
We have mn patients in a hospital ward, and one of them be-
comes infected. We track I(t), the proportion of the infected
population; S(t), the proportion of the population that never
has been infected, and R(t), the remaining proportion. We
let τ be the probability of being infected by a sick neighbor.

Problem 1. Run the model for m = n = 10, k = 4, and
τ = 0.2 until there are no infected patients. Plot I(t),
S(t), and R(t) in a single graph. If possible, display the
epidemic as a movie, where each pixel’s color repre-
sents a patient’s state. 

Problem 2. Next, we add a probability δ of patients
being moved to a different bed. Modify your model
to include mobility and run it for δ = 0.01 until no in-
fected patients remain. Display the results as in
Problem 1.

Problem 3. Suppose that each day, each susceptible
individual has a probability ν of being vaccinated. Re-
run your model with ν = 0.1 until no infected patients
remain. Display the results as in Problem 1, and then
compare the three models’ results.

Answer: Figure 1 shows the simulation results for each of
these three models. (The Matlab program that generated the
results is at www.computer.org/cise/homework.) Generally,
mobility increases the infection rate and vaccination dramat-
ically decreases it. In our sample runs, the infection peaks

Tools

T he Matlab function ode23s provides a good solver for
Problem 1’s ordinary differential equations (ODEs).

Most ODE software provides a mechanism for stopping the in-
tegration when some quantity goes to zero; in ode23s, using
the Events property in an option vector accomplishes this.
Charles van Loan’s book1 provides a good introduction to the
numerical solution of ODEs; more specialized texts cover the
reasons for preferring a stiff solver like ode23s for certain types
of ODEs.2

For Problem 2, we can use ODE software, including
ode23s, to solve certain differential algebraic equations
(DAEs); in Matlab, using the Mass property in the option
vector accomplishes this. Model 2 is a very simple DAE;
Kathryn Brenan, Steven Campbell, and Linda Petzold’s book
provides more information on the theory and solution of
such problems.3

Delay differential equations (DDEs) such as those in Problem
3 arise in many applications, including circuit analysis. To learn
more, consult a text such as Richard Bellman and Kenneth
Cooke’s book4 or Jack Hale and Sjoerd Lunel’s book.5 In Mat-
lab (Release 13), we can solve certain DDEs by using dde23.

Stochastic differential equations are an active research
area. Desmond Higham6 gives a good introduction to
computational aspects and supplies references for further
investigation.

Model 1 is Kermack and McKendrick’s SIR model, first intro-
duced in 1927. Nicholas Britton discusses it in more detail.7

James Callahan presents the differential equations leading
to Model 4,8 by following a model with one space dimension
given in an older text.9
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around day 18 with no mobility, and around day 15 when pa-
tients are moved. Individual runs might vary, though.

Problem 4. Run Problem 3’s model 1,000 times,
recording the number of individuals who become in-
fected in each run. (This is equal to the number of re-
covered individuals when the run is terminated.) Plot
this data as a histogram, and then compute the mean
number of recovered individuals and the variance in
this number. Try several different values of ν to see
whether the variance changes. 

Answer: Figure 2 shows the histograms for ν = 0, 0.1, 0.2, and
0.3. The mean percent of the population infected drops from
73.6 percent for ν = 0 (with a variance of 4.5 percent) to 4.1
percent for ν = 0.3 (with a variance of only 0.06 percent).

Problem 5. Develop a vaccination strategy that will, on
average, limit the epidemic to 20 percent of the population.
Do this by using a nonlinear equation solver to solve the
problem R(ν) – 0.2 = 0, where R(ν) is the mean number of
recovered individuals when we use a vaccination rate of ν.
For each value of ν the solver presents, you will need to get
a reliable estimate of R by running the model multiple
times. Use Problem 4’s variance estimates to determine
how many runs to use, and then justify your choice.

Answer:From Problem 4, we know that a very low vaccination rate
(somewhat less than nu = 0.1) is sufficient to dramatically reduce the
infection rate. But using a nonlinear equation solver on a noisy func-
tion is quite dangerous; it is easily fooled by outliers, and changing
the starting guess, you can make it produce almost any value.

Problem 6.
a. Construct the transition matrix A corresponding

to this Markov chain: element ai,j is the probability of
transitioning to state i from state j.

b. Let e1 be the column vector with 1 in position 1
and zeroes elsewhere. If we begin in day one in the
first state, then vector Ae1 tells us the probabilities of
being in each of the states on day two. Prove this.

c. Similarly, A2e1 gives the probabilities for day
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Figure 1. Proportion of individuals infected by day in a 10 × 10
grid of hospital beds. (a) The infection rate τ = 0.2, (b) the
infection rate τ = 0.2 and mobility rate δ = 0.01, and (c) the
infection rate τ = 0.2, mobility rate δ = 0.01, and vaccination
rate ν = 0.1.
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three. For efficiency, this should be computed as
A(Ae1) rather than as (A2)e1. Explain why, by doing
the operations counts.

d. If we compute z = Aje1 for a large enough j, we
will have the (exact) probabilities of being in each state
after the epidemic passes. Use this fact to compute the
probabilities of having one, two, or three infected in-
dividuals, and compare these probabilities with the re-
sults of a Monte Carlo experiment as performed in

Problem 4 but using three individuals. How many
Monte Carlo simulations does it take to get two dig-
its of accuracy in the probabilities?

e. In this simple problem, you can determine the
three probabilities directly from Figure 3, by deter-
mining the probability of a transition from state A to
states P, Q, R, and S. Show how to derive these prob-
abilities, giving the same answer as you obtained via
the Markov chain computation earlier.
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Figure 2. Results of 1,000 trials for a 10 × 10 grid of hospital beds. The infection rate is τ = 0.2, and the vaccination rate varies.
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Answer:
a. Figure 3 gives the transition probabilities; the matrix is

given in the Matlab code on the Web site.
b. Ae1 is equal to column 1 of A, which contains the prob-

abilities of transitioning from state 1 to any other state. Gen-
erally, if p is a vector of the probabilities of initially being in
each of the states, then Ap is the vector of probabilities of
being in them at time 1.

c. Computing A(Ae1) costs 2s2 multiplications, where s
is the number of states. Computing (A2)e1 costs s3 + s2 mul-
tiplications, which grows quite a bit larger when s is large.
We should also take advantage of the zeros in A and avoid
multiplying by them. If we do this for our matrix, then A
has 21 nonzero elements whereas A2 has 23, so again it
takes more multiplications to form (A2)e1 than to form
A(Ae1). We also should note that the product Ae1 is just

the first column of A, so we could compute
it without multiplications.

d. In this experiment, it took 280 Monte
Carlo simulations to get two digits of accu-
racy. Asking for three digits raises the num-
ber of trials into the 10,000s because the
variance is high relative to threshold.

e. There is only one path to state Q (cor-
responding to a single infection), and the
product of the probabilities of transitions
along this path are (1 – τ)4. There are two
paths to state S; summing the product of
the probabilities along the paths gives (τ(1
– τ)2 + τ(1 – τ)3). The probability of reach-
ing state P is the same, so the probability of
two infections is twice this number. Simi-
larly, the probability of reaching state R,
corresponding to three infections, is τ2

+ 2τ2(1 – τ) + (1 – τ)2τ2.
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Figure 3. A Markov chain that models three patients, with the
middle patient infected. The yellow state is our starting state;
the red states are the possible outcomes when the infection
runs its course, corresponding to one, two, or three patients
eventually infected.
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