
the answer to Problem 4 for detailed results.

PROBLEM 3.

Generate 500 pseudorandom points vp in �2 and 500 quasi-
random points wp in �6 ( p = 1, …, 500). Plot the pseudo-
random points. Then for the quasirandom points, make a
plot of the first two coordinates, a separate plot of the third
and fourth coordinates, and a final plot of the fifth and sixth
coordinates. Discuss the desirability of using each of these
four choices for “random” points.

Answer: 
Figure A shows the results. The pseudorandom points

from Matlab’s rand are designed to have good statistical
properties, but they leave large gaps in space. The quasi-
random points are both more predictable and more evenly
distributed: they tend to lie on diagonal lines, with longer
strings as the coordinate number increases. Other algo-
rithms for generating quasirandom points avoid this defect.

PROBLEM 4.

Compute new estimates of the integral of Problem 1 using
quasirandom numbers in Method 2 instead of pseudoran-
dom numbers. Compare the results.

n
1/ n

I r x dx f x dx
r r

= − =∫ ∫2 2
0 0

( )
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Answer: 
Table 1 gives the absolute value of the errors in the es-

timates from each of the four methods. We can deter-
mine the convergence rates from the slope of a straight
line fit to the logs of each set of errors. We get the best
results with Method 4, using quasirandom numbers in
Method 2. Method 3, importance sampling, was also
quite good.

Consider a chain of particles in which each particle inter-
acts with its one or two neighbors on the chain. For this set
of particles, the partition function is

Zd(L) = 	∞–∞ �(a, a, L)da, (1)

where L = 1/(�T), T is the temperature, � is the Boltzmann
constant, d is the number of particles, and � is

�d(a, b, L) = 	∞–∞ 	
∞
–∞ … 	∞–∞ g(a, x1, L)g(x1, x2, L) … 

g(xd, b, L)dx1dx2 … dxd,

where

with � = L/(d + 1).

PROBLEM 5.

a. Let L = 1 and k = 1.38 Angstroms2 g/sec2 K and consider
the harmonic oscillator potential V(x). Determine finite inte-
gration limits for a, x1, …, xd so that the partition function
Zd(L) in Equation 1 can be approximated to three-digit accu-
racy. (Do this by bounding the neglected part of the integral.)

b. Use your favorite one-dimensional integration routine
to estimate the partition function Zd (L). When you need a
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Figure A. The answer to Problem 3. (a) 500 pseudorandom points, and (b) the first two quasirandom coordinates, (c) the second
two, and (d) the third two.
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function value �(a, a, L), use Monte Carlo integration to ob-
tain it. Try n = 100, 1,000, 10,000, 100,000, 1,000,000 (if
possible), and d = 1, 2, 4, 8, 16.

c. Repeat the experiment using quasirandom points in the
Monte Carlo integration. What can you say about the accu-
racy and convergence rate of your estimates?

Answer:
There are several ways to get bounds. The one used here

is a variation on Mei Huang’s ideas.
For (a), let x0 = xd+1 = a and let x = [x0, …, xd]T and Px = [x1,

…, xd+1]T. Note that

g(a, x1, L)g(x1, x2, L) … g(xd, a, L)

Now, because ||x|| = ||Px|| and because xTy = ||x|| ||y||
cos(� ), where � is the angle between x and y, we see that
xTPx � xTx, so

g(a, x1, L)g(x1, x2, L) … g(xd, a, L)

Now if we integrate the function g(a, x1, L) g(x1, x2, L) …
g(xd, a, L) over the region � = [–b, b]d+1 
 Rd+1 instead of
Rd+1, the error is bounded by

	Rd+1–� g(a, x1, L)g(x1, x2, L) … g(xd, a, L)dx

We can now use the fact that these integrals are closely re-
lated to the integral for the normal distribution:

with �2 = 1/(��), so we see that

	Rd+1–� g(a, x1, L)g(x1, x2, L) … g(xd, a, L) dx
< d+1(1 – (F(b)) – F(–b))d+1)  � e��
 �
 d, b��

Using tables or computer functions of the normal distri-
bution function, we can compute this bound.

For (b) and (c), visit the CiSE Web site for a sample
program:

• Getting a good solution to this problem via Monte Carlo
integration is difficult. It’s very easy to underestimate the
answer if you spend a lot of function evaluations on re-
gions that have function values close to zero.

• For efficiency and to avoid intermediate underflow, the
program should use an expression like exp(a+b) instead
of exp(a)*exp(b).
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n Method 1 Method 2 Method 3 Method 4
10 3.65e-03 1.11e-02 4.67e-03 1.50e-02
100 1.35e-03 3.38e-03 1.02e-03 2.49e-03
1,000 2.85e-03 2.38e-04 1.22e-05 3.00e-04
10,000 1.57e-03 1.14e-03 1.75e-04 4.10e-05
100,000 4.97e-04 1.72e-04 1.44e-05 5.14e-06

Table 1. Absolute value of estimated errors.
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Importance sampling, using a normal distribution, would
be a better approach to this problem, but the best approach
uses the partition-and-conquer method discussed in the
last issue.
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