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strategies, quarantine policy, and the use of public health
resources. This is  true whether the pathogen’s dispersion
is natural (for example, the spread of influenza in 1918) or
deliberate (for example, the spread of anthrax via terror-
ism). Effective mathematical models can help us test a pub-
lic health policy’s potential outcome and initiate an effec-
tive response.

In this problem, we focus on a simplified model of the
spread of an infection and develop some tools that lend in-
sight into its behavior. To make our problem as easy as pos-
sible, we impose some rather artificial assumptions. Suppose
we have nm patients in a hospital ward and that their beds
are arranged as n rows of m beds. For convenience, we’ll let
m be an even number. Suppose also that one of the patients,
the one in bed m/2 in row n/2, becomes infected and can
infect any patient in a neighboring bed. How will this in-
fection spread through the ward?

Insight through Monte Carlo Simulation
First, we’ll need some model parameters. A patient, once in-
fected, stays contagious for k days and then recovers, never
to be infected again. For every day of infection, the proba-
bility that each susceptible neighbor (north, south, east, or
west) becomes infected is τ.

This gives us three parts of the population to track. At day
t, I(t) is the infected proportion of the population; S(t) is the
proportion of the population that has never been infected.

These quantities satisfy 0 ≤ I(t) ≤ 1 and 0 ≤ S(t) ≤ 1 for t ≥ 0.
We derive the third part, R(t)—the proportion of the pop-
ulation that was once infected but has now recovered—from
the first two: R(t) = 1 – I(t) – S(t).

We can use this model by running a simulation of it. Each
patient is in one of k + 2 states: the patient has recovered
from an infection, is susceptible to infection, or is in the ith
day (i = 1, …, k) of the k day infection. The integer values
–1, 0, and 1, …, k are convenient for representing these dif-
ferent states. Each day, we update each infected patient’s sta-
tus by incrementing that patient’s state; for each susceptible
neighbor, we generate a random number between 0 and 1.
If that number is less than τ, then the neighbor’s state
changes from 0 to 1, which indicates infection. We continue
this process until there are no more infected patients; at that
point, our model allows no possibility of any additional in-
fections, so the epidemic ends.

Let’s see how this model behaves.

Problem 1. Run the model for m = n = 10, k = 4, and
τ = 0.2 until there are no infected patients. Plot I(t),
S(t), and R(t) in a single graph. If possible, display the
epidemic as a movie, where each pixel’s color repre-
sents a patient’s state.

The model is stochastic, so if we run it 10 times, we might
get 10 different results, possibly ranging from no infections
other than the original patient to infection of every patient.
(These are both very low-probability events, however.) We
must investigate the variation in results, but first let’s add
two complications.

The patients in our model are immobile and can only
contact their four nearest neighbors. In most situations, the
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population would move in more arbitrary ways—for exam-
ple, epidemics jump from continent to continent by air or
ship travel. In our hospital ward, let’s assume that the nurs-
ing staff sometimes moves patients to other beds. For defi-
niteness, we’ll assume that each patient initiates a swap with
probability δ. Then, at each time and for each patient, we
must decide whether that patient initiates a swap. If so, we’ll
choose the bed indices for the second patient randomly as
r2n + 1, r2m + 1, where r1 and r2 are random samples
from a uniform distribution on [0, 1].

Problem 2. Modify your model to include mobility
and run it for δ = 0.01 until there are no infected pa-
tients. Display the results as in Problem 1.

Two major tools slow the spread of epidemics: quarantine
(to isolate infected individuals) and vaccination (to protect sus-
ceptible individuals). To reduce the number of infections in
our hospital model, we should move the infected individuals
to a corner of the ward, with recovered individuals separating
them from susceptible ones whenever possible. You could ex-
periment with this quarantine strategy, but in the next prob-
lem we turn our attention to vaccinations. For convenience,
you could use the value –2 to indicate a vaccinated patient.

Problem 3. Suppose that each day, each susceptible
individual has a probability ν of being vaccinated. Re-
run your model with ν = 0.1 and ∆ = 0 until no in-
fected patients remain. Display the results as in Prob-
lem 1, and then compare the three models’ results.

Now we need to see how much variation is possible in the
results if we run the model multiple times.

Problem 4. Run Problem 3’s model 1,000 times,
recording the proportion of individuals who become
infected in each run. (This is equal to the number of
recovered individuals when the run is terminated.)
Plot this data as a histogram, and then compute the
mean number of recovered individuals and the vari-
ance in this number. Try several different values of ν
to see whether the variance changes.

From Problem 3’s results, we see that vaccinations can
contain an epidemic’s spread. In Problem 5, let’s take the
role of a public health official trying to limit the spread.

Problem 5. Develop a vaccination strategy that will,
on average, limit the epidemic to 20 percent of the
population. Do this by using a nonlinear equation
solver to solve the problem R(ν) – .2 = 0, where R(ν) is
the mean proportion of recovered individuals when
we use a vaccination rate of ν. For each value of ν the
solver presents, you will need to get a reliable estimate
of R by running the model multiple times. Use Prob-
lem 4’s variance estimates to determine how many
runs to use, and then justify your choice.

Tools

The 1918 influenza epidemic killed more than 20 mil-
lion people. Investigators believe that it might have

started on a US Army base, but the disaster had a world-
wide impact, with millions killed in India alone. Travel of
soldiers in World War I aided the spread of the infection.
Gina Kolata chronicles these events in a recent book.1

When doing Monte Carlo experiments, it’s wise to use
a high-quality (pseudo-) random number generator to
get valid results. Donald Knuth’s book is the classic refer-
ence for understanding such programs.2

You can use Matlab’s fzero function in Problem 5.
To go beyond the simple-minded models investigated

in this article, read, for example, the books by Nick Brit-
ton3 and Frank Hoppensteadt and Charles Peskin.4

You can learn more about Markov chain models and
computing in William Stewart’s book.5

Many approaches to aggregation of Markov chains exist.
One starting point is an article by Ivo Marek.6
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A Markov Model
The model we just developed has the Markov property: each in-
dividual’s status depends only on the population’s status on the
previous day, not on any older history. In fact, the system is a
Markov chain. The states in the chain correspond to the pop-
ulation’s possible statuses; we can label each state (d1, …, dp),
where there are p beds and di ranges from –2 to k, indicating
that individual i (i = 1, …, p) is vaccinated, recovered, suscep-
tible, or in day j (1 ≤ j ≤ k) of the infection. There is an edge
from one state to a second state if it is possible for the popula-
tion to move from the first state to the second on the next day;
the weight on the edge is the probability of this happening. 

Figure 1 illustrates a Markov chain corresponding to three
individuals in a single row of beds, with the middle patient
initially infected, a disease duration of two days, and no vac-
cination. (You will determine the edge weights in Problem
6.) For this model, we are interested in the probabilities that
we terminate in state Q, corresponding to 33 percent of the
population becoming infected; state R, corresponding to 100
percent; or states P or S, with the infection contained to 67
percent of the population.

Problem 6.
a. Construct the transition matrix A corresponding

to this Markov chain: element ai,j is the probability of
transitioning to state i from state j.

b. Let e1 be the column vector with 1 in position 1

and zeroes elsewhere. If we begin in day one in the
first state, then vector Ae1 tells us the probabilities of
being in each of the states on day two. Prove this.

c. Similarly, A2e1 gives the probabilities for day
three. For efficiency, this should be computed as
A(Ae1) rather than as (A2)e1. Explain why, by doing
the operations counts.

d. If we compute z = A je1 for a large enough j, we
will have the (exact) probabilities of being in each state
after the epidemic passes. Use this fact to compute the
probabilities of having one, two, or three infected in-
dividuals, and compare these probabilities with the re-
sults of a Monte Carlo experiment as performed in
Problem 4 but using three individuals. How many
Monte Carlo simulations does it take to get two dig-
its of accuracy in the probabilities?

e. In this simple problem, you can determine the
three probabilities directly from Figure 1 by deter-
mining the probability of a transition from state A to
states P, Q, R, and S. Show how to derive these prob-
abilities, giving the same answer as you obtained via
the Markov chain computation in part d.

Our Markov chain has an enormous number of states (19, just
to model three patients), but many of these states provide more
detail than we might need. In Figure 1, for example, if we’re in
state C, we always make the transition to state D, so these two
states can be combined or aggregated without a loss of informa-
tion about infection totals. More importantly, states P and S rep-
resent different outcomes, but they are equivalent to us: in each
case, 67 percent of the population becomes infected.

By aggregating states, we can reduce the problem’s size.
Sometimes we can do this analytically, but when the model
is too complicated (for instance, once we add mobility), we
can do it by simulation, gathering data to determine the
probability of transitions between aggregated states.

These simple Markov models can yield some insight into
epidemics, but we’ve seen that the work in doing a

Monte Carlo experiment—or the number of states in the
Markov chain—quickly grows with the population’s size. In
the next issue, we will investigate an alternative set of models.

Meanwhile, you might want to modify the models to ex-
plore more realistic variations. You also might consider how
to model related systems, such as spreads of fungus on a tree
farm, contamination in a set of chicken coops, or disease in
a dormitory when the students also interact at school.

Y O U R  H O M E W O R K  A S S I G N M E N T

K
0,–1,2

S
0,–1,–1

A
0,1,0

C
1,2,1

D
2,–1,2

R
–1,–1,–1

E
0,2,1

F
1,-1,2

G
2,-1,-1

B
0,2,0

O
0,–1,1

N
1,–1,1

M
1,–1,0

Q
0,–1,0

H
1,2,0

I
2,–1,1

J
–1,–1,2

L
2,–1,0

P
–1,–1,0

Figure 1. A Markov chain that models three patients in a row of
beds, with the middle patient infected and able to infect two
neighbors. The red state (A) is the state in which we start; the
yellow states (P, Q, R, S) are the possible outcomes when the
infection runs its course, corresponding to one, two, or three
patients eventually infected.
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