
difficult concepts! In this issue’s project, we’ll study the sta-
bility and behavior of this robot arm and develop a strategy
to move the arm from one position to another using mini-
mal energy.

The Model
Assume that a pendulum of length � has a bob of mass m.
Figure 1 shows the pendulum’s position at some time t, with
the variable θ(t) denoting the angle that the pendulum
makes with the vertical axis at that time. The angle is mea-
sured in radians. The pendulum’s acceleration is propor-
tional to the angular displacement from vertical; we model
the drag due to friction with the air as being proportional to
velocity. This yields a second-order ordinary differential
equation (ODE) for t ≥ 0:

, (1)

where g is the gravitational acceleration on an object at the
Earth’s surface, and c is the damping (or frictional) constant.
The term u(t) defines the external force applied to the pen-
dulum. In this project, we consider what happens in three
cases: no external force, constant external force driving the
pendulum to a final state, and then a force designed to min-
imize the energy needed to drive the robot arm from an ini-
tial position to an angle θf.

The Robot Arm’s Stability and Controllability
The solution to Equation 1 depends on relations among m,

, c, g, and u(t) and ranges from fixed amplitude oscilla-
tions for the undamped case (c = 0) to decays (oscillatory or
strict) for the damped case (c > 0). Unfortunately, there is no

simple analytical solution to the pendulum equation in
terms of elementary functions unless we linearize the term
sin(θ(t)) in Equation 1 as θ(t), an approximation that is only
valid for small values of θ(t). Despite the linear approxima-
tion’s limitations, the linearization helps us find analytical
solutions and also apply the results of linear control theory to
the specific problem of robot arm control. To control the
arm in a reasonable way, the system must be stable. Prob-
lem 1 considers the stability of a simpler model, valid for
small oscillations.

Equation 1’s stability is more difficult to analyze than the
stability of the linearized approximation to it. Liapunov’s sta-
bility occurs when the total energy of an unforced (or un-
driven), dissipative mechanical system decreases as the sys-
tem state evolves in time. Therefore, the state vector yT

= [θ(t), dθ(t)/dt] approaches a constant value (or steady state)
corresponding to zero energy as time increases.1,2 Accord-
ing to Liapunov’s formulation, the equilibrium point y = 0
of a system described by the equation y′ = f(t, y) is globally
asymptotically stable if limt→ ∞ y(t) = 0 for any choice of
y(0). Let y′ = f(t, y) and let –y be a steady-state solution of
this differential equation. Terminology varies from text to
text, but we will use these definitions:
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S UPPOSE WE HAVE A ROBOT ARM WITH A

SINGLE JOINT, SIMPLY MODELED AS A

DAMPED DRIVEN PENDULUM. IT’S AMAZING HOW

SUCH A TRIVIAL SYSTEM ILLUSTRATES SO MANY
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ROBOT CONTROL: 
SWINGING LIKE A PENDULUM
By Dianne P. O’Leary and Yalin E. Sagduyu

Problem 1. Consider the undriven damped pendulum
that Equation 1 models when u(t) = 0 and c > 0. Lin-
earize the second-order nonlinear differential equa-
tion using the approximation sin(θ(t)) ≈ θ(t). Trans-
form this equation into a first-order system of ODEs
of the form y′ = Ay, where A is a 2 × 2 matrix, and the
two components of the vector y(t) represent y1(t) =
θ(t) and y2(t) = dθ(t)/dt. Determine the eigenvalues of
A. Show that the damped system is stable—that the
real part of each eigenvalue is negative—and that the
undamped system is not. Use the eigenvalue infor-
mation to show how the solutions behave in the
damped and undamped systems.
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• A positive definite Liapunov function v at –y(t) is a continu-
ously differentiable function into the set of nonnegative
numbers. It satisfies v(–y) = 0, v(y(t)) > 0, and

for all t > 0 and all y in a neighborhood of –y. 
• An invariant set is a set for which the solution to the differ-

ential equation remains in the set when the initial state is in
the set. 

This version of the Liapunov theorem3 for global asymp-
totic stability guides our analysis:

Theorem 1. Suppose v is a positive definite Liapunov function for
a steady-state solution –y of y′ = f(t, y). Then –y is stable. If in ad-
dition {y : dv(y(t))/dt = 0} contains no invariant sets other than –y,
then –y is asymptotically stable. 

Finding a Liapunov function for a given problem can be
difficult, but success yields important information. For un-
stable systems, small perturbations in the application of the
external force can cause large changes in the behavior of
the equation’s solution and, thus, to the pendulum’s be-
havior, so the robot arm might behave erratically. There-
fore, in practice, we must ensure that the system is stable
(see Problem 2).

Consider the first-order system described by y′ = Ay + Bu,
where y is an n × 1 column vector, A is an n × n matrix, B is
an n × m matrix, and u is an m × 1 column vector. The ma-
trices A and B might depend on time t, but in our example,
they do not. The system is controllable on t ∈ [0, tf] if given
any initial state y(0) there exists a continuous function u(t)

such that the solution of y′ = Ay + Bu satisfies y(tf) = 0. For
controllability on any time interval, it is necessary and suf-
ficient that the n × nm controllability matrix [B, AB, …,
An–1B] have rank n on that interval.1,2

Controllability of the robot arm means that we can spec-
ify a force that will drive it to any desired position. Prob-
lem 3 investigates the controllability of the linearized pen-
dulum model.

d
dt

v ty( )( ) ≤ 0

θ

m

Figure 1. Swinging like a pendulum. We will move this robot
arm (or pendulum), shown here at a position θ(t).

What’s Inside

In this second installment of Your Homework Assign-
ment, we pose a problem on the motion and control of a
robot arm, using tools from linear algebra, ordinary dif-
ferential equations, and optimization. The solution will
appear here in the next issue.

By now, perhaps you’ve deblurred the image from the
last issue’s homework assignment. One implementation is
now available on the Web site (http://computer.org/cise/
homework/v5n3.htm), and the solutions to the individual
problems appear in this issue at the end of this article. 

Problem 2. Consider the function

for the pendulum Equation 1 describes. Show that it is
a valid positive definite Liapunov function for the un-
driven model. Investigate the stability of the solution
θ(t) = 0, dθ(t)/dt = 0 for undamped and damped systems. 

v(θ , dθ / dt ) =
(1− cosθ)g
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Problem 3. Consider the linearized version of the
driven (or forced), damped pendulum system with
constant force term u. Transform the corresponding
differential equation to a first-order ODE system of
the form y′ = Ay + Bu. Specify the matrices A and B
and show that the system is controllable for both the
damped and undamped cases.
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Numerical Solution
of the Initial Value Problem
Next, we develop some intuition for the behavior of the
original and the linearized models by comparing them un-
der various experimental conditions. For the numerical in-
vestigations in Problems 4 through 6, assume that m = 1
kg, = 1 m, and g = 9.81 m/sec2, with c = 0 for the un-
damped case and c = 0.5 kg-m/sec for the damped case.
First we investigate the effects of damping and of applied
forces in Problem 4.

Missing Data: Solution 
of the Boundary Value Problem
In Problem 4, we solved the initial value problem, in which

values of θ and dθ/dt were given at time t = 0. In many cases,
we don’t have the initial value for dθ/dt, because this value
might not be observable. The missing initial condition pre-
vents us from applying standard methods to solve initial
value problems. Instead, we might have the value θ(tB) = θB
at some other time tB. Next we investigate two solution
methods for this boundary value problem: the shooting
method and the finite-difference method.

The idea behind the shooting method is to guess at the
missing initial value z = dθ(0)/dt, integrate Equation 1 us-
ing our favorite method, and then use the results to im-
prove the guess. To do this systematically, we use a non-
linear equation solver to solve the equation ρ(z) ≡ θz(tB) –
θB = 0, where θz(tB) is the value reported by an initial value
problem ODE solver for θ(tB), given the initial condition
z = dθ(0)/dt. 

The finite-difference method is an alternate method to solve
a boundary value problem. Choose a small time increment
h > 0 and replace the first derivative in the linearized model
of Equation 1 by

and second derivative by

. 

Let n = tB/h, and write the equation for each value θj ≈
θ(jh), j = 1, …, n – 1. The boundary conditions can be stated as
θ0 = θ(0), θn = θB. This method transforms the linearized ver-
sion of the second-order differential Equation 1 to a system
of n – 1 linear equations with n – 1 unknowns. Assuming the
solution to this linear system exists, we then use our favorite
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Tools 

For Problem 1, consult an ODE text1 for converting sec-
ond-derivative equations to a system of equations involving
only first derivatives. An elementary linear algebra text2 will
discuss computation of the eigenvalues and eigenvectors of
a 2 × 2 matrix; the ODE text will explain how to solve linear
ODE systems once the eigensystem is known. 

An ODE text1 also can serve as a reference on Liapunov
stability, which is used in Problem 2. The theorem is taken
from Beltrami’s book.3 Control theory texts4,5 discuss sta-
bility plus the concept of controllability used in Problem 3. 

Problem 4 requires an ODE solver for initial value prob-
lems (for example, Matlab’s ode45). Problem 5 uses the
ODE solver with a nonlinear equation solver (such as Mat-
lab’s fzero) and a linear equation solver (such as Matlab’s
backslash) that uses the LU decomposition or some other
numerically stable method. Consult a standard numerical

analysis textbook6,7 for information on such packages.
Problem 6 relies on an ODE solver and a function for mini-
mization of a function of a single variable under bound
constraints (such as, Matlab’s fminbnd). 
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Problem 4. For the initial conditions θ(0) = π/4 and
dθ(0)/dt = 0, use an ODE solver to find the numerical
solutions on the interval t = [0, 30] for the nonlinear
model in Equation 1 for

1. an undamped (c = 0), undriven (u = 0) pendulum, 
2. a damped (c > 0), undriven (u = 0) pendulum, and 
3. a damped (c > 0), driven pendulum with the ap-

plied forces u = mg sin(θf), where θf = π/8, π/4,
π/3. 

Repeat the same experiments for the pendulum’s lin-
earized model and discuss the difference in behavior of
the solutions. It will help if you plot the θ(t) results for
the corresponding linear and nonlinear models in the
same figure.
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linear system solver to solve these equations. We try these
two methods in Problem 5.

Controlling the Robot Arm
Finally, in Problem 6, we investigate how to design a forc-
ing function that drives the robot arm from an initial posi-

tion to some other desired position with the least expendi-
ture of energy. We measure energy as the integral of the ab-
solute force applied between time 0 and the convergence
time tc when the arm reaches its destination.

.

I n this homework assignment, we studied one simple
mathematical model of a robot arm. The numerical so-

lution couples techniques borrowed from linear algebra, or-
dinary differential equations, optimization, and control the-
ory. Control of our system involves cost trade-offs: energy
versus time of convergence. It’s worth noting that stability
and control studies of most physical systems (such as un-
derground seepage, muscle movement, and combustion re-
actions) require a combination of analytical and computa-
tional tools, even for quite simple mathematical models.
The solution to this homework will appear here in the next
issue and on the Web page, http://computer.org/cise/
homework/v5n4.htm.
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Problem 5. Consider the linearized model of Equa-
tion 1 with constant applied force u(t) = mg sin(π/8)
and damping constant c = 0.5. Suppose that we have
the boundary conditions θ(0) = π/32 and θ(10) = θB,
where θB is the value of the solution when dθ(0)/dt =
0. Apply the shooting method to find the solutions to
the damped, driven, linearized pendulum equation on
the time interval t = [0,10]. For the shooting method,
use a nonlinear equation solver and an ODE solver
for initial value problems. Try different initial guesses
for dθ(0)/dt and compare the results. 

Now use the finite-difference method to solve this
boundary value problem with h = 0.01. Use your fa-
vorite linear system solver to solve the resulting lin-
ear system of equations. 

Compare the results of the shooting and finite-dif-
ference methods with the solution to the original ini-
tial value problem.

Problem 6. Consider the damped, driven pendulum
with applied force

u(t) = mg sin(θf)+ mlb dθ(t)/dt, 

where θf = π/3. This force is a particular closed-loop con-
trol with control parameter b, and it drives the pendu-
lum position to θf. The initial conditions are given as
θ(0) = π/4 and dθ(0)/dt = 0. Assume c = 0.5 as the
damping constant, tc = 5 seconds as the time limit for
achieving the position θf, and h = 0.01 as the time in-
crement for numerical solutions. 

We will call a parameter b successful if the pendu-
lum position satisfies |θ(t) – θf | < 10–3 for 5 ≤ t ≤ 10.
Approximate the total energy by

.ˆ e f ≈ u(kh)
k=1

5/h

∑ h

Write a function that evaluates ^ef. The input to the
function should be the control parameter b and the
output should be the approximate total consumed en-
ergy ^ef.

For stability of the closed-loop control system, we
impose the constraint b < c/(ml), which makes the
real parts of the eigenvalues (of the linearized ver-
sion) of the system strictly negative. Now use your
favorite constrained minimization solver to select
the control parameter b to minimize the energy
function ^ef(b). Display the optimal parameter and
graph the resulting θ(t).
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