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Problem 1. Model 1 consists of the differential
equation

We start the model by assuming some proportion
of infected individuals—for example, I(0) = 0.005, S(0)
= 1 – I(0), and R(0) = 0. Run Model 1 for k = 4 and τ =
0.8 until either I(t) or S(t) drops below 10–5. Plot I(t),
S(t), and R(t) on a single graph. Report the proportion
of the population that became infected and the maxi-
mum difference between I(t) + S(t) + R(t) and 1.

Answer: We’ve posted sample programs at www.
computer.org/cise/homework. Figure A shows the results;
95.3 percent of the population becomes infected.

Problem 2. Instead of using the equation dR/dt = I/k,
we could have used the conservation principle

I(t) + S(t) + R(t) = 1

for all time. Substituting this for the dR/dt equation
gives us an equivalent system of differential algebraic
equations (DAEs); we will call this Model 2.

Redo Problem 1 using Model 2 instead of Model 1.
To do this, differentiate the conservation principle and
express the three equations of the model as My′ = f(t,
y), where M is a 3 × 3 matrix.

Answer: Figure A shows the results, which, as expected,
are indistinguishable from those of Model 1.

Problem 3.
a. Redo Problem 1 using Model 3 

instead of Model 1. For t ≤ 0, use the initial conditions

I(t) = 0, S(t) = 1, R(t) = 0, 

and let I(0) = 0.005, S(0) = 1 – I(0), and R(0) = 0.
Note that these conditions match our previous ones

at t = 0. Compare the results of the three models.

Answer: Figure B shows the results; 94.3 percent of the
population becomes infected, slightly less than in the first
models. The epidemic dies out in roughly half the time.

Problem 4. Let S, I, and R depend on a spatial coor-
dinate (x, y) as well as t, and consider the model

To solve this problem, we will discretize and approxi-
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mate the solution at the points of a grid of size n × n.
Let h = 1/(n – 1) and let xi = ih, i = 0, …, n – 1 and yj = jh,
j = 0, …, n – 1. Our variables will be our approximations
I(t)ij ≈ I(t, xi, yj) and similarly for S(t)ij and R(t)ij.

a. Use Taylor series expansions to show that we can
approximate

.

We can derive a similar expression for d2I(t, xi, yj)/dy2.
b. Form a vector Î(t) from the approximate values of

I(t) by ordering the unknowns as I00, I01, …, I0,n–1; I10,
I11, …, I1,n–1, …, In–1,0; In–1,1, …, In–1,n–1. In the same way,
form the vectors Ŝ(t) andR̂(t) and derive the matrix A so
that our discretized equations become Model 4: 

where the notation Î(t). * Ŝ(t) means the vector formed
from the product of each component of Î (t) with the
corresponding component of Ŝ(t) . To form the ap-
proximation near the boundary, assume that the (Neu-
mann) boundary conditions imply I(t, –h, y) = I(t, h, y),
I(t, 1 + h, y) = I(t, 1 – h, y) for 0 ≤ y ≤ 1, and similarly
for S and R. Make the same type of assumption at the
two other boundaries.

Answer:
a. Since Taylor series expansion yields

I(t)i–1,j = I(t, x, y) – hIx(t, x, y) + Ixx(t, x, y) 

– Ixxx(t, x, y) + O(h4)

and

I(t)i+1,j = I(t, x, y) + hIx(t, x, y) + Ixx(t, x, y) 

+ Ixxx(t, x, y) + O(h4), 

we see that

b. The matrix A can be expressed as

A = T ⊗ I + I ⊗ T,

where
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Figure A. Proportion of individuals infected by the epidemic
from the ODE Model 1 or the DAE Model 2.
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Figure B. Proportion of individuals infected by the epidemic
from the DDE Model 3.
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and T and I are matrices of dimension n × n. (The notation
C ⊗ D denotes the matrix whose (i, j)th block is cijD. The
Matlab command to form this matrix is kron(C,D), which
means Kronecker product of C and D.)

Problem 5.
a. Set n = 11 (so that h = 0.1), k = 4, τ = 0.8, and δ =

0.2 and use an ODE solver to solve Model 4. For ini-
tial conditions, set S(0, x, y) = 1 and I(0, x, y) = R(0, x,
y) = 0 at each point (x, y), except that S(0, 0.5, 0.5) = I(0,
0.5, 0.5) = 0.5. (For simplicity, you need only use I and
S in the model, and you may derive R(t) from these
quantities.) Stop the simulation when the average value
of either Î(t) or Ŝ(t) drops below 10–5. Form a plot sim-
ilar to that of Problem 1 by plotting the average value
of I(t), S(t), and R(t) versus time. Compare the results.

b. Let’s vaccinate the susceptible population, at a
rate νS(t, x, y) I(t, x, y)/(I(t, x, y) + S(t, x, y)). This rate
is the derivative of the vaccinated population V(t, x, y)
with respect to time, and this term is subtracted from
∂S(t, x, y)/∂t. Run this model with ν = 0.7 and compare
the results with those of Model 4.

Answer: Figure C shows the results of Problem 5a, and Fig-
ure D shows those for Problem 5b. The infection rate with-
out vaccination is 95.3 percent (very similar to Model 1), but
with vaccination, it drops to 38.9 percent. Vaccination also
significantly shortens the epidemic’s duration.
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Figure C. Proportion of individuals infected by the epidemic
from the differential equation of Model 5a.

Figure D. Proportion of individuals infected by the epidemic from
the differential equation of Model 5b, including vaccinations.
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