
and robot motion. Surprisingly, the same mathematical tools
used in tracking are also used in the absolute orientation prob-
lem of comparing two objects (such as proteins or machine
parts) to see if they have the same structure. In this Home-
work Assignment, we develop the mathematical and com-
putational tools to solve such problems.

Consider the molecule A in Figure 1, which we will spec-
ify by the coordinates a1, …, a7 of the centers of the seven
spheres that represent some of its atoms, and the corre-
sponding object B, obtained by rotating A. There are many
ways to define 3D rotations, but in this assignment, we’ll
specify yaw φ, pitch θ, and roll ψ, as is common in flight con-
trol. In this coordinate system, the angles φ, θ, and ψ are
called the Euler angles, and a rotation Q is defined by the
product of three matrices

Q(φ, θ, ψ) = Qroll Qpitch Qyaw ,

where 

,

.

We impose the restrictions –π < φ ≤ π, –π/2 < θ ≤ π/2, and
–π < ψ ≤ π. Our first task is to develop some familiarity with
this representation for rotation matrices.

PROBLEM 1.

a. Explain geometrically the effect of applying a rotation Q
to a vector [x, y, z]T to create the vector Q [x, y, z]T.

b. Show that if Q is any 3 × 3 orthogonal matrix (i.e., QTQ
= I, the identity matrix), then Q can be expressed as Qroll
Qpitch Qyaw for some choice of angles ψ, θ, and φ. 

Next, we need to construct a way to determine the Euler
angles when given data such as that in Figure 1. Let A be the
3 × n matrix (n = 7) whose columns are the coordinates of the
first set of points: A = [a1, …, a7]. Define B similarly from the
second set of points. Now we want to determine the three
Euler angles so that
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ACHIEVING A COMMON VIEWPOINT:
YAW, PITCH, AND ROLL
By Dianne P. O’Leary and David A. Schug

L IFE IS ABOUT CHANGE; NOTHING EVER

STAYS THE SAME. IN PARTICULAR, OBJECTS

MOVE, AND TRACKING THEM IS AN ESSENTIAL IN-

GREDIENT IN APPLICATIONS SUCH AS NAVIGATION

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R  H O M E W O R K  A S S I G N M E N T

T racking objects, controlling the navigation system of a spacecraft, assessing the quality of machined parts, and iden-
tifying proteins seem to have little in common, but all of these problems (and many more in computer vision and

computational geometry) share a core computational task: rotating and translating two objects so that they have a com-
mon coordinate system. In this homework assignment, we study this deceptively simple computation and its pitfalls.
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B = Q(φ, θ, ψ) A.

Because life is about change and imperfection, we don’t ex-
pect to get an exact equality, but we want to make the difference
between B and Q(φ, θ, ψ) A as small as possible. One reasonable
way to measure this is by taking the sum of the square of the dif-
ferences in each component; then our task is to minimize

f(φ, θ, ψ) = ||B – Q(φ, θ, ψ) A ||F
2 ≡ ||bi – Q(φ, θ, ψ) ai ||2

2,

where ||.||F is called the Frobenius norm of the matrix. This
is a nonlinear least-squares problem with three variables, so
let’s experiment with solving the problem for various data
sets. The square root of f / n is the root-mean-squared distance
(RMSD) between the two objects. The factor 1/n applied
to f forms the average (mean) of the squared distances be-
tween the corresponding points. RMSD will provide us in
Problem 2 with a measure of how well our objects match.

PROBLEM 2.

Use a nonlinear least-squares solver to find the Euler angles
for the data sets generated by taking the yaw φ = π/4, roll ψ
= π/9, and

.

Let the pitch θ vary between –π/2 and π/2 in steps of
π/120. Plot the computed Euler angles, and, in a separate
plot, the Frobenius norm of the error in Q and in the RMSD
in the computed positions. Discuss the time needed for so-
lution and the accuracy obtained.

The problem we are considering is an old one, sometimes
called the orthogonal Procrustes problem. In Problem 3, we de-
rive a better way to solve it.

PROBLEM 3.

a. Recall that the trace tr of a square matrix is the sum of its
main diagonal entries. We need two facts about traces in or-
der to derive our algorithm. Prove that for any matrix C,
tr(CTC) = ||C||F

2 , and that for any matrix D for which the
product CD is defined, tr(CD) = tr(DC).

b. Use the first fact to show that the Q that minimizes 
||B – QA||F

2 over all choices of orthogonal Q also maximizes
tr(ATQTB).

c. Suppose that the singular value decomposition (SVD) of
the m × m matrix BAT is UΣVT, where U and V are m × m
and orthogonal and Σ is diagonal with diagonal entries σ1 ≥
… ≥  σm ≥ 0. Define Z = VTQTU. Use these definitions and
the second fact to show that

tr(ATQTB) = tr(QTBAT) = tr(ZΣ) ≤ .

d. If Z = I, then

tr(QTBAT) = .

What choice of Q ensures this?

Problem 3 shows that Q can be computed just by doing
an SVD of BAT, which is much more efficient than solving
the nonlinear least-squares problem of Problem 2. Let’s redo
the computations.

PROBLEM 4.

Use the SVD to find the Euler angles for the data in Prob-
lem 2. Compare with your previous results.

So far, we’ve assumed that the object has rotated with re-
spect to the origin, but has not translated. Now we consider
a more general problem:

B = Q(φ, θ, ψ) A + teT,

where the 3 × 1 vector t defines the translation, and e is a col-
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Figure 1. 3D rotations. How can we tell whether (a) molecule A
and (b) molecule B are the same?
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umn vector with n ones. How might we solve this problem?
One way is to solve a nonlinear least-squares problem for t

and the Euler angles. As in the May/June 2004 installment, we
should take advantage of the fact that given t, computing the
optimal Q is easy, so we should express the problem as a func-
tion of just three variables: t1, t2, and t3. Implementing this al-
gorithm is interesting, but we’ll just focus on a much more ef-
ficient approach.

The “easy” way arises from observing that the translation
can be defined by the movement of the centroid of the points:

,

.

Luckily, the averaging in the centroid computations tends
to reduce the effects of random errors, and Problem 5 shows
how t can be defined in terms of the centroids.

PROBLEM 5.

Given a fixed rotation matrix Q, show that the minimizer of
||B – QA – teT ||F satisfies t = cA – QcB.

So we can solve our problem by moving both objects so that
their centroids are at zero and then computing the resulting
rotation Q using the SVD. Finally, we reconstruct the transla-
tion using the formula in Problem 5. Let’s see how this algo-
rithm behaves.

PROBLEM 6.

Implement this algorithm and try it on the data from Prob-
lem 2 using θ = π/4 and 20 randomly generated translations

t. Then repeat the experiment with 20 more translations,
adding perturbations to the A data that are uniformly dis-
tributed between –10–3 and 10–3, to see how sensitive the
computation is to uncertainty in the measurements.

Through these computations (and further experimentation,
if desired), you can see that the rotation matrix Q can almost
always be computed quite accurately by the SVD algorithm;
unfortunately, the Euler angles are not as well determined. In
the next problem, we’ll study these degenerate cases.

PROBLEM 7.

a. Suppose that all of our points in A lie on a line. Is there
more than one choice of Q that minimizes ||B – QA||? Il-
lustrate this with a numerical example.

b. Use this insight to characterize the degenerate cases for
which Q is not well determined.

c. Suppose that our data produces the angles (φ, θ = π/2, ψ),
but a small perturbation causes a small increase in the angle θ
so that it is greater than π/2. Generate such an example: you’ll
see that the computed angles are quite different. This jump in
angle is called gimbal lock, a term borrowed from the locking
of the mechanism that moves a stabilizing gyroscope in cases
in which the angle goes out of the device’s range of motion.

Thus, we can always choose a set of reference points to
make the matrix Q well determined, but, unfortunately, this
does not guarantee that the Euler angles are well determined.

One way to avoid this artificial ill-conditioning is to replace
Euler angles with a better representation of the information
in Q. Quaternions are a common choice, and the “Tools”
sidebar gives a pointer to more information on this subject.

c bB j
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=
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j
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Y O U R  H O M E W O R K  A S S I G N M E N T

Tools

O ne important problem that we’ve ignored is that of
getting a set of corresponding points from the two

objects. This is treated, for example, in Emanuele Trucco
and Alessandro Verri’s text.1

To help with Problem 1, you’ll find a nice demonstration
of the parameters for yaw, pitch, and roll at “How Things
Fly” (www.nasm.si.edu/exhibitions/gal109/NEWHTF/
ROLL.HTM). Other rotation coordinate systems are de-
scribed in Euler Angles.2

In Problem 2, you can use Matlab’s lsqnonlin.
If you get stuck in Problem 3, Gene Golub and Charles van

Loan3 give a helpful discussion of the orthogonal Procrustes.

Jack B. Kuipers4 discusses the use of quaternions instead
of Euler angles.

References

1. E. Trucco and A. Verri, Introductory Techniques for 3D Computer Vi-

sion, Prentice Hall, 1998.

2. E.W. Weisstein, Euler Angles, MathWorld, http://mathworld.

wolfram.com/EulerAngles.html

3. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed., Johns

Hopkins Press, 1989.

4. J.B. Kuipers, Quaternions and Rotation Sequences: A Primer with Appli-

cations to Orbits, Aerospace and Virtual Reality, Princeton Univ. Press,

2002.
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,

u = 0 on ,

where is the boundary of the domain D, G is the ma-
terial’s shear modulus, and θ is the angle of twist per unit
length.

We derive an alternate equivalent formulation by mini-
mizing an energy function

PROBLEM 1.

Suppose that the rod’s cross-section D is the interior of
a circle of radius one, and let G = 5 and θ  = 1. Use a fi-
nite-element package to approximate the stress function.
Plot the approximate solution and describe what it says
about the stress. Solve again using a finer mesh and es-
timate the error in your approximation to 1/2uTKu –
bTu to E(u).

Answer: Sample Matlab code is available on the Web
site (www.computer.org/cise/homework/). We can esti-
mate the error in E(u) by computing estimates with finer
and finer grids, using the finest one as an approximation
to truth. We expect the error in the estimates to drop by
a factor of 4 each time the mesh size is halved (because the
error is proportional to h2), and that is what we observe.
The mesh in Figure A produces an energy estimate with
estimated error less than 0.1; Figure B shows the result-
ing solution.

PROBLEM 2.

Derive an algorithm for finding the distance d(z) between a
given point z = [z1, z2]T and an ellipse. In other words, solve
the problem

,min( ) ( )
,x y

x z y z− + −1
2

2
2

E u u x y dx dy G u x y dx dyD D( ) =
1
2

2∫∫ ∫∫∇ −( , ) ( , ) .θ
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∂
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Partial Solution to Last Issue’s 
Homework Assignment

ELASTOPLASTIC TORSION: TWIST AND STRESS
By Dianne P. O’Leary

T HE STANDARD MODEL INVOLVES THE

STRESS FUNCTION u(x, y), WHERE THE

QUANTITIES –∂u(x, y)/∂x AND ∂u(x, y)/∂y ARE THE

STRESS COMPONENTS:
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Figure B. Solution to Problem 1: the solution for the elastic
model using a circular cross-section.
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Figure A. Solution to Problem 1: the mesh used for a circular
cross-section.
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subject to

,

for given parameters α and β. Note that the distance is
the square root of the optimal value of the objective func-
tion (x – z1)2 + (y – z2)2. The problem can be solved using
Lagrange multipliers, as a calculus student would. You
need only consider points z on or inside the ellipse, but
handle all the special cases: α = β, z has a zero coordinate,
and so forth.

Answer: We set up the Lagrangian function

L(x, y, λ) = (x – z1)2 + (y – z2)2 – λ ,

where the scalar λ is the Lagrange multiplier for the con-
straint. Setting the three partial derivatives to zero yields

,

,

.

We conclude that
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Figure C. Solution to Problem 4: elastoplastic solutions for various cross-sections. On the left, αθ = 0.5; on the right, αθ = 1.0.
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as long as the denominators are nonzero. Because |x| ≤  α
and |y| ≤  β, we conclude that the solution we seek has λ sat-
isfying 0 ≤  λ ≤ min(α 2, β 2 ). So, we can solve our problem by
solving the nonlinear equation

,

using Equations 1 and 2 to define x(λ) and y(λ).
These formulas fail when z1 = 0 or z2 = 0. There are two

points to check, depending on whether it is shorter to move
horizontally or vertically to the boundary. When z = 0, for
example, then the solution is either (x, y) = (0, β) or (α, 0),
depending on whether β or α is smaller. Full details are
given in the sample code for Problem 3 and in David
Eberly’s description.1

PROBLEM 3.

Program your distance algorithm, document it, and produce
a convincing validation of the code by designing a suitable
set of tests and discussing the results.

Answer: Sample code appears on the Web site as
dist_to_ellipse.m. The testing code plots the distances
on a grid of points in the ellipse. Note that it’s important to
test the points that are near zero. To validate the code, we
might repeat the runs with various values of α and β, and
also test the code for a point z outside the ellipse.

PROBLEM 4.

The elastoplastic model is

E(u)

|∇u(x, y)|≤ σ0,   

u  =   0 on .

Solve the elastoplastic problem on a mesh that you esti-
mate will give an error of less than 0.1 in the function E(u).
Use the parameters G = 1, σ0 = 1, and β = 1. Let α  θ = 0,
0.25, 0.50, …, 5 and β/α = 1, 0.8, 0.65, 0.5, 0.2. Plot a few
representative solutions. On a separate graph, for each value
of β/α, plot a curve T/(σ0α3) versus Gαθ/σ0, where T is the
estimate of the torque, the integral of u over the domain D.

(This will give you five curves.) On the same plot, separate
the elastic solutions (those for which no variable is at its
bound) from the elastoplastic ones. Estimate the errors in
your plot’s data points.

Answer: Figures C and D show the results, which are
computed with code on the Web site. The meshes we used
had the same refinement as that determined for the circular
domain in Problem 1. A sensitivity analysis should be done
obtaining an error estimate by refining the mesh once to see
how much the solution changes.

It would be more computationally efficient to take ad-
vantage of the sequence of problems being solved by using
the solution at the previous value of αθ as an initial guess for
the next value.

Reference
1. D. Eberly, “Distance from a Point to an Ellipse in 2D,” Magic Software,

2004, www.magic-software.com/Documentation/DistancePoint
ToEllipse2.pdf.
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Figure D. Solution to Problem 4: torque computed for various
cross-sections as θ is increased. The red stars mark the
boundary between elastic solutions and elastoplastic
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