
other end counterclockwise. This torsion (twisting) causes
stresses in the rod. If the force we apply is small enough, the
rod behaves as an elastic body: when we release it, it will re-
turn to its original state. But if we apply a lot of twisting
force, we will eventually change the rod’s structure: some
portion of it will behave plastically and will be permanently
changed. If the whole rod behaves elastically, or if it all be-
haves plastically, then modeling is rather easy. More diffi-
cult cases occur when there is a mixture of elastic and plas-
tic behavior. Here, we’ll investigate the rod’s behavior over
a full range of torsion.

The Elastic Model
As usual, we start with simplifying assumptions to make the
computation tractable. We assume that the torsional force
is evenly distributed throughout the rod, and that the rod
has uniform cross-sections. Under these circumstances, we
can understand the system by modeling the stress in any sin-
gle cross-section. We’ll call the interior of the 2D cross sec-
tion D and its boundary D̂.

The standard model involves the stress function u(x, y) on
D, where the quantities –∂u(x, y)/∂x and ∂u(x, y)/∂y are the
stress components. If we set the net force to zero at each
point in the cross-section, we obtain

u = 0 on D̂,

where G is the shear modulus of the material, and θ (radians)
is the angle of twist per unit length. To guarantee existence
of a smooth solution to our problem, we’ll assume that the
boundary D̂ is smooth; in fact, in our experiments, D̂ will be
an ellipse.

We can derive an alternate equivalent formulation by
minimizing an energy function

The magnitude of the gradient

|∇u(x, y)| =

is the shear stress at the point (x, y), an important physical
quantity. At any point where the shear stress exceeds the
yield stress σ0, the material becomes plastic, and our stan-
dard model is no longer valid.

For simple geometries (such as a circle), we can solve this
problem analytically. But, for the sake of generality and in
preparation for the more difficult elastoplastic problem, we
will consider numerical methods. Discretization by finite dif-

∂ ∂( ) + ∂ ∂( )u x y x u x y y( , ) / ( , ) /
2 2

E u u x y dxdy

G u x y dxdy

D

D

( ) ( , )

( , ) .

= ∇

−

∫∫
∫∫

1
2
2 θ

∇2u ≡ ∂2u
∂x 2 + ∂2u

∂y2 ≡ uxx + uyy = –2Gθ  in D
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ELASTOPLASTIC TORSION: 
TWIST AND STRESS
By Dianne P. O’Leary 
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MOGENEOUS MATERIAL. HOLD THE ROD AT THE

ENDS AND TWIST ONE END CLOCKWISE AND THE

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R  H O M E W O R K  A S S I G N M E N T

T his problem focuses on the stress induced in a rod by twisting it. We’ll investigate two situations: first, when the stress
is small enough that the rod behaves elastically, and second, when we pass the elastic–plastic boundary.
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ferences would be a possibility, but the geometry makes the
flexibility of finite elements attractive. We can use a finite-el-
ement package to formulate the matrix K that approximates
the operator –∇2u on D, and also assemble the right-hand
side b so that the solution to the linear system Ku = b is the
approximation to u(x, y) at the nodes (xi, yi) of the finite-el-
ement mesh. Because the boundary D̂ and the forcing func-
tion –2Gθ are smooth, we expect optimal order approximation
of the finite-element solution to the true solution as the
mesh is refined: for piecewise linear elements on triangles,
for example, this means that the error is O(h2), where h is a
measure of the triangles’ size.

In Problem 1, we see what this model predicts for the
sheer stress on our rod.

Problem 1. Suppose that the rod’s cross-section D is
the interior of a circle of radius one, and let G = 5 and
θ = 1. Use a finite-element package to approximate the
stress function. Plot the approximate solution and de-
scribe what it says about the stress. Solve again using
a finer mesh and estimate the error in your approxi-
mation 1/2uTKu – bTu to E(u).

Note that by symmetry, we could reduce our computa-
tional domain in Problem 1 to a quarter circle, setting the
normal derivative of u along the two straight edges to zero.

The Elastoplastic Model
As the value of θ is increased, the maximum value of the
shear stress |∇u(x, y)| increases, eventually exceeding the
rod’s yield stress, at which point our model breaks down be-
cause the rod is no longer behaving elastically. We can ex-
tend our model to this case by adding constraints: we still
minimize the energy function, but we don’t allow stresses
larger than the yield stress:

E(u)

|∇u(x, y)| –< σ0,   (x, y) ∈ D
u = 0 on D̂.

The new constraints |∇u(x, y)| ≤ σ0 are nonlinear, but we
can reduce them to linear by a simple observation: if we start
at the boundary and work our way in, we see that the con-
straint is equivalent to saying that |u(x, y)| is bounded by σ0
times the (shortest) distance from (x, y) to the boundary.

So the next (and most challenging) ingredient in solving
our problem is an algorithm for determining these distances.
In the next two problems, we develop and implement such
an algorithm.

Problem 2. Derive an algorithm for finding the dis-
tance d(z) between a given point z = [z1, z2]T and an el-
lipse. In other words, solve the problem

subject to

,

for given parameters α and β. Note that the distance
is the square root of the optimal value of the objective
function (x – z1)2 + (y – z2)2. The problem can be
solved using Lagrange multipliers, as a calculus stu-
dent would. You need only consider points z on or in-
side the ellipse, but handle all the special cases: α = β,
z has a zero coordinate, and so forth.

In Problem 2, we see that a rather simple sounding mathe-
matical problem becomes complicated when we handle the spe-
cial cases properly. When we consider the fact that computers
do their arithmetic inexactly, we see that an algorithm for com-
puting distances to an ellipse must also account for difficulties
encountered, for example, when a component of z is near zero;
we face the difficulties of this algorithm in Problem 3.

Problem 3. Program your distance algorithm, docu-
ment it, and produce a convincing validation of the
code by designing a suitable set of tests and discussing
the results.

Now we have the elements in place to solve our elasto-
plastic torsion problem. We discretize E(u) using finite ele-
ments, and we use our distance function to form the con-
straints, resulting in the problem

1/2 uT K u – bTu

–σ0d –< u –< σ0d,

min
u

( )
2

( )
2

 + = 1x
α

y
β

min
x, y

(x - z1)2+ ( y - z2)2

min
u
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where di = d(xi, yi), and the ith component of u approximates
the solution at (xi, yi). Because the matrix K is symmetric

positive definite (due to the differential equation’s elliptic
nature), the solution to the problem exists and is unique.
This problem is a quadratic programming problem, so algo-
rithms for solving it include active set strategies and the newer
interior point algorithms.

Problem 4. Solve the elastoplastic problem on a
mesh that you estimate will give an error of less than
0.1 in the function E(u). Use the parameters G = 1, σ0
= 1, and β = 1. Let α θ = 0, 0.25, 0.50, …, 5 and β/α =
1, 0.8, 0.65, 0.5, 0.2. Plot a few representative solu-
tions. On a separate graph, for each value of β/α, plot
a curve T/(σ0α3) versus Gαθ/σ0, where T is the esti-
mate of the torque, the integral of u over the domain
D. (This will give you five curves.) On the same plot,
separate the elastic solutions (those for which no vari-
able is at its bound) from the elastoplastic ones. Esti-
mate the errors in your plot’s data points.

W e solved this problem on a rod with a simple cross-
section. Think about how you could extend our

methods to more complicated shapes!
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this problem.
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Tools

T his project comes from a paper coauthored by Wei H. Yang in 1978.1 At that time, we worked very hard to develop
memory- and time-efficient algorithms to solve the elastoplastic problem so that we wouldn’t need a supercomputer.

Now, sufficient computational resources are available in most laptops.
A.P.S. Selvadurai2 gives an excellent derivation of the elastic model equation. He also discusses the model’s history, noting

that several incorrect models existed before Barre de Saint-Venant proposed a correct one.
The solution to Problem 1 requires access to a package to generate finite-element meshes and stiffness matrices. You can

use a stand-alone package such as PLTMG (www.scicomp.ucsd.edu/~reb/) or Matlab’s PDE Toolbox routines (initmesh,
refinemesh, assempde, pdeplot). An introduction to finite-element formulations appears elsewhere.3,4

Problem 2 is deceptively simple, but translating the algorithm into reliable software in Problem 3 requires a great deal of
attention to details. Use a reliable rootfinder such as fzero to solve the nonlinear equation.

For Problem 4, you will need a quadratic programming algorithm, such as Matlab’s quadprog from the Optimization
Toolbox. Quadratic programming is discussed in nonlinear programming textbooks.5
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S UPPOSE WE HAVE TWO CHEMICAL REAC-

TIONS OCCURRING SIMULTANEOUSLY. THEN

THE AMOUNT Y OF A REACTANT CHANGES DUE TO

BOTH PROCESSES AND BEHAVES AS A  FUNCTION OF

time t as

y(t) = x1eα1t+ x2eα2t,

where x1, x2, α1, and α2 are fixed parameters. Typically, we
observe the function y(t) for m fixed t values, perhaps t = 0,
∆t, 2∆t, …, tfinal. The residual vector is defined to be

r = y – Ax,

where Aij = eαjti, j = 1, 2, i = 1, …, m and yi = y(ti).
Let the singular value decomposition (SVD) of A be

UΣVT, where the m × m matrix U satisfies UUT = UTU = I
(the m × m identity matrix), the n × n matrix V satisfies VVT

= VTV = I, and the m × n matrix Σ is zero except for entries
σ1 ≥ σ2 ≥ … ≥ σn on its main diagonal.

Problem 1.
a. The columns of the matrix V = [v1, …, vn] form

an orthonormal basis for n-dimensional space. Let’s
express the solution xtrue as 

xtrue = w1v1 + … wnvn.

Determine a formula for wi (i = 1, …, n) in terms of U,
ytrue, and the singular values of A.

b. Justify the reasoning behind these two statements: 

A(x – xtrue) = y – ytrue – r means

�x – xtrue� ≤ (�y – ytrue – r�)

ytrue = Axtrue means  �ytrue� = �Axtrue� ≤ �A� �xtrue�.

c. Use these two statements and the fact that �A� =
σ1 to derive an upper bound on �x – xtrue�/�xtrue� in
terms of the condition number κ(A) ≡ σ1/σn and �y –
ytrue – r�/�ytrue�.

Answer:
a. We can solve the linear least-squares problem by min-

imizing the norm of UTr = UTy – UTAx = β – ΣVTx, where

βi = ui
Ty, i = 1…, m,

and ui is the ith column of U. If we change the coordinate
system by letting w = VTx, then our problem is to minimize

(β1 – σ1w1)2 + … (βn – σnwn)2 + βn+1
2 + … βm

2 .

From this expression, it is easy to see that the minimum is
achieved by choosing wi = βi/σi, i = 1, …, n, and thus setting
x = Vw.

b. From our SVD, we know that if g = UT(y – ytrue – r),
then

,

and because the vectors vi are orthonormal,

.

The second inequality follows from the property of ma-
trix norms that states that �Ax� ≤ �A� �x� for any compatible
A and x.

c. If we divide the expressions derived in part b, we get

.
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FITTING EXPONENTIALS: AN INTEREST IN RATES
By Dianne P. O’Leary

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:40 from IEEE Xplore.  Restrictions apply.



78 COMPUTING IN SCIENCE & ENGINEERING

Note if the residual is zero (if the model fits the data ex-
actly), then the relative change in x is bounded by the con-
dition number of A times the relative change in y.

Problem 2. Generate 100 problems with data xtrue =
[0.5, 0.5]T, α = [0.3, 0.4], and

y = ytrue + ηz, 

where η = 10–4, ytrue contains the true observations
y(t), t = 0, 0.01, …, 6.00, and the elements of the vec-
tor z are uniformly distributed on the interval [–1, 1].
In a figure, plot the computed solutions x(i), i = 1, …,
100 obtained via your SVD algorithm, assuming that
α is known. In a second figure, plot the components
w(i) of the solution in the coordinate system deter-
mined by V. Interpret these two plots using Problem
1’s results. The points in the first figure are close to a
straight line, but what determines the line’s direction?
What determines the shape and size of the second fig-

ure’s point cluster? Verify your answers by repeating
the experiment for α = [0.3, 0.31] and also try varying
η to be η = 10–2 and η = 10–6.

Answer: Sample Matlab programs to solve this prob-
lem (and the others in this homework) are available at
www.computer.org/cise/homework. The results are shown
in Figures 1 and 2. Note that the shapes of the w clusters
are rather circular; the sensitivity in the two components
is approximately equal. This is not true of the x clusters;
they are elongated in the direction corresponding to the
eigenvector of the smallest singular value, because small
changes in the data in this direction cause large changes
in the solution. The length of the x cluster (and thus the
solution’s sensitivity) is greater in Figure 2 because the
condition number is larger.

Problem 3. Suppose that the reaction results in

Y O U R  H O M E W O R K  A S S I G N M E N T
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Figure 1. Solving problem 2. In this figure, α = [0.3, 0.4] and η = 10–6 (top row), η = 10–4 (middle row), and η = 10–2 (bottom
row). On the left, we plot the two components of x – xtrue, and on the right w – wtrue.
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y(t) = 0.5e–0.3t + 0.5e–0.7t.

Next, suppose that we observe y(t) for t ∈ [0, tfinal],
with 100 equally spaced observations per second.

Compute the residual norm as a function of vari-
ous α estimates, using the optimal values of x1 and x2
for each choice of α values. Make six contour plots of
the log of the residual norm, letting the observation
interval be tfinal = 1, 2, …, 6 seconds. Plot contours of
–2, –6, and –10. How helpful is it to gather data for
longer time intervals? How well determined are the
α parameters?

Answer: Figure 3 shows the results. One thing to note
is that the sensitivity is not caused by the conditioning of
the linear parameters; as tfinal is varied, the condition
number κ(A) varies from 62 to 146, which is quite small.
But the plots dramatically illustrate the fact that a wide
range of α values produce small residuals for this prob-
lem. This is an inherent limitation in the problem, and

we cannot change it. It means, though, that we need to
be very careful in computing and reporting results of ex-
ponential fitting.

One important requirement on the data is that there be a
sufficiently large number of points in the range where each
of the exponential terms is large.

Problem 4.
a. Use a nonlinear least-squares algorithm to deter-

mine the sum of two exponential functions that ap-
proximates the data set generated with α = [–0.3,
–0.4], x = [0.5, 0.5]T, and normally distributed error
with mean zero and standard deviation η = 10–4. Pro-
vide 601 values of (i, y(t)) with t = 0, 0.01, …, 6.0. Ex-
periment with the initial guesses

and
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Figure 2. Solving problem 2. In this figure, α = [0.30, 0.31] and η = 10–6 (top row), η = 10–4 (middle row), and η = 10–2 (bottom
row). On the left, we plot the two components of x – xtrue, and on the right w – wtrue.
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.

Next, plot the residuals obtained from each solution,
and then repeat the experiment with α = [–0.30, –0.31].
How sensitive is the solution to the starting guess?

b. Repeat the runs of part (a), but use variable pro-
jection to reduce to two parameters, the two compo-
nents of α. Discuss the results.

Answer: When the true α = [–0.3, –0.4], the computa-
tions with four parameters produced unreliable results:
[–0.343125 – 2.527345] for the first guess and [–0.335057 –
0.661983] for the second. The results for two parameters
were somewhat better but still unreliable: [–0.328577 –
0.503422] for the first guess and [–0.327283 – 0.488988] for
the second. Note that all the runs produced one significant

figure for the larger of the rate constants but had more trou-
ble with the smaller.

For the harder problem, when the true α = [–0.30, –0.31],
the computations with four parameters produced
[–0.304889 – 2.601087] for the first guess and [–0.304889 –
2.601087] for the second. The results for two parameters
were again better but unreliable for the smaller rate con-
stant: [–0.304889 – 0.866521] for the first guess and
[–0.304889 – 0.866521] for the second.

The residuals for each of these fits are plotted in Figures
4 and 5. From the fact that none of the residuals from our
computed solutions for the first problem resemble white
noise, we can note that the solutions are not good approx-
imations to the data. Troubles in the second problem are
more difficult to diagnose, because the residual looks
rather white. A single exponential function gives a good ap-
proximation to this data, and the second term has very lit-
tle effect on the residual. This is true to a lesser extent for
the first data set.

x(0 ) =
3
4
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Figure 3. Solving problem 3. Contour plots of the residual norm as a function of the estimates of α  for various values of tfinal. The
contours marked are 10–2, 10–6, and 10–10.
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Results will vary with the particular sequence of random
errors generated.

Problem 5. Suppose that we gather data from a
chemical reaction involving two processes: one
process produces a species and the other depletes it.
We have measured the concentration of the species as
a function of time. (If you prefer, consider the amount
of a drug in a patient’s bloodstream while the intestine
is absorbing it and the kidneys are excreting it.) Fig-
ure 6 shows the data; it is also available at www.
computer.org/cise/homework. Suppose your job (or
even the patient’s health) depends on determining the
two rate constants and a measure of uncertainty in
your estimates. Find the answer and document your
computations and reasoning.

Answer: We solved this problem using Matlab’s
lsqnonlin and the two parameters α using several initial
guesses: [–1, –2], [–5, –6], [–2, –6], [0, –6], and [–1, –3].
All runs except the fourth produced values α = [–1.6016,
–2.6963] and a residual of 0.0024011. The fourth run
produced a residual of 0.49631. Figure 6 shows the resid-
uals for the five runs. The four “good” residuals look like
white noise of size about 10–4, giving some confidence in
the fit.

We tested the sensitivity of the residual norm to changes
in the parameters by creating a contour plot in the neigh-
borhood of the optimal values computed earlier (see Fig-
ure 7). If the contours were square, then reporting the un-
certainty in α as ± some value would be appropriate, but as
we can see, this is far from the case. The log = –2.6 contour
outlines a set of α values that changes the residual norm by
less than 1 percent, the log = –2.5 contour denotes a
change of less than 5 percent, and the log = –2.36 contour
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Figure 6. Solving problem 5. Residuals for the five computed solutions (residual component versus t), and, in the lower right, the
data.
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corresponds to a 10 percent change. The best value found
was α = [–1.601660, –2.696310], with residual norm
0.002401137 = 10–2.6196. Our uncertainty in the rate con-
stants is rather large.

The “true solution,” the value used to generate the data,
was α = [–1.6, –2.7] with x1 = –x2 = 0.75, and the standard

deviation of the white noise was 10–4.
Variants of Prony’s method1 provide alternate ap-

proaches to exponential fitting.

E xponential fitting is a very difficult problem, even
when the number of terms n is known. It becomes

even easier to get fooled when determining n is part of the
problem!
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