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individually, but when population size grows, this kind of
model becomes impractical; accordingly, we turn our atten-
tion in this issue to models that study the population as a
whole.

As before, we divide the population into three
groups: at day t, I(t) is the infected proportion of the
population, whereas S(t) is the proportion that has
never been infected. These quantities satisfy 0 ≤ I(t) ≤
1 and 0 ≤ S(t) ≤ 1 for t ≥ 0. We derive the third part,
R(t)—the proportion of the population that was once
infected but has now recovered—from the first two:
R(t) = 1 – I(t) – S(t).

Models without Spatial Variation
In the models we studied before, an individual’s proba-
bility of becoming infected depended on the status of his
or her neighbors. In our next model, we ignore that de-
pendence, which is equivalent to assuming a “well
mixed” model: all members of the population have mu-
tual contact.

How might we model the three groups in this population?
If the infection (or at least its contagious phase) lasts k days,
we might assume that the recovery rate is equal to the num-
ber infected divided by k. Thus, on average, 1/k of the in-
fected individuals will recover each day.

Let τ be the proportion of encounters between an infected
individual and a susceptible one that transmit the infection.
The rate of new infections should increase as any of the pa-
rameters I, S, or τ increases, so we can model this rate as
τI(t)S(t).

Next, we take the limit as the “time step” ∆t goes to zero,
obtaining a system of ordinary differential equations (ODEs).
This gives us a simple, but interesting, Model 1:

(1)

We start the model by assuming some proportion of in-
fected individuals—for example, I(0) = 0.005, S(0) = 1 – I(0),
and R(0) = 0.

Problem 1. Run Model 1 for k = 4 and τ = 0.8 until either
I(t) or S(t) drops below 10–5. Plot I(t), S(t), and R(t) on a
single graph. At the end of the computation, report the
proportion of the population that became infected and the
maximum difference between I(t) + S(t) + R(t) and 1.

Instead of using the equation dR/dt = I/k, we could have
used the conservation principle

I(t) + S(t) + R(t) = 1 (2)
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for all time. Substituting this for the dR/dt equation gives us
an equivalent system of differential algebraic equations (DAEs)
that we call Model 2.

Problem 2. Redo Problem 1 using Model 2. To do
this, differentiate the conservation principle and ex-
press the three equations of the model as My′ = f(t, y),
where M is a 3 × 3 matrix. 

The model has many limitations, but one of them is that
the recovery rate is proportional to the current number of
infections. This means that we aren’t very faithful to the hy-
pothesis that each individual is infected (and infectious) for
k days. One way to model this more closely is to use a delay
differential equation (DDE). We modify Model 1 by specify-
ing that the recovery rate at time t is equal to the rate of new
infections at time t – k. This gives us Model 3: 

(3)

One disadvantage of Model 3 is that we must specify ini-
tial conditions not just at t = 0, but also for –k ≤ t ≤ 0; thus
we need a lot more information. A second disadvantage is
that functions I, S, and R probably will have discontinuous
derivatives (for example, at t = 0 and t = k, when we switch
between dependence on the initial conditions and depen-
dence only on the integration history). This causes solvers
to do extra work at these points of discontinuity.

Problem 3. Redo Problem 1 using Model 3 instead.
For t < 0, use the initial conditions

I(t) = 0, S(t) = 1, R(t) = 0,

and let I(0) = 0.005, S(0) = 1 – I(0), and R(0) = 0. Note
that these conditions match our previous ones, but
jump at t = 0. Compare the three models’ results.

Models that Include Spatial Variation
Epidemics vary in space as well as time. They usually start
in a single location and then spread, based on the infected
individuals’ interactions with their neighbors. Models 1, 2,
and 3 lose this characteristic, so now we let S, I, and R de-
pend on a spatial coordinate (x, y) as well as t and see what
such a model predicts.

Because people move in space, we introduce a diffusion
term that lets infected individuals affect susceptible individ-
uals close to them in space. Diffusion adds a term
δ((d2I)/(dx2) + (d2I)/(dy2))S to dI/dt and subtracts the same
term from dS/dt. This produces differential equations anal-
ogous to Model 1: 

We assume that the initial values I(0, x, y) and S(0, x, y) are
given, that we study the problem for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
t ≥ 0, and that there is no diffusion across the boundaries x
= 0, x = 1, y = 0, and y = 1.

To solve this problem, we discretize and approximate the
solution at the points of an n × n grid. Let h = 1/(n – 1), let
xi = ih, i = 0, …, n – 1, and let yj = jh, j = 0, …, n – 1. Our vari-
ables will be our approximations I(t)ij ≈ I(t, xi, yj) and simi-
larly for S(t)ij and R(t)ij.

Problem 4.
a. Use Taylor series expansions to show that we can

approximate

  

∂
∂

=
R t x y

t
I t x y k

( , , )
( , , ) / .

  
−

∂
∂

+
∂

∂









δ

2

2

2

2
I t x y

x
I t x y

y
S t x y

( , , ) ( , , )
( , , ),

  

∂
∂

= −
S t x y

t
I t x y S t x y

( , , )
( , , ) ( , , )τ

  
+

∂
∂

+
∂

∂









δ

2

2

2

2
I t x y

x
I t x y

y
S t x y

( , , ) ( , , )
( , , ),

  

∂
∂

= −
I t x y

t
I t x y S t x y I t x y k

( , , )
( , , ) ( , , ) ( , , ) /τ

  

dR t
dt

I t k S t k
( )

( ) ( ).= − −τ

  

dS t
dt

I t S t
( )

( ) ( ),= −τ

  

dI t
dt

I t S t I t k S t k
( )

( ) ( ) ( ) ( ),= − − −τ τ

(Continued)

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 24, 2008 at 09:38 from IEEE Xplore.  Restrictions apply.



52 COMPUTING IN SCIENCE & ENGINEERING

.

We can derive a similar expression for d2I(t, xi, yj)/dy2.
b. Form a vector  Î (t) from the approximate values

of I(t) by ordering the unknowns as I00, I01, …, I0,n–1,
I10, I11, …, I1,n–1, …, In–1,0, In–1,1, …, In–1,n–1. In the
same way, form the vectors  Ŝ(t) and  R̂(t), and then de-
rive the matrix A so that our discretized equations be-
come Model 4: 

(4)

where the notation Î (t).*  Ŝ(t) means that we form the
vector from the product of each component of  Î (t)
with the corresponding component of  Ŝ(t). To form
the approximation near the boundary, assume that the
(Neumann) boundary conditions imply I(t, –h, y) = I(t,
h, y), I(t, 1 + h, y) = I(t, 1 – h, y) for 0 ≤ y ≤ 1, and simi-
larly for S and R. Make the same type of assumption
at the two other boundaries. 

We can use this model in two ways. First, suppose we fix
the time step ∆t and use Euler’s method to approximate the
solution. This means we approximate the solution at t + ∆t
by the solution at t, plus ∆t times the derivative at t, which
gives us an iteration:

This model is very much in the spirit of the models we con-
sidered in the last issue—except that it’s deterministic instead
of stochastic.

Alternatively, we could apply a more accurate ODE solver
to this model, as we do in the next problem.

Problem 5.
a. Set n = 11 (so that h = 0.1), k = 4, τ = 0.8, and δ =

0.2 and use an ODE solver to solve Model 4. For ini-
tial conditions, set S(0, x, y) = 1 and I(0, x, y) = R(0, x,
y) = 0 at each point (x, y), except that S(0, 0.5, 0.5) =
I(0, 0.5, 0.5) = 0.5. (For simplicity, you need only use
I and S in the model; you may derive R(t) from these
quantities.) Stop the simulation when the average
value of either   Î (t) or  Ŝ(t) drops below 10–5. Form a
plot similar to that of Problem 1 by plotting the aver-
age value of I(t), S(t), and R(t) versus time. Compare
the results.

b. Let’s vaccinate the susceptible population at a rate
of νS(t, x, y)I(t, x, y)/(I(t, x, y) + S(t, x, y)). This rate is
the derivative of the vaccinated population V(t, x, y)
with respect to time; we subtract this term from ∂S(t,
x, y)/∂t. So now we model four segments of the popu-
lation: susceptible S(t), infected I(t), recovered R(t),
and vaccinated V(t). Your program can track three of
these and derive the fourth from the conservation
principle S(t) + I(t) + R(t) + V(t) = 1. Run this model
with ν = 0.7, and compare the results with those of
Model 4.

If you want to experiment further with Model 4, incorpo-
rate the delay recovery term in place of .

I n the models we used in the last issue, we incorporated
some randomness to account for any factors not explic-

itly modeled. We also could put randomness into our dif-
ferential equation models, resulting in stochastic differential
equations. (See the “Tools”) sidebar for references on this
subject.)
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We have mn patients in a hospital ward, and one of them be-
comes infected. We track I(t), the proportion of the infected
population; S(t), the proportion of the population that never
has been infected, and R(t), the remaining proportion. We
let τ be the probability of being infected by a sick neighbor.

Problem 1. Run the model for m = n = 10, k = 4, and
τ = 0.2 until there are no infected patients. Plot I(t),
S(t), and R(t) in a single graph. If possible, display the
epidemic as a movie, where each pixel’s color repre-
sents a patient’s state. 

Problem 2. Next, we add a probability δ of patients
being moved to a different bed. Modify your model
to include mobility and run it for δ = 0.01 until no in-
fected patients remain. Display the results as in
Problem 1.

Problem 3. Suppose that each day, each susceptible
individual has a probability ν of being vaccinated. Re-
run your model with ν = 0.1 until no infected patients
remain. Display the results as in Problem 1, and then
compare the three models’ results.

Answer: Figure 1 shows the simulation results for each of
these three models. (The Matlab program that generated the
results is at www.computer.org/cise/homework.) Generally,
mobility increases the infection rate and vaccination dramat-
ically decreases it. In our sample runs, the infection peaks

Tools

T he Matlab function ode23s provides a good solver for
Problem 1’s ordinary differential equations (ODEs).

Most ODE software provides a mechanism for stopping the in-
tegration when some quantity goes to zero; in ode23s, using
the Events property in an option vector accomplishes this.
Charles van Loan’s book1 provides a good introduction to the
numerical solution of ODEs; more specialized texts cover the
reasons for preferring a stiff solver like ode23s for certain types
of ODEs.2

For Problem 2, we can use ODE software, including
ode23s, to solve certain differential algebraic equations
(DAEs); in Matlab, using the Mass property in the option
vector accomplishes this. Model 2 is a very simple DAE;
Kathryn Brenan, Steven Campbell, and Linda Petzold’s book
provides more information on the theory and solution of
such problems.3

Delay differential equations (DDEs) such as those in Problem
3 arise in many applications, including circuit analysis. To learn
more, consult a text such as Richard Bellman and Kenneth
Cooke’s book4 or Jack Hale and Sjoerd Lunel’s book.5 In Mat-
lab (Release 13), we can solve certain DDEs by using dde23.

Stochastic differential equations are an active research
area. Desmond Higham6 gives a good introduction to
computational aspects and supplies references for further
investigation.

Model 1 is Kermack and McKendrick’s SIR model, first intro-
duced in 1927. Nicholas Britton discusses it in more detail.7

James Callahan presents the differential equations leading
to Model 4,8 by following a model with one space dimension
given in an older text.9
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