YOUR HOMEWORK ASSIGNMENT

Partial Solution to Last Issue’s
Homework Assignment

MORE MODELS OF INFECTION: IT’S EPIDEMIC

By Dianne P. O’Leary

Problem 1. Model 1 consists of the differential
equation

dl(t)
dt

LY - < 1s0),

= (1)S(¢)— I()k,

aR()

=10 /&

We start the model by assuming some proportion
of infected individuals—for example, 1(0) = 0.005, S(0)
=1-1(0), and R(0) = 0. Run Model 1 for k=4 and 7=
0.8 until either I(¢) or S(#) drops below 107°. Plot I(z),
S(#), and R(z) on a single graph. Report the proportion
of the population that became infected and the maxi-
mum difference between I(z) + S(t) + R(z) and 1.

Answer: We've posted sample programs at www.
computer.org/cise/homework. Figure A shows the results;
95.3 percent of the population becomes infected.

Problem 2. Instead of using the equation dR/dt = I/k,
we could have used the conservation principle

1)+ S@) +R@) =1

for all time. Substituting this for the dR/dt equation
gives us an equivalent system of differential algebraic
equations (DAEs); we will call this Model 2.

Redo Problem 1 using Model 2 instead of Model 1.
To do this, differentiate the conservation principle and
express the three equations of the model as My’ = f{z,
), where M s a 3 x 3 matrix.

Answer: Figure A shows the results, which, as expected,
are indistinguishable from those of Model 1.

Problem 3.
a. Redo Problem 1 using Model 3
% =t (t)S(t) - (t - k)S(t — k),
as)
=8 ==I0s0),
RO e BS(r—
1 =t (¢t —k)S(t —k),

instead of Model 1. For # < 0, use the initial conditions
6= 0,50 =1, R@) = 0,
and let I(0) = 0.005, S(0) = 1 — I(0), and R(0) = 0.

Note that these conditions match our previous ones
att = 0. Compare the results of the three models.

Answer: Figure B shows the results; 94.3 percent of the

population becomes infected, slightly less than in the first
models. The epidemic dies out in roughly half the time.

Problem 4. Let S, 1, and R depend on a spatial coor-
dinate (x, y) as well as 7, and consider the model

TCEI) 14,2, y)S(t,2,9)~ 11,0, ) &

ot
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To solve this problem, we will discretize and approxi-
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Solution from ordinary differential equation model
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Figure A. Proportion of individuals infected by the epidemic
from the ODE Model 1 or the DAE Model 2.

mate the solution at the points of a grid of size 7 X 7.
Leth=1/(n—1)andletx;=ih,i=0,...,n—1andy; = jbh,
j=0,...,m—1. Our variables will be our approximations
I(t);; = It, x;, ) and similarly for S(z);; and R(2);.

a. Use Taylor series expansions to show that we can
approximate

PLtxy,y;)  1@)y,; = 2A@)+ (1),
2 = 2
dx b

+0(h).

We can derive a similar expression for d*I(z, x;, y])/dy

b. Form a vector I(z) from the approximate values of
1(z) by ordering the unknowns as Iy, Iy, .., Lo ,1; L0,
Illa . Il =1y - In—l 05 In—l Ly oo In—l -1+ In the same way,
form the vectors S(?) andR(t) and derive the matrix 4 so
that our discretized equations become Model 4:

~

? =tl(2). *S@)~ 1(2) / k+3(AL(1)).* S,
3S S a P %8
% = (2).* (1) -3(41()} *S@),
BR(t)
P =1(1) /&,

where the notation I(?). *S(#) means the vector formed
from the product of each component of I(?) with the
corresponding component of S(z) . To form the ap-
proximation near the boundary, assume that the (Neu-
mann) boundary conditions imply I(z, -h, y) = (¢, b, y),
I(t, 1+ b, y)=1(t, 1 = b, y) for 0 <y <1, and similarly
for S and R. Make the same type of assumption at the
two other boundaries.

Figure B. Proportion of individuals infected by the epidemic
from the DDE Model 3.

Answer:

a. Since Taylor series expansion yields

2
I(t)i—lzj = I(t’ x,)’) - be(t7 x:y) + % Ixx(t’ x,)’)

3
- % ot 2,9) + O(b%)
and

2
I(t)i+lz/' = I(t’ .X’,_)/) + blx(t’ x,J’) + %Ixx(t’ x?,)/)

3
+ % La(t, %, ) + O,
we see that

1) ;= 2L(t) + 1)y BT (2,2, y) +O(h™")
JE B JE
=1_.(t,%,y)+O0(h%).

b. The matrix 4 can be expressed as

A=TRI+I®T,
where
) _
1 =21
1
T=17 o
1-21
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1.0 Solution from differential equation model
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Figure C. Proportion of individuals infected by the epidemic
from the differential equation of Model 5a.

and T and I are matrices of dimension 7z X z. (The notation
C ® D denotes the matrix whose (7, j)th block is ¢;D. The
Matlab command to form this matrix is kron (C, D), which
means Kronecker product of C and D.)

Look to the Future

IEEE Internet Computing reports
emerging tools, technologies, and
applications implemented through
the Internet to support a worldwide
computing environment.

In the next year, we'll look at

® Business Processes for the Web

eSeeds of Internet Growth

¢ |Internet-Based Data
Dissemination

e the Wireless Grid

* Measuring Performance

¢ Homeland Security

... and more!
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Figure D. Proportion of individuals infected by the epidemic from
the differential equation of Model 5b, including vaccinations.

Problem 5.

a.Setn =11 (sothath=0.1), k=4, 7=0.8,and 6 =
0.2 and use an ODE solver to solve Model 4. For ini-
tial conditions, set S(0, «, y) = 1 and 1(0, x, y) = R(0, «,
y) =0 at each point (x, y), except that S(0, 0.5, 0.5) = I(0,
0.5,0.5)=0.5. (For simplicity, you need only use I and
S in the model, and you may derive R(z) from these
quantities.) Stop the simulation when the average value
of either I(¢) or S(?) drops below 107, Form a plot sim-
ilar to that of Problem 1 by plotting the average value
of [(?), S(t), and R(z) versus time. Compare the results.

b. Let’s vaccinate the susceptible population, at a
rate VS(t, x, ) I(t, x, y)/ (I, x, y) + S, «, y)). This rate
is the derivative of the vaccinated population V{2, x, y)
with respect to time, and this term is subtracted from
dS(t, x, y)/ot. Run this model with v= 0.7 and compare
the results with those of Model 4.

Answer: Figure C shows the results of Problem 5a, and Fig-
ure D shows those for Problem 5b. The infection rate with-
out vaccination is 95.3 percent (very similar to Model 1), but
with vaccination, it drops to 38.9 percent. Vaccination also
significantly shortens the epidemic’s duration. s
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