
of time t as 

y(t) = x1eα1t + x2eα2t,

where x1, x2, α1, and α2 are fixed parameters. The negative
values α1 and α2 are rate constants; in time –1/α1, the first
exponential term drops to 1/e of its value at t = 0. Often we
can observe y(t) fairly accurately, so we would like to deter-
mine the rate and amplitude constants x1 and x2. This in-
volves fitting the parameters of the sum of exponentials.

In this project, we study efficient algorithms for solving
this problem, but we’ll see that for many data sets, the solu-
tion is not well determined.

How Sensitive Are 
the x Parameters to Errors in the Data?
In this section, we investigate how sensitive the y function
is to choices of parameters x, assuming that we are given the
α parameters exactly.

Typically, we observe the function y(t) for m fixed t val-
ues—perhaps t = 0, ∆t, 2∆t, …, tfinal. For a given parameter
set α and x, we can measure the goodness of the model’s fit
to the data by calculating the residual

ri = y(ti) – ye(ti), i = 1, …, m, (1)

where ye(t) = x1eα1t + x2eα2t is the model prediction. Ide-

ally, the residual vector r = 0, but due to noise in the mea-
surements, we never achieve this. Instead, we compute
model parameters that make the residual as small as pos-
sible; we often choose to measure size using the 2-norm:
||r||2 = rTr.

If the parameters α are given, we can find the x parame-
ters by solving a linear least-squares problem because ri is a lin-
ear function of x1 and x2. Thus, we minimize the norm of
the residual, expressed as

r = y – Ax,

where Aij = eαjti; j = 1, 2; i = 1, …, m; and yi = y(ti).
We can easily solve this problem by using matrix decom-

positions, such as the QR decomposition of A into the prod-
uct of an orthogonal matrix times an upper triangular ma-
trix, or the singular value decomposition (SVD). We’ll focus
on the SVD because even though it’s somewhat more ex-
pensive, it’s generally less influenced by round-off error and
it gives us a bound on the problem’s sensitivity to small
changes in the data.

The SVD factors A = UΣVT, where the m × m matrix U
satisfies UUT = UTU = I (the m × m identity matrix), the n ×
n matrix V satisfies VVT = VTV = I, and the m × n matrix Σ
is zero except for entries σ1 ≥ σ2 ≥ … ≥ σn on its main diag-
onal. Because ||r||2 = rTr = (UTr)T(UTr) = ||UTr||2, we can
solve the linear least-squares problem by minimizing the
norm of UTr = UTy – UTAx = β – ΣVTx, where

βi = ui
Ty, i = 1, …, m,

and ui is the ith column of U. If we change the coordinate
system by letting w = VTx, then our problem is to minimize

(β1 – σ1w1)2 + …(βn – σnwn)2 + βn+1
2 + … βm

2.
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FITTING EXPONENTIALS: 
AN INTEREST IN RATES
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I n this issue, we investigate the problem of fitting a sum of exponential functions to data. This problem occurs in many
real-world situations, but we will see that getting a good solution requires care. 
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In Problem 1, we see that the SVD gives us not only an
algorithm for solving the linear least-squares problem, but
also a measure of the sensitivity of the solution x to small
changes in the data y.

Problem 1.
a. The columns of the matrix V = [v1, …, vn] form

an orthonormal basis for n-dimensional space. Let’s
express the solution xtrue as 

xtrue = w1v1 + …. wnvn.

Determine a formula for wi (i = 1, …, n) in terms of U,
ytrue, and the singular values of A.

b. Justify the reasoning behind these two state-
ments: 

A(x – xtrue) =
y – ytrue – r means  ||x– xtrue|| ≤ (||y– ytrue – r||)

ytrue = Axtrue means ||ytrue|| = ||Axtrue|| ≤ ||A|| ||xtrue||.

c. Use these two statements and the fact that ||A|| 
= σ1 to derive an upper bound on ||x – xtrue||/||xtrue|| in
terms of the condition number κ(A) ≡ σ1/σn and ||y
– ytrue – r||/||ytrue||.

The solution to Problem 1 shows that the sensitivity of
the parameters x to changes in the observations y depends
on the condition number κ. With these basic formulas in
hand, we can investigate this sensitivity in Problem 2.

Problem 2. Generate 100 problems with data xtrue =
[0.5, 0.5]T, α = [0.3, 0.4], and

y = ytrue + ηz, 

where η = 10–4, ytrue contains the true observations
y(t), t = 0, 0.01, …, 6.00, and the elements of the vec-
tor z are uniformly distributed on the interval [–1,1].
In a figure, plot the computed solutions x(i), i = 1, …,
100 obtained via your SVD algorithm, assuming that
α is known. In a second figure, plot the components
w(i) of the solution in the coordinate system deter-
mined by V. Interpret these two plots using Problem
1’s results. The points in the first figure are close to a

straight line, but what determines the line’s direction?
What determines the shape and size of the second fig-
ure’s point cluster? Verify your answers by repeating
the experiment for α = [0.3, 0.31] and also try varying
η to be η = 10–2 and η = 10–6.

How Sensitive Is the Model
to Changes in the α Parameters?
Now we need to investigate the sensitivity to the nonlinear
parameters α. In Problem 3, we display how fast the func-
tion y changes as we vary these parameters, assuming that
we compute the optimal x parameters using least squares.

Problem 3. Suppose that the reaction results in

y(t) = 0.5e–0.3t + 0.5e–0.7t.

Next, suppose that we observe y(t) for t ∈ [0, tfinal],
with 100 equally spaced observations per second.

Compute the residual norm as a function of various
α estimates, using the optimal values of x1 and x2 for
each choice of α values. Make six contour plots of the
log of the residual norm, letting the observation in-
terval be tfinal = 1, 2, …, 6 seconds. Plot contours of –2,
–6, and –10. How helpful is it to gather data for longer
time intervals? How well determined are the α para-
meters?

From the results of Problem 3, we learn that the parame-
ters α are not well determined; a broad range of α values
lead to small residuals. This is an inherent limitation in the
problem, and we cannot change it. Nonetheless, we want to
develop algorithms to compute approximate values of α and
x as efficiently as possible, and we next turn our attention to
this computation.

Solving the Nonlinear Problem
If we are not given the parameters α, then minimizing the
norm of the residual r defined in Equation 1 is a nonlinear
least-squares problem. For our model problem, we must deter-
mine four parameters. We could solve the problem by using
standard minimization software, but taking advantage of the
least-squares structure is more efficient. In addition, because
two parameters occur linearly, taking advantage of that struc-

  
1

σ n
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ture is also wise. One very good way to do this is to use a vari-
able projection algorithm. The reasoning is as follows: our
residual vector is a function of all four parameters, but given
the two α parameters, determining optimal values of the two
x parameters is easy if we solve the linear least-squares prob-
lem we considered in Problem 1. Therefore, we express our
problem as a minimization problem with only two variables:

,

where the computation of r requires us to determine the x
parameters by solving a linear least-squares problem using,
for instance, SVD.

Although this is a very neat way to express our minimiza-
tion problem, we pay for that convenience when we evalu-
ate the derivative of the function f(α) = rTr. Because the de-
rivative is quite complicated, we can choose either to use
special-purpose software to evaluate it (see the “Tools” side-
bar) or a minimizer that computes a difference approxima-
tion to it.

min
α

r 2

Y O U R  H O M E W O R K  A S S I G N M E N T

Tools

I n a previous problem, we studied exponential fitting to determine directions of arrival of signals.1 This problem was
somewhat better posed, because the data did not decay.

Fitting a sum of exponentials to data is necessary in many experimental systems, including molecule fluorescence,2 volt-
age formation kinetics,3 studies of scintillators using X-ray excitation,4 drug metabolism, and predator–prey models. Often,
though, the publication of a set of rate constants elicits a storm of letters to the editor, criticizing the methods used to de-
rive them. It is important to do the fit carefully and document the methods used.

A good source on perturbation theory, singular value decomposition (SVD), and numerical solution of least-squares prob-
lems is Åke Björck’s book.5

Looking at a function’s contours is a useful way to understand it. The Matlab function contour is one way to construct
such a plot.

Gene Golub and Victor Pereyra described the variable projection algorithm Varpro, which solves nonlinear least-squares
problems by eliminating the linear variables. Linda Kauffman noticed that each iteration would run faster if certain negligi-
ble but expensive terms in the derivative computation are omitted. Golub and Pereyra wrote a recent review of the litera-
ture on the algorithm and its applications.6

In Problems 4 and 5, if no standard nonlinear least-squares algorithm is available (such as lsqnonlin in Matlab), use a
general-purpose minimization algorithm.

Although bad computational practices often appear in published papers involving fitting exponentials, many sources
discuss the pitfalls quite lucidly. See, for example, Richard Shrager and Richard Hendler’s7 work and Bert Rust’s series of
tutorials.8–10
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Problem 4.
a. Use a nonlinear least-squares algorithm to deter-

mine the sum of two exponential functions that ap-
proximates the data set generated with α = [–0.3,
–0.4], x = [0.5, 0.5]T, and normally distributed error
with mean zero and standard deviation η = 10–4. Pro-
vide 601 values of (i, y(t)) with t = 0, 0.01, …, 6.0. Ex-
periment with the initial guesses

and

.

Next, plot the residuals obtained from each solu-
tion, and then repeat the experiment with α = [–0.30,
–0.31]. How sensitive is the solution to the starting
guess?

b. Repeat the runs of part (a), but use variable pro-
jection to reduce to two parameters, the two compo-
nents of α. Discuss the results.

To finish our investigation of exponential fitting, let’s try
dealing with some given data.

Problem 5. Suppose that we gather data from a
chemical reaction involving two processes: one
process produces a species and the other depletes it.
We have measured the concentration of the species as
a function of time. (If you prefer, consider the amount
of a drug in a patient’s bloodstream while the intestine
is absorbing it and the kidneys are excreting it.) Fig-
ure 1 shows the data; it is also available at www.
computer.org/cise/homework. Suppose your job (or
even the patient’s health) depends on determining the
two rate constants and a measure of uncertainty in
your estimates. Find the answer and document your
computations and reasoning.

F inding rate constants is an example of a problem that is
easy to state and often critically important to solve, but

devilishly difficult to answer with precision.

x (0) =
3
4

 
  

 
  , α (0) = [−5, −6]

x (0) =
3
4

 
  

 
  , α (0) = [−1, −2]
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Figure 1. Data for Problem 5. Given these measurements of
species concentration (mg/ml) versus time (sec), or drug
concentration (mg/liter) versus time (hours), find the rate
constants.
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