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HOMEWORKY O U R  H O M E W O R K  A S S I G N M E N T

is only observed indirectly. For example, we might have a
spectrum and want to determine the species that produced
it as well as their relative proportions. Or we may have sonar
measurements of a containment tank and want to know
whether it has an internal crack.

Here is this issue’s homework assignment: given a blurred
image and a linear model for the blurring, reconstruct the
original image. This linear inverse problem illustrates the
impact of ill-conditioning on the choice of algorithms.

Ill-Conditioning
Consider a linear system of equations

Kf = g

where K is an n × n matrix, and f and g are vectors. Suppose
K is scaled so that its largest singular value is σ1 = 1. If the
smallest singular value is σn ≈ 0, then K is ill-conditioned. We
distinguish two types of ill-conditioning:

• The matrix K is considered numerically rank deficient
if there is a j such that σj  >> σj+1 ≈ ... ≈ σn ≈ 0. That is,
there is an obvious gap between large and small singu-
lar values.

• If the singular values decay to zero with no particular gap
in the spectrum, we say the linear system Kf = g is a dis-
crete ill-posed problem.

Computing accurate approximate solutions of discrete ill-
posed problems is extremely difficult, especially because in
most real applications, g is not known exactly. Rather, the
collected data typically has the form

g = Kf + η,

where η is a vector representing (unknown) noise or mea-
surement errors. The goal, then, is given an ill-conditioned
matrix K and a vector g, compute an approximation of the
unknown vector f.

Naïvely solving Kf = g usually does not work because the
matrix K is so ill-conditioned. Instead, regularization is used
to make the problem less sensitive to the noise. 

Tikhonov Regularization
The best-known regularization procedure—Tikhonov reg-
ularization—computes a solution of the damped least-
squares problem:

. (1)

The extra term imposes a penalty for making the
norm of the solution too big, which reduces the effect of
small singular values. This regularized problem is also a
least-squares problem.
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Tools

The major tool used in this project is the singular value
decomposition of a matrix.2 Any real matrix A of dimen-
sion m × n (with m ≥ n) has a representation as

A = UΣVT

where UTU = I, VTV = I, and Σ has nonnegative entries σi

(i = 1, ...,n) on its main diagonal and zeros elsewhere. 
The matrix U is m × m, V is n × n, and Σ is m × n.The sin-

gular values σi are the square roots of the eigenvalues of
ATA , and the columns of V are the eigenvectors of that ma-
trix. The columns of U are the eigenvectors of AAT. Compu-
tation of the singular value decomposition is more stable
than forming ATA and computing the eigendecomposition.
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The scalar α (called a regularization parameter) controls the
solution’s degree of smoothness. Note that α = 0 implies no reg-
ularization; the computed solution to Equation 2 with α = 0 will
likely be horribly corrupted with noise. On the other hand, if
α is large, then the computed solution cannot be a good ap-
proximation of the exact f. Choosing an appropriate value for
α is not a trivial matter. Various algorithms appear elsewhere
in the literature,1 but we use a manual approach here.

Let’s turn to the problem of solving the least-squares
problem encountered in Equation 2 in Problem 1.

This gives us an algorithm to determine the Tikhonov so-
lution to a discrete ill-posed problem.

Truncated Singular Value Decomposition
Another way of regularizing the problem is to truncate the
singular value decomposition (SVD). Problem 4 demon-
strates how to express the solution to the least-squares prob-
lem in terms of the SVD.

We can see that trouble occurs in if a small value of σi
divides a term uT

i g that is dominated by error. In such cases,
will be dominated by error.   fls

   fls

Your Homework Assignment

How does a computational scientist learn the craft? Most of
us either took traditional courses in numerical analysis or
picked up the information “on the street.” We probably de-
veloped our expertise over a small set of application areas.
As a result, we may lack knowledge of the computational
tools we don’t use every day in our work; worse, we may
have an overly narrow view of the role of computation
across the science and engineering disciplines.

Despite 50 years of scientific computing research and prac-
tice, graduate education in computational science and engi-
neering is still in its infancy. Although the number of programs
is increasing rapidly, there is a dearth of educational resources.

Last semester, I taught the first course of a two-course
graduate sequence in computational science at the University
of Maryland, so I experienced this difficulty first hand. The
primary obstacle is that no single text covers our course ma-
terial (numerical linear algebra, optimization, solution of ordi-
nary differential equations and differential-algebraic equa-
tions, and Monte Carlo methods) at a suitable level. (The
situation for the second course, which focuses on sparse ma-

trix computation and partial differential equations, is a little
better.) The second obstacle is that students really need to
see a lot of case studies and problem sets to observe methods
in action, and developing these resources is a lot of work!

So the purpose of this new column, Your Homework As-
signment, is to provide resources for computational science
education in the form of projects. In each issue, we will
publish one project and the written part of the solution to
the previous issue’s project, with code and data sets avail-
able on the column’s Web page (http://computer.org/cise/
homework/v5n3.htm).

These computational science projects should be useful to
students (for understanding and motivating the algorithms
they study in class), to educators (who can use the projects
as a basis for designing their own homework assignments),
and I hope to practitioners (who might find them interest-
ing to read as a means of continuing education or uncover-
ing useful new techniques).

In conjunction with CiSE’s Education and Computing
Prescriptions departments, this new feature should confirm
CiSE as the premier source of information for CS&E teach-
ers and students, beginners as well as seasoned veterans.

Problem 1. Show that Equation 1 is equivalent to
the linear least-squares problem,
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Problem 2. Show that if K has a singular value de-
composition K = UΣVT, then Equation 2 can be trans-
formed into the equivalent least-squares problem,

, (3)

where f̂ = VTf and ĝ = UTg.
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Problem 3. Determine a formula for the solution to
Equation 3. Hint: you should set the derivative of the
minimization function to zero and solve for  f̂.

Problem 4. Show that the solution to the problem

is

,

where ui is the ith column of U, and vi is the ith col-
umn of V.
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To overcome this, Richard Hanson (as well as James Varah)
suggested truncating the previously mentioned expansion,3,4

,

for some value of p < n.
Now we have all the tools in place to solve a deblurring

problem in image processing. Suppose we have a blurred,
noisy image G (along with some knowledge of the blurring
operator), and we want to reconstruct the true original im-
age F. This is an example of a discrete ill-posed problem, in
which the vectors in the linear system g = Kf + η represent
the image arrays stacked by columns to form vectors. In
Matlab notation, it looks like this:

• f = reshape(F, n, 1),
• g = reshape(G, n, 1).

The goal in this problem is given K and G, reconstruct an
approximation of the unknown image F.

If we assume F and G contain pixels, then f and
g are vectors of length n, and K is an n × n matrix repre-
senting the blurring operation. In general, this matrix is too
large to use the SVD. However, in some cases, we can write
K as a Kronecker product, K = A ⊗ B, and then we can use
the SVD.

A Few Facts on Kronecker Products5

The Kronecker product A ⊗ B, in which A is an m × m ma-
trix, is defined as

.

Theorem 1. If and , then K = UΣVT,
where U = UA ⊗ UB, Σ = ΣA ⊗ ΣB, and V = VA ⊗ VB.

Therefore, computing the SVD of a large matrix is possible
if it is the Kronecker product of two smaller ones. On the Web
page for this column (http://computer.org/cise/homework/
v5n3.htm), there is a sample Matlab program, projdemo.m,
illustrating this property.

To solve our image-deblurring problem, we must operate
carefully with the small matrices; otherwise, storage quickly be-
comes an issue. Again, see the sample program for guidance.
With the Kronecker product as a tool, we are ready to compute.
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Y O U R  H O M E W O R K A S S I G N M E N T

Problem 5. Write a program that takes matrices A and
B and image G and computes approximations to image
F using Tikhonov regularization and truncated SVD.
For each of these two algorithms, experiment to find the
value of the regularization parameter (α for Tikhonov
or p for truncated SVD) that gives the clearest image.

The Web page contains sample data: a blurred image
G (see Figure 1) and the matrices A and B. Your job is to
restore the image well enough so that you can read the text
in it. Compare the effectiveness of the two algorithms. 

Figure 1. Use two algorithms to read the text in this
blurred message.
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