
to travel to reach you. Similarly, if a navy detects a trans-
mission from a submarine, it would want to determine the
signal’s direction of arrival (DOA) to locate that sub. The
problem is complicated if more than one signal appears—
especially if the number of signals is unknown—and even
more complicated if you or the submarine is moving.

Surprisingly, we will see that your rescuer can solve an
eigenvalue problem (involving the product of some un-
known matrices) and use that information to find you. The
DOA-finding algorithm we’ll use is called Esprit. To under-
stand the process, we also will use several matrix decompo-
sitions and illustrate the necessity of using update techniques
for real-time computations.

The DOA Problem Definition
Suppose we have d signal sources, each a long distance from
the receivers. Also, suppose that the signals are narrow band;
we can approximate each one via a plane wave of fixed fre-
quency ω.

Let’s take m sensor pairs whose locations are arbitrary ex-
cept that the spacing δ and orientation of the two sensors in
each pair is constant. We measure the signal reaching each
sensor as a function of time. Figure 1 illustrates a sample
configuration with m = 4 sensor pairs and d = 2 signal
sources. Let sk(t) be the signal emitted from the kth source
at time t, k = 1, …, d, and let s(t) be the vector composed of

these components. The vector function x1(t) denotes the m
signal measurements x1j(t), j = 1, …, m, for the first sensor
in each pair at time t, and x2(t) denotes the corresponding
measurements for the second sensor in each pair.

After we take measurements for some time, we want to
determine the DOAs: the angles between each plane wave
and a line parallel to the lines connecting each sensor pair.
We call these d angles θk, k = 1, …, d; in Figure 1, these an-
gles are 45o and –30o.

We model the sensor measurements as a function of the
signal as

x1(t) = As(t) + ∈1(t),
x2(t) = AΦs(t) + ∈2(t).

The matrix A of size m × d is an unknown matrix of array-
steering vectors, and the matrix Φ is a diagonal matrix that ac-
counts for phase delays between the sensors in each pair.
The kth diagonal entry is

φk = ei ω δ sinθk/c, k = 1, …, d,

where i = and c is the speed of the signals. Our prob-
lem, then, is to determine Φ, given x, δ, and ω, without
knowing A, s(t), the measurement noise ∈1(t) and ∈2(t), or
even d! As an added complication, if the sources are moving,
then Φ also is a function of t.

Finding Φ When We Know d
We can build algorithms on a clever observation about how
to manipulate our problem to extract Φ. Let’s assume we
know the number of signals d < m. Let’s next observe the
system for n time steps. Let X1 have m rows and n columns
containing the data values x1(t). Similarly, construct X2 from

−1

60 Copublished by the IEEE CS and the AIP 1521-9615/03/$17.00 © 2003 IEEE COMPUTING IN SCIENCE & ENGINEERING

THE DIRECTION-OF-ARRIVAL
PROBLEM: COMING AT YOU
By Dianne P. O’Leary

I F YOU BREAK YOUR LEG ON A MOUNTAIN BUT

HAVE A CELL PHONE OR OTHER TRANSMIT-

TER WITH YOU, YOU WOULD HOPE A RESCUER

COULD DETERMINE THE DIRECTION IN WHICH

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R H O M E W O R K A S S I G N M E N T

In this month’s problem, we use linear algebra and matrix-updating techniques to track a set of moving signals. The solu-
tion to last month’s problem on clustering data, which appears at the end of this article, illustrates the complications of

determining useful clusters.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 23, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2003 61

the data x2(t). This way of collecting the data is called rec-
tangular windowing, with a window size of n. If we neglect
the errors ∈(t), then our system becomes

X = S,

where the columns of S are s(t). If A is full rank, then its rank
is d, which is also the maximal rank of X. Consider the fol-
lowing recipe:

• Find a matrix B of size d × m so that BA is d × d and full
rank.

• Find a matrix C of size n × d so that SC is d × d and full
rank.

• Find d vectors zk and d values λk so that BAΦSCzk
= λk BASCzk.

Note that λk is an eigenvalue of the generalized eigen-
problem involving the matrices BAΦSC and BASC, and that
zk is the corresponding eigenvector.

Problem 1. Show that the eigenvalues λk are equal to
the diagonal entries of Φ.

By solving Problem 1, we’ve accomplished something
rather surprising: without knowing A or Φ, we can choose
matrices B and C of the proper dimensions and construct the
matrices for the eigenproblem just by knowing X, because
BASC = BX1C and BAΦSC = BX2C. But we need to make
sure that BA and SC have full rank.

SVD-Esprit and Rectangular Windowing
To ensure the full-rank conditions, we use a matrix’s singu-
lar value decomposition (SVD): we can factor any matrix F of
dimension p × q as

F = UΣWH,

where U is p × p, W is q × q, UH U = I, and WH W = I. (The
i, j element of WH is . The condition WH W = I means
that W is a unitary matrix.) The real diagonal matrix Σ of

ω ji

X
X

A
A

1

2

=

Φ

Tools

In this problem, we use three matrix decompositions: the
singular value decomposition (SVD),1 the eigendecom-

position,1 and the rank-revealing URV decomposition
with updating.2

Linear algebra and numerical linear algebra texts typ-
ically discuss the generalized eigenvalue problem used
in Problem 1.1 To solve this problem, try to reduce
BAΦSCzk = λk BASCzk to Φwk = λk wk for some vector
wk.

Radhika Roy and Thomas Kailath originally proposed
the Esprit algorithm;3 K.J.R. Liu and his colleagues pro-
posed the URV variant in an article for IEEE Transactions on
Signal Processing,4 which also is the data source we use in
Problems 3, 5, and 7.

Problem 6 relies on a formula for a + a2 + … + ak when
0 < a < 1, and information in any basic statistics text dis-
cussing the normal distribution.

For Problem 8, you can find a detailed discussion of the
URV-Esprit algorithm in the article mentioned above.4

A more common algorithm for determining DOAs is
the Music algorithm. We also can formulate this algo-
rithm in terms of matrix decompositions. Standard text-
books such as Simon Haykin’s5 provide further informa-
tion.

References

1. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed.,

Johns Hopkins Press, 1989.

2. G.W. Stewart, “An Updating Algorithm for Subspace Tracking,”

IEEE Trans. Signal Processing, vol. 40, 1992, pp. 1535–1541.

3. R. Roy and T. Kailath, “ESPRIT – Estimation of Signal Parameters

via Rotational Invariance Techniques,” Signal Processing Part II:

Control Theory and Applications, F.A. Grünbaum, J. W. Helton, and

P. Khargonekar, eds., Springer-Verlag, 1990, pp. 369–411.

4. K.J.R. Liu et al., “URV ESPRIT for Tracking Time-Varying Signals,”

IEEE Trans. Signal Processing, vol. 42, 1994, pp. 3441–3448.

5. S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice-Hall, 1991,

Chapter 12.

Figure 1. Two signals (plane waves) received by four sensor
pairs. In this figure, m = 4 sensor pairs and d = 2 signal sources.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 23, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

62 COMPUTING IN SCIENCE & ENGINEERING

Y O U R H O M E W O R K A S S I G N M E N T

dimension p × q has nonzeros σ1 ≥ σ2 ≥ … ≥ , where
= min(p, q). Because U and W are unitary matrices, their
columns (and rows) are well-conditioned bases for the
subspaces they span; using unitary matrices leads to nu-
merically stable choices for B and C, which we define in
Problem 2.

Problem 2. Suppose that the SVD of X is UΣWH,
where σi = 0, when i > d. Let Σ1 be the square diago-
nal matrix with entries σ1, …, σd, and partition U into

U =
,

where U1 and U2 have m rows and d columns, so that

X1 = AS = U1[Σ1, Od×(n–d)]WH,
X2 = AΦS = U2[Σ1, Od×(n–d)]WH,

where Od×(n–d) is the zero matrix of size d × (n – d). Let
^U = [U1U2] have SVD T∆VH, and denote the leading
d × d submatrix of ∆ by ∆1. Partition

V =
,

so that V1 and V2 have dimension d × d. Let

B =[∆1
–1, Od×(m–d)]T

H

and

C = W
.

Show that the eigenvalues λk that satisfy the equation
V2

H zk = λk V1
H zk are φk.

So, now we have our first algorithm for solving the DOA
problem:

• Compute the SVD of X = UΣWH.
• Compute the SVD of ^U = [U1,U2] = T∆VH.
• Solve the generalized eigenvalue problem V2

Hz = λV1
Hz

for the values λk = φk, k = 1, …, d.

In Problem 3, we see how this algorithm performs.

Problem 3. Program the SVD algorithm and experiment
with rectangularly windowed data and a window size of n
= 10. Note that we need to compute U and V, but we do
not need B or C. You can find sample data for X and Φ on
the Web site (www.computer.org/cise/homework/v5n6.
htm). Plot the true and computed DOAs as a function of
time and compute the average absolute error in your
DOA estimates (absolute value of true value minus com-
puted value) and the average relative error (absolute error
divided by absolute value of true value).

Eigen-Esprit and Exponential Windowing
Experimenting further with the data in Problem 3, we dis-
cover that rectangular windowing has a drawback: if the win-
dow size n is too small, then the DOAs will be sensitive to
errors in the measurements and our estimates could change
abruptly. But if the window size is too large, then very old
data could contribute to our measurements, which will make
our estimates bad if the sources move too quickly. The cure
for this is to use old data but give more weight to newer data.
We do this in exponential windowing by multiplying all our
old data by a forgetting factor f between 0 and 1 every time we
add new data. Thus, after n observations, column � of X1
contains data from observation � multiplied by f n–�, and
similarly for X2.

Using exponential windowing, the number of columns in
the matrix X can grow quite large, which makes the SVD too
expensive since the cost is proportional to nm2. We could
avoid an SVD (for either exponential windowing or rectan-
gular windowing) but still use an orthogonal basis by noting
that XXH = UΣΣT UH, so we can compute U from the eigen-
vectors of the 2m × 2m matrix XXH. Problem 4 shows how
quickly we can form this matrix.

Problem 4. Suppose the matrix X contains the expo-
nential windowing data and that a new data vector x
arrives. Give a formula for the new exponential win-
dowing data matrix and show that the cost of com-
puting it from X and x is O(m2) multiplications.

Now, in Problem 5, we try this eigenvalue variant of Es-
prit, computing an eigendecomposition of XXH in place of
an SVD of X.

Σ1
−1

O (n −d)×d

V1 V3
V2 V4

U1 U3
U2 U 4

 q̂ σ q̂

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 23, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2003 63

Problem 5. Program the Eigen-Esprit algorithm and
experiment with exponential windowing for Problem
3’s data. Use the forgetting factor f = 0.9, and compare
the results with those of Problem 3.

Determining the Number of Sources
Suppose we don’t know how many source signals we’re re-
ceiving. Recall that if m ≥ d and A is full rank, then its rank
is d, which is also the maximal rank of X. Therefore, we can
estimate d experimentally by taking it to be the rank of the
matrix X. This works fine in the absence of error if the sig-
nals are all stationary, but if they’re moving or if there is er-
ror in our measurements, the matrix X will have some small
nonzero singular values in addition to d nonzeros. We must
be able to distinguish between real signals and noise. If you
know some statistics, you can solve Problem 6 to predict
how large the noise will be.

Problem 6. Suppose we have a matrix X of size m ×
n, m ≤ n and that each element of X is normally dis-
tributed with mean 0 and standard deviation ψ.

(a) Show that the random variable equal to the sum
of the squares of the entries of X is equal to the sum
of the squares of the singular values of X.

(b) Show, therefore, that for rectangular windowing
of this data, the expected value of σ1

2 + … + σm
2 is ψ2

mn, where σj is a singular value of X.
(c) Using a similar argument, show that for expo-

nential windowing, the expected value of σ1
2 + … +σm

2

is approximately ψ2f 2m/(1 – f 2), where σi is a singular
value of FX. Here, F is a diagonal matrix, with jth en-
try equal to f j.

This gives us a way to experimentally determine d: choose
it to be the smallest value for which the remaining singular
values satisfy

σd+1
2 + … + σm

2 < κψ2n(m – d)

for rectangular windowing, and

σd+1
2 + … + σm

2 < κf 2ψ2(m – d)/(1 – f 2)

for exponential windowing, where κ > 1 is a user-chosen tolerance.
Now we can experiment with this algorithm for determin-

ing the number of signals and their DOAs.

Problem 7. Modify your programs to determine d
and explore the methods’ sensitivity to the choice of
n, f, and κ.

Using URV for Efficiency
Computing SVDs and eigendecompositions from scratch
can be too computationally intensive to keep up with in-
coming data; the operation counts are proportional to m2n
for the SVD and m3 for the eigendecomposition. To keep up
with incoming data, we must find ways to update our DOA
estimates at a lower cost. Unfortunately, there is no easy way
to update SVDs or eigendecompositions, but there is a
closely related decomposition, the rank-revealing URV de-
composition, which can be updated. If we substitute this for
the SVD of X or the eigendecomposition of XXH, then our
algorithm will have a cost proportional to d3 + m2 + n2 and
will be suitable for real-time applications—as long as the
number of incoming signals is not too great.

The rank-revealing URV decomposition of X is

XH = URVH = U VH,

where U and V are square unitary matrices (UHU = I, VHV
= I), is an upper triangular matrix of size d × d, and G is
an upper triangular matrix of size (n – d) × (2m – d). In addi-
tion, the norms of the matrices F and G should be small.
Therefore, X is within of the matrix of rank d
obtained by setting these two blocks to zero. The SVD is a
special case of this decomposition in which F is zero and
and G are diagonal, but by allowing the more general case,
we gain the ability to update the factorization inexpensively
as new data arrives.

(Extra) Problem 8. Implement the URV-updating al-
gorithm (or use available software) and use it on the
matrix X to solve the DOA problem for rectangular
and exponential windowing.

Acknowledgments
This project benefited from helpful discussions with K.J.R.
Liu and Simon P. Schurr.

 R

 F G2 2+

R

R F
O G

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on October 23, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

