
along a line, but even this type of system presents computa-
tional challenges. For the harmonic oscillator, a particle is sub-
jected to a force directed toward the origin and proportional
to the distance between the particle and the origin. The re-
sulting potential is V(x) = 1/2�x2, where � is a constant. This
system is quite thoroughly understood, and quantities of in-
terest can be computed in closed form. Alternatively, the
Ginzburg-Landau anharmonic potential, –1/2�x2 + 1/4�x4 (�
and � are constant), is related to solution of the Schrödinger
equation, and quantities of interest are computed approxi-
mately. One method of obtaining such approximations is nu-
merical integration, which is our focus in this assignment.

Partition Functions
A system in thermodynamic equilibrium can be character-
ized by its partition function, an expression for the expected
value of e raised to a power equal to the energy of the sys-
tem divided by a normalization parameter �T. From the
partition function, we can compute many quantities of in-
terest—the expected value of the energy, the free energy, the
entropy—so it’s quite an important function.

Consider a ring of particles in which each particle inter-
acts with its two neighbors. For this set of particles, the par-
tition function is

Zd (L) = �∞–∞� (a, a, L)da, (1)

where L = 1/(�T ), T is the temperature, � is the Boltzmann
constant, d is the number of particles, and � is

�d (a, b, L) = �
∞
–∞ �

∞
–∞ … �

∞
–∞ g(a, x1, L)g(x1, x2, L) … 

g(xd–1, xd, L)g(xd, b, L)dx1dx2 … dxd,

where

with � = L/(d + 1). Let’s develop some algorithms for ap-
proximating Zd (L).

Numerical Integration Methods
Many methods produce excellent estimates of the value of
the integral

I = �� f(x)dx

when f is a smooth function of a single variable x and � is a
finite interval [a, b]. For instance, we can partition the
interval into small subintervals, construct a polynomial ap-
proximation to f in each subinterval by evaluating f at sev-
eral points in the subinterval, approximate the integral over
the subinterval by the polynomial’s integral, and then sum
these approximate values. If the function slowly changes
over some pieces of �, we can reduce the error in the ap-
proximation by taking longer subintervals there and con-
centrating our work on regions where the function changes
more rapidly.

For multidimensional integrals, however, the situation is
much less satisfactory: the approach that is so successful in

g x y L x y V x V y( , , ) exp ( ) ( ) ( )= − − − +( )


1
2

1
2

1
2

2

πδ δ
δ




58 Copublished by the IEEE CS and the AIP        1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

MULTIDIMENSIONAL INTEGRATION:
PARTITION AND CONQUER
By Dianne P. O’Leary

U NDERSTANDING THE BEHAVIOR OF PAR-

TICLES SUBJECTED TO FORCES IS A BASIC

THEME IN PHYSICS. THE SIMPLEST SYSTEM IS A

SET OF PARTICLES CONFINED TO MOTION

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R  H O M E W O R K A S S I G N M E N T

N umerical-analysis textbooks provide excellent advice on approximating integrals over low-dimensional spaces, but
many problems of interest are naturally posed in high dimensions and yield integrals over regions with a large

number of variables. These problems arise, for example, in evaluating the failure rate of materials, the expected return on
an investment, or the expected value of the energy of a system with a large number of particles. In this issue, we study
some algorithms appropriate for these problems, using a system of particles as a motivating example.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



NOVEMBER/DECEMBER 2004 59

one dimension quickly becomes prohibitive. Suppose, for
instance, that x � R10 and � is the unit hypercube [0, 1] �
… � [0, 1]. Then, as an example, a polynomial of degree 2 in
each variable would have terms of the form

x1
� x2

� x3
� x4

� x5
� x6

� x7
� x8

� x9
� x10

� ,

where the number in each box is 0, 1, or 2. So the poly-
nomial has 310 = 59,049 coefficients, which means we
would need 59,049 function values to determine them. If
we partition the domain by dividing each interval [0, 1]
into five pieces, we make 510 � 10 million boxes, and we
need 59,049 function evaluations in each. Clearly, this
method is expensive!

On the other hand, evaluating integrals this way is quite
easy to program if we have a function quad that works for
functions of a single variable, perhaps using a polynomial ap-
proximation method. We can use quad to compute

�0
1

h(x1)dx1,

where

h(z) = �0
1

… �0
1

f (z, x2, …, x10)dx2 … dx10,

as long as we can evaluate h(z) for any given value z � [0, 1].
But h(z) is just an integration, so we can evaluate it using
quad, too: we end up with 10 nested calls to quad. Again,
this is very expensive, but it’s quite convenient.

As an alternative, some functions f (x) can be well approx-
imated by a separable function

f (x) � f1(x1) f2(x2) … f10(x10).

In that case, we can approximate our integral by

I � �0
1

f1(x1)dx1 … �0
1

f10(x10)dx10.

If this works, then great, but we aren’t often that lucky.
We need another option—the methods we’ve discussed

are either too expensive or only special-purpose. If the func-
tion is not well-approximated by a separable function, the
last resort is some variant on Monte Carlo integration.

Monte Carlo Integration
There are two simple ways to use Monte Carlo integration.
For the first, think of integration as computing the volume
of some solid �, and embed that solid in a larger one � for

which computing the volume is easy. As a trivial example,
consider computing the area of the quarter circle � illus-
trated in Figure 1, and embed � in a square � of side 0.5.
Then generate a sequence of random points in �, and de-
termine the fraction � of points that also lie in �. We can
estimate the volume of � by � times the volume of �.
Here’s a summary of our first Monte Carlo algorithm,
Method 1: 

• Let � � Rd be a set that contains � and has known vol-
ume J. 

• Generate n randomly distributed points {z(i)} � �. 
• Let n̂ be the number of these points that also lie in �, and

estimate the volume of � by

.

Another viewpoint gives a somewhat better algorithm, one
that obtains more information from function values. Again,
the idea is simple: the integral

I = �� f (x)dx

is equal to the average value of f on � multiplied by the vol-
ume of �. This gives us a second method, Method 2:

• Generate n points {z(i)} � �. For our 10-dimensional hy-
percube example, this requires generating 10n random
numbers, uniformly distributed in [0, 1]. 

• The average value of f in the region � is then approxi-
mated by

,

so the value of the integral is I � �n �� dx.

How good is this approximation In? The expected value
of In is the integral’s true value—very nice! In fact, if the vol-
ume of � is normalized to 1, then for large n, the quantities

(I – In)/� have an approximately normal distribution
with mean 0 and variance 1,  where

.

Note that the variance is a constant that depends on the
variation in f around its average value, but not on the di-
mension d of the integration domain �.

Figure 1 illustrates Methods 1 and 2.

σ 2 2= −∫ ( ( ) )f x I dx
Ω

n

µn
i

i

n

n
f= ( )

=
∑1

1
z( )

νn
n
n

J=
ˆ

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



60 COMPUTING IN SCIENCE & ENGINEERING

Let’s see how well these methods behave on a sample
problem—finding the area of the quarter circle illustrated
in Figure 1. But keep in mind that these methods are valu-
able for very high-dimensional integrals, not the trivial one
that we use in Problem 1.

PROBLEM 1.

Suppose we want to estimate the area of a quarter circle with
radius r:

.

Let r = 0.5 and use two methods:

• Method 1, testing whether randomly generated points in
the rectangle [0, r] � [0, r] are inside or outside the quar-
ter circle � and multiplying the fraction inside by r2, the
area of the rectangle.

• Method 2, computing the average value of f (x) and mul-
tiplying by r, the length of � = [0, r].

Compare the quality of the two estimates for n = 10, 100,
1,000, 10,000, and 100,000 points by measuring the error
and the convergence rate.

How many function evaluations does your favorite inte-
gration routine use to get an estimate of comparable quality?

Importance Sampling
The expected value of our estimate from either of the two
methods is equal to the value we’re looking for, but there’s
a nonzero variance to our estimate: we aren’t likely to get the
integral’s exact value. Most of the time, though, the value
will be close—if n is big enough.

If we could reduce our estimate’s variance, we could get
by with a smaller n. This would mean less work and can be
accomplished by importance sampling.

Suppose we want to estimate

I = �� f (x)dx,

where � is a region in R10 with volume equal to one. Our
Monte Carlo estimate of this integral involves taking uni-
formly distributed samples from � and taking the average
value of f (x) at these samples. We can improve on this by a
good choice of a function p(x) satisfying p(x) > 0 for all x
� �, normalized so that

�� p(x) = 1.

Then,

.

We can get a Monte Carlo estimate of this integral by tak-
ing samples from the distribution with probability density
p(x) and taking the average value of f (x)/p(x) at these sam-
ples; we call this Method 3.

When will Method 3 be better than Method 2?
Recall that the variance of our error is proportional to

.

So, if we chose p so that f (x)/p(x) is close to constant, �
would be close to zero! (For this to be true, we don’t want
f (x) to change sign on �.)

Intuitively, why does importance sampling work? 

• In regions where f (x) is big, p(x) will also be big, so
there’s a high probability that we’ll sample from these
regions. 

• In regions where f (x) is small, p(x) will also be small, so we
won’t waste time sampling from regions that don’t con-
tribute much to the integral. 

σ 2
2

= −




∫

f
p

I p d
( )
( )

( )
x
x

x x
Ω

I
f
p

p d= ∫
( )
( )

( )
x
x

x x
Ω

I r x dx f x dx
r r

= − =∫ ∫2 2
0 0

( )

Y O U R  H O M E W O R K  A S S I G N M E N T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 1. Estimating the area 0.19636 of a quarter circle using
Monte Carlo methods with 20 function evaluations. Method 1
gives 13 of the 20 green stars inside the circle, for an estimate
of 0.163. Method 2 averages the 20 blue function values to
give a somewhat better estimate of 0.174. Method 3 averages
function values corresponding to the red x’s to yield 0.192.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



NOVEMBER/DECEMBER 2004 61

Figure 1 illustrates this.
The big unanswered question is how to get a good choice

for p(x). If f is nonnegative, then we can do this by sampling
f (x) at a few points and setting p to be piecewise constant,
with value proportional to the sampled values. For our unit
hypercube example, we could divide our domain into 310

smaller cubes of size 1/3 on which p will be constant. If we
evaluate our function f at the center of each of these, we get
a grid of 310 values at mesh points wi, with each component
of wi equal to 1/6, 1/2, or 5/6. We set p(x) in each cube to be
the sampled value f at the center of the cube, divided by the
sum of the sampled values. For our integration, among our
n random values, we could take the number of values in the
ith cube to be np(wi).

Let’s repeat our experiment using importance sampling.

PROBLEM 2.

Compute new estimates of the integral of Problem 1 using
Method 3, taking 10 samples of f (x) to determine the func-
tion p(x). Compare with your previous results.

Using Quasi-Random Numbers
There are many uses of random numbers; the properties we
need from them depend on our ultimate intended use. For
example, simulation might require the numbers to be as in-
dependent of each other as possible, but in Monte Carlo in-
tegration, we just want the proportion of points in any re-
gion to be proportional to the volume of that region. This
property is actually better achieved by correlated points;
many proposals for generating quasi-random sequences
guarantee a rather even distribution of points. For example,
the Van der Corput sequence generates the kth coordinate
of the pth quasi-random number wp in a very simple way.
Write out the base-bk representation of p, where bk is the kth
prime number:

,

and let the coordinate be

.

You might think that a regular mesh of points also has this
uniform covering property, but it’s easy to see (by drawing
the picture) that large boxes are left unsampled if we choose
a mesh. The Van der Corput sequence, however, gives a se-

quence that rather uniformly covers the unit hypercube with
samples, as Problem 3 demonstrates.

PROBLEM 3.

Generate 500 pseudo-random points vp in R2 and 500 quasi-
random points wp in R6 (p = 1, …, 500). Plot the pseudo-
random points. Then for the quasi-random points, make a
plot of the first two coordinates, a separate plot of the third
and fourth coordinates, and a final plot of the fifth and sixth
coordinates. Discuss the desirability of using each of these
four choices for “random” points.

How effective are quasi-random points in approximat-
ing integrals? For quasi-random points, the absolute value
of the error I – In is bounded by V [ f ] (log n)dn–1, where
V [ f ] is a measure of the variation of f, evaluated by inte-
grating the absolute value of the dth partial derivative of f
with respect to each of its variables, and adding on a
boundary term. If d isn’t too big and f isn’t too wild, the re-
sult of Monte Carlo integration using quasi-random points
will probably have smaller error than using pseudo-ran-
dom points.

PROBLEM 4.

Compute new estimates of the integral of Problem 1 using
quasi-random numbers in Method 2 instead of pseudo-
random numbers. Compare the results.

Back to Our Partition Function
Let’s get back to computing a partition function.

PROBLEM 5.

a. Let L = 1 and � = 1.38 Angstroms2 g/sec2 K and consider
the harmonic oscillator potential V(x). Determine finite in-
tegration limits for a, x1, …, xd so that the partition func-
tion Zd(L) in Equation 1 can be approximated to three-digit
accuracy. (Do this by bounding the neglected part of the in-
tegral.)
b. Use your favorite one-dimensional integration routine to
estimate the partition function Zd (L). When you need a
function value �(a, a, L), use Monte Carlo integration to ob-
tain it. Try n = 100, 1,000, 10,000, 100,000, 1,000,000 (if
possible), and d = 1, 2, 4, 8, 16.

w k a bp i k
i

i
( ) = − −∑ 1

p a bi k
i

i
= ∑

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



62 COMPUTING IN SCIENCE & ENGINEERING

c. Repeat the experiment using quasi-random points in the
Monte Carlo integration. What can you say about the accu-
racy and convergence rate of your estimates?

Partition and Conquer
We noted earlier that if the function to be integrated is sep-
arable, we can reduce our problem to a product of one-di-
mensional integrations. Although our partition function
can’t be separated into d + 1 factors, it can be partially sepa-
rated by noticing that each variable xi appears only in a pair

of functions g, so it makes sense to accumulate

for even values of i. If we repeat this trick on ĝ for values of
i that are multiples of 4, we reduce our problem further, and
continuing, we can actually reduce the problem to a two-di-
mensional integration when d is a power of 2. Although the
partition function provides a good test problem for multi-
dimensional integration, we should really compute it using
this divide-and-conquer formulation.

ˆ , ( , , ) ( , , )g x x g x x L g x x L dxi i i i i i− + − +−∞
( ) =1 1 1 1

∞∞
∫

Y O U R  H O M E W O R K  A S S I G N M E N T

Tools

The integration techniques we use here, as well as al-
gorithms for generating quasi-random numbers, are

discussed in a good review article.1 Stratified sampling,
also discussed there, is another tool for improving Monte
Carlo estimates.

Isabel Beichl and Francis Sullivan give a good introduc-
tion to importance sampling.2

In an article on the partition function,3 the authors also
present the divide-and-conquer approach to computing it.

Monte Carlo integration is also used to compute integrals
in rarefied gas dynamics,1 the failure rate of materials,4 and
quantum chromodynamics (QCD).5

For information on faster algorithms for approximating in-
tegrals in one-dimensional space, such as that used in Mat-
lab’s quad, see a standard numerical methods textbook.6

References

1. R.E. Caflisch, “Monte Carlo and Quasi-Monte Carlo Methods,” Acta

Numerica, vol. 7, 1998, pp. 1–49.

2. I. Beichl and F. Sullivan, “The Importance of Importance Sampling,”

Computing in Science & Eng., vol. 1, no. 2, 1999, pp. 71–73.

3. M. Nauenberg, F. Kuttner, and M. Furman, “Method for Evaluating

One-Dimensional Path Integrals,” Physical Rev. A, vol. 13, no. 3,

1976, pp. 1185–1189.

4. G.I. Schuëller, H.J. Pradlwarter, and P.S. Koutsourelakis, “A Compar-

ative Study of Reliability Estimation Procedures for High Dimen-

sions,” Proc. 16th ASCE Eng. Mechanics Conf., ASCE, 2003;

www.ce.washington.edu/em03/proceedings/papers/777.pdf.

5. G.C. Fox, R.D. Williams, and P.C. Messina, Parallel Computing Works,

Morgan Kaufmann, 1994, www.netlib.org/utk/lsi/pcwLSI/text/

node34.html.

6. C.F. van Loan, Introduction to Scientific Computing, Prentice Hall,

2000.

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

revolutionary new quarterly journal that seeks out and delivers the very 
best peer-reviewed research results on mobility of users, systems, data, 
computing information organization and access, services, management, 

and applications. IEEE Transactions on Mobile Computing gives you
remarkable breadth and depth of coverage …

A
To subscribe:

http://
computer.org/tmc

or call
USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

Subscribe
NOW!

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



NOVEMBER/DECEMBER 2004 Copublished by the IEEE CS and the AIP        1521-9615/04/$20.00 © 2004 IEEE 63

Partial Solution to Last Issue’s Homework Assignment

ACHIEVING A COMMON VIEWPOINT:
YAW, PITCH, AND ROLL
By Dianne P. O’Leary and David A. Schug

control. In this coordinate system, the angles 	, 
, and � are
called the Euler angles. 

Define a rotation Q as the product of three matrices Q(	,

, �) = Qroll Qpitch Qyaw, where

,

,

.

with the Euler angles satisfying –� < 	 < �, –�/2 < 
 < �/2,
and –� < � < �.

PROBLEM 1.

a. Explain geometrically the effect of applying a rotation Q
to a vector [x, y, z]T to create the vector Q [x, y, z]T.
b. Show that if Q is any 3 � 3 orthogonal matrix (that is, QTQ
= I, the identity matrix), then Q can be expressed as Qroll
Qpitch Qyaw for some choice of angles �, 
, and 	. 

Answer: a. First we rotate the object by an angle 	 in the
xy-plane. Then we rotate by an angle –
 in the new xz-plane,
and finish with a rotation of � in the resulting yz-plane.

b. (Actually, this is only true if det(Q) > 0; otherwise, we
need to multiply by –1.) We will use the QR decomposi-
tion of a matrix; any nonsingular matrix can be expressed

as the product of an orthogonal matrix times an upper tri-
angular one. One way to compute this is to use plane ro-
tations to reduce elements below the diagonal of our ma-
trix to zero. Let’s apply this to the matrix QT. By choosing
	 appropriately, we can make Qyaw QT have a zero in row
2, column 1. Similarly, by choosing 
, we can force a zero
in row 3, column 1 of Qpitch Qyaw QT (without ruining our
zero in row 2, column 1). Finally, we can choose � to
force Qroll Qpitch Qyaw QT to be upper triangular. Now the
product of orthogonal matrices is orthogonal, and the
only upper triangular orthogonal matrices are diagonal.
We can force the product to be the identity by choosing
the signs as follows: cos	 < 0 when q11 < 0; cos� < 0 when
q33 < 0; sin
 < 0 when q31 > 0. We conclude that Qroll Qpitch
Qyaw = (QT)–1 = Q. This method for proving this property
is particularly nice because it leads to a fast algorithm that
we can use in Problem 4 to recover the Euler angles given
an orthogonal matrix Q.

Let A be the 3 � n matrix (n = 7) whose columns are the
coordinates of the first set of points: A = [a1, …, a7]. Define
B similarly from the second set of points. Then we want to
determine the three Euler angles so that

B = Q(	, 
, �)A.

by minimizing

f (	, 
, �) = ||B – Q(	, 
, �)A||F
2

	 ||bi – Q(	, 
,�)ai||2
2

PROBLEM 2.

Use a nonlinear least-squares solver to find the Euler angles
for the data sets generated by taking the yaw 	 = �/4, roll �
= �/9, and

.

Let the pitch 
 vary between –�/2 and �/2 in steps of
�/120. Plot the computed Euler angles, and, in a separate
plot, the Frobenius norm of the error in Q and the root-
mean-square distance (RMSD) in the computed positions.

A =
−















0 0 1 1 0 1 0
0 1 1 0 0 1 2
0 1 2 3 4 4 4

i

n

=
∑

1

Qyaw = −
















cos sin
sin cos

φ φ
φ φ

0
0

0 0 1

Qpitch =
−















cos sin

sin cos

θ θ

θ θ

0
0 1 0

0

Qroll =
−

















1 0 0
0
0

cos sin
sin cos

ψ ψ
ψ ψ

A S YOU MIGHT RECALL FROM THE LAST

ISSUE, THERE ARE MANY WAYS TO DE-

FINE 3D ROTATIONS; WE SPECIFIED YAW 	, PITCH


, AND ROLL �, AS IS COMMON IN FLIGHT

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



64 COMPUTING IN SCIENCE & ENGINEERING

Discuss the time needed for solution and the accuracy ob-
tained.

Answer: A sample Matlab program to solve this prob-
lem is available at www.computer.org/cise/homework/;
Figure A shows the results. In most cases, two-to-four-
digit accuracy is achieved for the angles and positions, but
trouble is observed when the pitch is close to vertical 
(± �/2).

PROBLEM 3.

a. Recall that the trace tr of a square matrix is the sum of its
main diagonal entries. We need two facts about traces in or-
der to derive our algorithm. Prove that for any matrix C,
tr(CTC) = ||C||F

2 , and that for any matrix D for which the
product CD is defined, tr(CD) = tr(DC).
b. Use the first fact to show that the Q that minimizes ||B –
QA||F

2 over all choices of orthogonal Q also maximizes
tr(ATQTB).
c. Suppose that the singular value decomposition (SVD) of
the m � m matrix BAT is U
VT, where U and V are m � m

and orthogonal, and 
 is diagonal with diagonal entries �1
� … � �m � 0. Define Z = VTQTU. Use these definitions and
the second fact to show that

tr(ATQTB) = tr(QTBAT) = tr(Z
) � .

d. If Z = I, then

tr(QTBAT) = .

What choice of Q ensures this?

Answer: a. Suppose that C is m � n. The first fact follows
from

tr (CTC) = .

To prove the second fact, note that

tr (CD) = ,

while

( )c dki ik
i

n

k

m

==
∑∑











11

c cik
i

m

k

n

ik
i

m

F
k

n
2

11

2

1

2

1== ==
∑∑ ∑∑









 = = C

σ i
i

m

=
∑

1

σ i
i

m

=
∑

1

Y O U R  H O M E W O R K  A S S I G N M E N T

20 40 60 80 100 120
Sample number

Problem 2

20 40 60 80 100 120
10

 –4

10
 –3

10
 –2

10
 –1

Sample number

Problem 2

20 40 60 80 100 120
 

 

Sample number

Problem 4

20 40 60 80 100 120
10

 –16

10
 –15

10
–14

Sample number

Problem 4

–2

–1

0

1

2

3

–2

–1

0

1

2

A
ng

le
 (

ra
di

an
s)

Er
ro

r

A
ng

le
 (

ra
di

an
s)

Er
ro

r

Figure A. Results of Problems 2 (left) and 4 (right). The top graphs show the computed yaw (blue plusses), pitch (green circles),
and roll (red x’s), and the bottom graphs show the error in Q (blue plusses) and the error in the rotated positions (green circles).

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



NOVEMBER/DECEMBER 2004 65

tr (DC) = ,

which is the same.
b. Note that

||B – QA||F
2 = tr ((B – QA)T(B – QA)) = tr (BTB + ATA) 

– 2 tr(ATQTB),

so we can minimize the left-hand side by maximizing
tr (ATQTB).

c. We compute

tr(QTBAT) = tr (QTU
VT) = tr (VTQTU
) 

= tr (Z
) = , (1)

where the inequality follows from the fact that elements of
an orthogonal matrix lie between –1 and 1.

d. Since Z = VTQTU, we have Z = I if Q = UVT.

PROBLEM 4.

Use the SVD to find the Euler angles for the data in Prob-
lem 2. Compare with your previous results.

Answer: Figure A shows the results. The computed re-
sults are much better than those of Problem 2, with er-
rors at most 10–14 and no trouble when the pitch is close
to vertical.

PROBLEM 5.

Given a fixed rotation matrix Q, show that the minimizer of
||B – QA – teT ||F, where e is a column vector of ones, satisfies
t = cA – QcB.

Answer: We compute

||B – QA – teT||F
2 = (B – QA)ij

2 – 2ti(B – QA)ij + nt i
2,

and setting the partial derivative with respect to ti to zero
yields

ti = .

Therefore,

This nice observation was made by Richard Hanson and
Michael Norris.1

PROBLEM 6.

Implement this algorithm and try it on the data from Prob-
lem 2 using 
 = �/4 and 20 randomly generated translations
t. Repeat the experiment with 20 more translations, adding
perturbations to the A data that are uniformly distributed
between –10–3 and 10–3, to see how sensitive the computa-
tion is to uncertainty in the measurements.

Answer: Figure B shows the results. With no perturba-
tion, the errors in the angles, the error in the matrix Q, and
the RMSD are all less than 10–15. With perturbation in each
element uniformly distributed between –10–3 and 10–3, the
errors rise to about 10–4.

Others have compared the SVD method with other meth-
ods,2,3 although none of these authors knew that the method
was due to Hanson and Norris.1

PROBLEM 7.

a. Suppose that all of our points in A lie on a line. Is there
more than one choice of Q that minimizes ||B – QA||? 
Illustrate this with a numerical example.
b. Use this insight to characterize the degenerate cases for
which Q is not well determined.
c. Suppose that our data produces the angles (	, 
 = �/2, �),
but a small perturbation causes a small increase in the angle 

so that it is greater than �/2. Generate such an example: you’ll
see that the computed angles are quite different. This jump in
angle is called gimbal lock, a term borrowed from the locking
of the mechanism that moves a stabilizing gyroscope in cases
in which the angle goes out of the device’s range of motion.

Answer: a. Yes. Since the rank of matrix A is 1 in this case,
we have two singular values �2 = �3 = 0. Therefore, we only

t
n nj j

j

n

B A

= −

= −
=

∑1 1

1
b a

c c

Q

Q .

1

1n ij
j

n
( )B QA−

=
∑

j

n

i

m

==
∑∑

11

σ σi ii i
i

m

i

m
z ≤

==
∑∑

11

( )d cik ki
k

m

i

n

==
∑∑











11

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



66 COMPUTING IN SCIENCE & ENGINEERING

need z11 = 1 in Equation 1 and we don’t care about the val-
ues of z22 or z33.

b. Degenerate cases result from unfortunate choices of the
points in A and B. If all the points in A lie on a line or a
plane, then multiple solution matrices Q exist. Additionally,
if two singular values of the matrix BTA are nonzero but
equal, then small perturbations in the data can create large
changes in the matrix Q.1

c. A degenerate case and a case of gymbal lock are illus-
trated on the Web page.

References
1. R.J. Hanson and M.J. Norris, “Analysis of Measurements Based on the

Singular Value Decomposition,” SIAM J. Scientific and Statistical Comput-
ing, vol. 2, no. 3, 1981, pp. 363–373.

2. K. Kanatani, “Analysis of 3D Rotation Fitting,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 16, no. 5, 1994, pp. 543–549.

3. D.W. Eggert, A. Lorusso, and R.B. Fisher, “Estimating 3D Rigid Body
Transformations: A Comparison of Four Major Algorithms,” Machine
Learning and Applications, vol. 9, 1997, pp. 272–290.

Dianne P. O’Leary is a professor of computer science and a faculty

member in the Institute for Advanced Computer Studies and the Applied

Mathematics Program at the University of Maryland. She has a BS in

mathematics from Purdue University and a PhD in computer science

from Stanford. She is a member of SIAM, ACM, and AWM. Contact her

at oleary@cs.umd.edu; www.cs.umd.edu/users/oleary/.

David A. Schug is an advanced special student at the University of

Maryland, where he received a BS in mathematics. Contact him at david.

schug@navy.mil.

Y O U R  H O M E W O R K  A S S I G N M E N T

0 5 10 15 20
–6

–4

–2

0

2

4

6
x 10

 –16

Sample number

� = 0.000

0 5 10 15 20
10

 –16

10
 –15

10
 –14

Sample number

� = 0.000

0 5 10 15 20

 

x 10
 –4

Sample number

� = 0.001

0 5 10 15 20
10

 –5

10
 –4

10
 –3

Sample number

� = 0.001

–2

0

2

A
ng

le
 (

ra
di

an
s)

Er
ro

r

A
ng

le
 (

ra
di

an
s)

Er
ro

r

Figure B. Results of Problem 6. The left side shows the result with no perturbation and the right side with perturbation of order
10–3. The top graphs show the computed yaw (blue plusses), pitch (green circles), and roll (red x’s), and the bottom graphs
show the error in Q (blue plusses) and the error in the rotated positions (green circles).

www.ieee.org/renewal

Renew your 

IEEE

Computer Society 

membership

today!

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.


