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Problem 5. Consider the data set of n = 20 data points
with q = 2, shown in Figure 2:

(1, –1 + 2j/9), (–1,  –1 + 2j/9),

for j = 0, …, 9. Run the k-means algorithm with k = 2,
3, 4. Initialize the centers to the first k points in the list

(–1, –1), (1, 1), (–1, 1), (1, –1).

Display the clustered data. Discuss the effects of
choosing the “wrong” value for k. Then, repeat the ex-
periment, initializing the centers to (0,  –1 + 2j/
(k – 1)), j = 0, …, k – 1. Note that although the answer is
different, it is also a local minimizer of the (nonconvex)
function R. Compare with the first set of answers and dis-
cuss the difficulty it illustrates with this kind of clustering.

Sensitivities of the clustering to the initial choice of cen-
ters and the number of clusters are serious pitfalls. As we see

in Problem 6, another serious pitfall arises from the sensi-
tivity of the clustering to variable transformations.

Problem 6. Consider the data set from Problem 5, but
multiply the second component of each data point by
100. Repeat the clustering experiments, applying the
same transformation to the initial centers. Discuss why
coordinate scaling is important in clustering algorithms.

T hrough our investigations, we see that despite its pit-
falls, clustering is an important tool for data classifica-

tion, noise reduction, and storage savings. Check the Web
site for data for the problems and, later, for sample solutions
(http://computer.org/cise/homework/v5n5.htm).

Acknowledgments
Simon P. Schurr provided helpful comments on this project.

Problem 1. Consider the undriven damped pendulum
modeled by 

,               (1)

when u(t) = 0 and c > 0. Linearize the second-order
nonlinear differential equation using the approxima-
tion sin(θ(t)) ≈ θ(t). Transform this equation into a
first-order system of ODEs of the form y′ = Ay, where
A is a 2 × 2 matrix, and the two components of the
vector y(t) represent y1(t) = θ(t) and y2(t) = dθ(t)/dt. De-
termine the eigenvalues of A. Show that the damped
system is stable—that the real part of each eigenvalue
is negative—and that the undamped system is not.
Use the eigenvalue information to show how the so-
lutions behave in the damped and undamped systems.

Answer: Under the transformation, Equation 1 becomes

or

.

Replacing sin(y
1
(t)) with y

1
(t) gives the system 

.

The eigenvalues of the matrix A are the roots of det(A –
λI) = 0, or the roots of λ2 + λc/(m ) + g/ = 0:
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