
engine performance as acceptable or unacceptable based on
a combination of efficiency, emissions, noise levels, and
other criteria. Researchers routinely classify documents as
“relevant to the current project” or “irrelevant.” Genome
decoding divides chromosomes into genes, regulatory re-
gions, signals, and so on. Pathologists identify cells as can-
cerous or benign.

We can classify data into different groups by clustering
data that are close with respect to some distance measure.
In this project, we investigate the design, use, and pitfalls of
a popular clustering algorithm, the k-means algorithm.

The Problem
For concreteness, we will cluster the pixels in the image
shown in Figure 1. Suppose our original image is of size m
× p, with the color for each of the mp pixels recorded by b
bits. Thus, the total storage requirement is mpb bits. We will
choose k pixel values (colors) as cluster centers and map each
pixel to one of these, which will form k clusters of pixels.
This saves space (because we store the cluster index for each
pixel instead of the pixel value) and, in addition, can filter
out noise in the image.

The data for our sample problem is a 500 × 500 pixel im-
age in jpeg format. For jpeg, the b bits for a pixel store q = 3
values (red, green, blue), each ranging between 0 and 255.
We begin our investigation in Problem 1 by seeing how
clustering reduces data storage.

Problem 1. Compare the number of bits required to
store the original image and the clustered image.

We can state our clustering problem this way. Given n
data points xi ∈ �q, i = 1, …, n, and given a value of k, we
want to find k cluster centers cj ∈ �q, j = 1, …, k that are in
some sense optimal and then assign each data point to a
cluster. We assign xi to cluster �j if it is closer to that clus-
ter’s center than it is to any other center. (Break ties in an ar-
bitrary way.) The distance from data point i to its cluster’s
center is thus

,

and we define the radius of cluster �j as

.

For good clustering, we want each point to be close to
one cluster’s center. Therefore, we might want to mini-
mize either

    
r dj

i
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i j

=
∈
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CLASSIFIED INFORMATION: 
THE DATA CLUSTERING PROBLEM
By Nargess Memarsadeghi and Dianne P. O’Leary

M ANY PROJECTS IN ENGINEERING AND

SCIENCE REQUIRE DATA CLASSIFICA-

TION BASED ON DIFFERENT HEURISTICS. DE-

SIGNERS, FOR EXAMPLE, CLASSIFY AUTOMOBILE

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

HOMEWORKY O U R  H O M E W O R K  A S S I G N M E N T

Figure 1. Use clustering algorithms to group the pixels of this
image of Charlie. (Photograph by Timothy O’Leary.)
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,

or

,

where � = 1 or 2. The variables in the minimization prob-
lem are the cluster centers.

Why the Problem Is Hard
In Problem 2, we consider some properties of the functions
R and D.

Problem 2. For this problem, use the Euclidean norm
with q = 1 and �= 2.

(a) If a function is convex and bounded below, then
any local minimizer is a global minimizer. If not, then
an algorithm for minimization might report a local
minimizer (a point as good or better than any in its
neighborhood) rather than a global one (a point as
good or better than any other). Consider the problem
with n = 2 points and k = 2 clusters. Are D and R con-
vex functions?

(b) Are D and R differentiable functions when n = 2
and k = 2?

(c) Derive a formula for the minimizer of D when k
= 1 and n is arbitrary.

(d) Suppose we move one of our data points xi very
far away from the other points, making it an outlier. As
that point moves farther away from the others, what
will happen to the cluster centers?

From Problem 2, we know that the minimization
problem has some difficult properties, but let’s try to
compute the cluster centers using a standard optimiza-
tion algorithm. To get the solution process started, we
provide an array of k approximate centers. A common
method for finding initial centers is to select k distinct
points randomly among the data values, or perhaps to use
k extreme values. When comparing algorithms, each
should use the same initial centers. Problem 3 investi-
gates our clustering criteria and the behavior of opti-
mization algorithms.

Problem 3. Use your favorite optimization algorithm
to minimize R with � = 2 and the Euclidean norm.
Use Figure 1’s data and provide a function to evaluate
R. Try k = 3, 4, 5.

Also, minimize D with the same parameters.
(a) How does the number of variables increase with k?
(b) How does the running time increase with k?
(c) Evaluate the results of the four clusterings and

justify the criteria that you choose. As one criterion,
discuss how the clustered images look in comparison
to the original image.

(d) How might we determine a good value of k ex-
perimentally?

   
D di
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Tools

In Problem 1, note that it takes log2 256 = 8 bits to store a
number that ranges between 0 and 255.

For Problem 2, a real analysis text will provide information
on convexity, differentiability, and minimization. A function
f(z) is convex over some convex domain if every one of its se-
cants (line segments connecting two points on its graph) is
on or above the graph.

Problem 3 relies on a program for unconstrained minimiza-
tion, such as Matlab’s fminunc. Stephen Nash and Ariela
Sofer1 discuss various algorithms for solving minimization
problems.

Many sources present the k-means algorithm used in Prob-
lem 4 as well as other approaches to clustering.2–5

Ian Davidson6 gives a nice discussion of the pitfalls we illus-
trate in Problems 5 and 6 as well as many others.

Many codes implement variants of the k-means algorithm;
see, for example, Yuqian Guan’s software (see www.cs.utexas.
edu/users/yguan/datamining/gmeans.html/).
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Your implementation for this problem should be
rather general: write a function mycluster that takes
as input the n data values, an initial guess for the k
cluster centers, a convergence tolerance, and a maxi-
mum number of iterations. The output will be as-
signments of each data point to a cluster, the set of k
cluster centers, the number of data values in each clus-
ter, and each cluster’s radius. Use another function to
evaluate R or D, given the k current cluster centers.

Write a function map_to_cluster that takes the
data values and cluster centers as input and returns the
cluster number for each data value and the counts of
the number assigned to each cluster. Use this function
to generate the clustered image.

To keep the computation time reasonable, deter-
mine the cluster centers based on a sample of points in
the image rather than using all 250,000 pixels. Choose
the 1,000 points in columns 210 and 211 in the sample
image, then experiment with other choices of points to
study the algorithm’s sensitivity to this choice.

The k-Means Algorithm
A general-purpose minimization routine is a good tool to
have, because it’s useful for a wide variety of problems. But
sometimes we can develop a better algorithm by taking ad-
vantage of a problem’s special structure. The k-means algo-
rithm minimizes neither D nor R, but it iterates by cluster-
ing based on the current centers and then moving each

center to the centroid of the points in the cluster.
Choose initial centers c1, …, ck. Repeat until the centers

stop changing: 

• For i = 1, …, n, assign each data point xi to the cluster
�j whose center cj is closest to it, breaking ties in an ar-
bitrary way. 

• For j = 1, …, k, recompute the center cj to be the mean
(centroid) of the points in the cluster:

,

where nj is the number of data points in �j.
In Problem 4, we implement this algorithm.

Problem 4. Implement the k-means algorithm and
run it with the same data and values of k as Problem
3. Compare its performance to that of the algorithm
in Problem 3.

Pitfalls in Data Clustering
This form of data clustering is quite useful, and the k-means
algorithm is very successful in practice. Nevertheless, many
pitfalls are associated with its use. We investigate two of
these—dependence of the answer on the starting data and
the number of clusters—in Problem 5.
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Figure 2. This data set illustrates some of the pitfalls of clustering. Compare the clusters you would form with those produced by
the k-means algorithm.
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Problem 5. Consider the data set of n = 20 data points
with q = 2, shown in Figure 2:

(1, –1 + 2j/9), (–1,  –1 + 2j/9),

for j = 0, …, 9. Run the k-means algorithm with k = 2,
3, 4. Initialize the centers to the first k points in the list

(–1, –1), (1, 1), (–1, 1), (1, –1).

Display the clustered data. Discuss the effects of
choosing the “wrong” value for k. Then, repeat the ex-
periment, initializing the centers to (0,  –1 + 2j/
(k – 1)), j = 0, …, k – 1. Note that although the answer is
different, it is also a local minimizer of the (nonconvex)
function R. Compare with the first set of answers and dis-
cuss the difficulty it illustrates with this kind of clustering.

Sensitivities of the clustering to the initial choice of cen-
ters and the number of clusters are serious pitfalls. As we see

in Problem 6, another serious pitfall arises from the sensi-
tivity of the clustering to variable transformations.

Problem 6. Consider the data set from Problem 5, but
multiply the second component of each data point by
100. Repeat the clustering experiments, applying the
same transformation to the initial centers. Discuss why
coordinate scaling is important in clustering algorithms.

T hrough our investigations, we see that despite its pit-
falls, clustering is an important tool for data classifica-

tion, noise reduction, and storage savings. Check the Web
site for data for the problems and, later, for sample solutions
(http://computer.org/cise/homework/v5n5.htm).
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Problem 1. Consider the undriven damped pendulum
modeled by 

,               (1)

when u(t) = 0 and c > 0. Linearize the second-order
nonlinear differential equation using the approxima-
tion sin(θ(t)) ≈ θ(t). Transform this equation into a
first-order system of ODEs of the form y′ = Ay, where
A is a 2 × 2 matrix, and the two components of the
vector y(t) represent y1(t) = θ(t) and y2(t) = dθ(t)/dt. De-
termine the eigenvalues of A. Show that the damped
system is stable—that the real part of each eigenvalue
is negative—and that the undamped system is not.
Use the eigenvalue information to show how the so-
lutions behave in the damped and undamped systems.

Answer: Under the transformation, Equation 1 becomes

or

.

Replacing sin(y
1
(t)) with y

1
(t) gives the system 

.

The eigenvalues of the matrix A are the roots of det(A –
λI) = 0, or the roots of λ2 + λc/(m ) + g/ = 0:
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PARTIAL SOLUTION TO “ROBOT CONTROL:
SWINGING LIKE A PENDULUM”
By Dianne P. O’Leary and Yalin E. Sagduyu
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For the undamped case, c = 0, so the real part of each
eigenvalue is zero and the system is unstable. The real part
of each eigenvalue is negative if c > 0, so in the damped case,
the system is stable.

If λ1 ≠ λ2, the eigenvectors of the matrix are

so the solution to the differential equation is

,

where α1 and α2 are constants determined by two additional
conditions. If the discriminant satisfies c2/(4m2 ) – g/� >
0, then the solution decays; otherwise it can have an oscilla-
tory component in addition to a decaying one.

Problem 2. Consider the function

for the pendulum Equation 1 describes. Show that it
is a valid positive definite Liapunov function for the
undriven model. Investigate the stability of the solu-
tion θ(t) = 0, dθ(t)/dt = 0 for undamped and damped
systems. 

Answer: We note that v(0, 0) = 0, and it is easy to see that v
> 0 for all other values of its arguments. Therefore, the point
θ = 0, dθ/dt = 0 is stable for both the damped (c > 0) and un-
damped (c = 0) cases.

To investigate asymptotic stability, we differentiate

For the undamped case, this is identically zero, and we can-
not conclude that we have asymptotic stability. For the
damped case, we note that the set defined by dv(y(t))/dt = 0
contains all points (θ, dθ/dt = 0). The only invariant set is the

one containing the single point (0,0) so this point is asymp-
totically stable.

Problem 3. Consider the linearized version of the dri-
ven (or forced), damped pendulum system with con-
stant force term u. Transform the corresponding dif-
ferential equation to a first-order ODE system of the
form y′ = Ay + Bu. Specify the matrices A and B and
show that the system is controllable for both the
damped and undamped cases.

Answer: From Problem 1, we see that

, .

Our dimensions are n = 2, m = 1, so the controllability ma-
trix is

[B AB] = .

This matrix has rank 2, independent of c, so the system is
controllable.

Problem 4. For the initial conditions θ(0) = π/4 and
dθ(0)/dt = 0, use an ODE solver to find the numerical
solutions on the interval t = [0, 30] for the nonlinear
model in Equation 1 for

1. an undamped (c = 0), undriven (u = 0) pendulum, 
2. a damped (c > 0), undriven (u = 0) pendulum, and 
3. a damped (c > 0), driven pendulum with the applied

forces u = mg sin(θf), where θf = π/8, π/4, and π/3. 

Repeat the same experiments for the pendulum’s lin-
earized model and discuss the difference in behavior
of the solutions. It will help if you plot the θ(t) results
for the corresponding linear and nonlinear models in
the same figure.

Answer: See the program problem4.m on the Web page
(http://computer.org/cise/homework/v5n5.htm). Figures
A and B show the results. The models for the undamped
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undriven pendulum quickly show a
phase difference in their results, while
the damped undriven pendulum re-
sults are quite similar. For the driven
pendulum, the linear and nonlinear re-
sults differ more as the angle θf gets
bigger, and the linear models do not
converge to θf.

Problem 5. Consider the lin-
earized model of Equation 1
with constant applied force u(t)
= mg sin(π/8) and damping con-
stant c = 0.5. Suppose that we
have the boundary conditions
θ(0) = π/32 and θ(10) = θB,
where θB is the value of the so-
lution when dθ(0)/dt = 0. Apply
the shooting method to find the
solutions to the damped, driven,
linearized pendulum equation
on the time interval t = [0,10].
For the shooting method, use a
nonlinear equation solver and
an ODE solver for initial value
problems. Try different initial
guesses for dθ(0)/dt and com-
pare the results. 

Now use the finite-difference
method to solve this boundary
value problem with h = 0.01. Use
your favorite linear system solver
to solve the resulting linear sys-
tem of equations. 

Compare the results of the
shooting and finite-difference
methods with the solution to the
original initial value problem.

Answer: See the program prob-
lem5.m on the Web page (http://
computer.org/cise/homework/v5n5.
htm). The θ(t) results for the original
solution, shooting method, and finite-
difference method differ by at most
0.004.
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Figure A. The linear and nonlinear models for damped and undamped driven
models. 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Time (t)

θ 
(t

)

Damped driven pendulum, θf = 0.392699 

0 2 4 6 8 10 12 14 16 18 20
0.6

0.65

0.7

0.75

0.8

Time (t)

θ 
(t

)

Damped driven pendulum, θf = 0.785398 

0 2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

Time (t)

θ 
(t

)

Damped driven pendulum, θf = 1.047198
 

Nonlinear model
Linear model

Figure B. The linear and nonlinear driven models.
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Problem 6. Consider the
damped, driven pendulum with
applied force

u(t) = mg sin(θf)+ mlb dθ(t)/dt,

where θf = π/3. This force is a
particular closed-loop control with
control parameter b, and it drives
the pendulum position to θf. The
initial conditions are given as θ(0)
= π/4 and dθ(0)/dt = 0. Assume c
= 0.5 as the damping constant, tc
= 5 seconds as the time limit for
achieving the position θf, and h
= 0.01 as the time increment for
numerical solutions. 

We will call a parameter b suc-
cessful if the pendulum position sat-
isfies |θ(t) – θf | < 10–3 for 5 ≤ t ≤ 10.
Approximate the total energy by

.

Write a function that evaluates
êf. The input to the function

should be the control parameter
b and the output should be the
approximate total consumed en-
ergy êf. 

For stability of the closed-loop
control system, we impose the
constraint b < c/(ml), which makes
the real parts of the eigenvalues
(of the linearized version) of the
system strictly negative. Now use
your favorite constrained mini-
mization solver to select the con-
trol parameter b to minimize the
energy function ̂ef (b). Display the
optimal parameter and graph the
resulting θ(t). 

Answer: See the program problem6.m
on the Web page (http://computer.org/
cise/homework/v5n5.htm). The energy
function returns the energy as specified
earlier plus a large positive penalty term in
case the parameter is unsuccessful; the
penalty keeps the minimizer from choos-
ing an unsuccessful parameter. For b =
–1.7859, the total energy consumed is
about 43.14 Joules. Figure C shows the

pendulum’s motion. Note that it is always
a good idea to sketch the function to be
minimized to see if the reported solution
is reasonable.

Nargess Memarsadeghi is a graduate student in

the Computer Science Department at the Uni-

versity of Maryland; she is also an employee of

NASA Goddard Space Flight Center. She received

her BS in computer science from the University of

Maryland at College Park. Contact her at

nargess@cs.umd.edu; www.cs.umd.edu/nargess.

Dianne P. O’Leary is a professor of computer sci-

ence and a faculty member in the Institute for

Advanced Computer Studies and the Applied

Mathematics Program at the University of Mary-

land. She received a BS in mathematics from Pur-

due University and a PhD in computer science

from Stanford. She is a member of SIAM, ACM,

and AWM. Contact her at  oleary@cs.umd.edu;

www.cs.umd.edu/users/oleary/.

Yalin E. Sagduyu is a PhD student in electrical

engineering and a research assistant in the In-

stitute for Systems Research at the University of

Maryland. He received a BSc in electrical engi-

neering from Bogazici University, Istanbul,

Turkey, and an MSc in electrical and computer

engineering from the University of Maryland,

College Park. Contact him at sagduyuy@eng.

umd.edu; www.ece.umd.edu/~sagduyuy.

ˆ e f ≈ u(kh)
k=1

5/ h

∑ h

Y O U R  H O M E W O R K  A S S I G N M E N T

0 2 4 6 8 10 12 14 16 18 20
Time (t)

θ 
(t

)

Damped driven pendulum with optimal control parameter

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure C. The path of the robot arm with optimal control.
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