
The Poisson Equation in a Rectangle
MATH2601: Control of Partial Differential Equations

Location: http://people.sc.fsu.edu/∼jburkardt/classes/control 2019/poisson 2d/poisson 2d.pdf

Electric field potential is an example of a Poisson problem.

The Poisson Problem

Given a Poisson equation on a 2D rectangular region, use finite differences to create a model of the
equation, set up the corresponding linear system, display the approximate solution and estimate its
error.

1 The Poisson equation

The Poisson equation can be written for an open finite region Ω ⊂ Rn as:

−∆u(x) = f(x) for all x ∈ Ω

with several choices of boundary conditions to be imposed for x ∈ ∂Ω:

Dirichlet: u(x) = g(x)

Neumann:
∂u

∂n
= g(x)

Robin: α ∗ u(x) + β ∗ ∂u
∂n

= g(x)

Here, ∆ is the Laplacian operator, and can be written several ways:

∆u(x) = ∇ · ∇u(x) = ∇2u(x) = div · grad u(x) =

n∑
i=1

∂2u

∂x2i

1



2 A Poisson equation on a 2D rectangle

We take as our domain Ω the interior of the 2D rectangle (a, b)× (c, d). We will assume that at every point
along the boundary, we have imposed Dirichlet boundary conditions, and that the functions f(x, y) and
g(x, y) have been given. At this point, mathematically, we would seek a function u ∈ C2(Ω) which satisfies
the Poisson equation and the specified boundary conditions. Unfortunately, there is no general procedure for
deriving the formula of such a solution function. Since Poisson problems arise in many practical situations,
the only feasible approach may be a computational approximation.

We begin by discretizing the geometry. That is, we we will create an nx× ny grid of points, with spacings
hx = b−a

nx−1 and hy = d−c
ny−1 , so that a typical discrete point is:

(xi, yj) = ((i− 1) ∗ hx, (j − 1) ∗ hy) for 1 ≤ i ≤ nx, 1 ≤ j ≤ ny

We will seek an approximate solution only at this discrete set of points, and we may use the notation ui,j to
indicate the value of our discrete solution at (xi, yj).

Points corresponding to i = 1, i = nx, j = 1 or j = ny are boundary points where the Dirichlet boundary
conditions will be imposed:

ui,j = g(xi, yj)

The remaining points are interior points, at which a discretized version of the Poisson equation will be
imposed:

−ui−1,j + 2ui,j − ui+1,j

hx2
+
−ui,j−1 + 2ui,j − ui,j+1

hy2
= f(xi, yj)

Thus, for each discrete point, we now have an explicit formula (at boundary points) or an implicit linear
equation (at interior points). We can think of this combinary of conditions on boundary and interior points
as a linear system of the form:

A ∗ u = rhs

It now remains to organize the process of defining the matrix A and right hand side rhs. Once this is done,
the solution process is a relatively straightforward linear algebra task.

3 Assembling the linear system

We have nx×ny equations to construct, and we need a way to order them. Unfortunately, there are several
“natural” ways to number such an array. We will choose to start at the lower left corner, and proceed to
the right. Once a row is done, we move up to the next row, and so on. Thus, the point associated with the
coordinates (xi, yj) will be counted on step k = i+ (j − 1) ∗ nx.

Counting in this way, the first row of nx points, for which j = 1 will each generate a boundary condition
equation, of the form

ui,1 = g(xi, y1) 1 ≤ i ≤ nx

Rows j = 2 through ny−1 will each begin and end with a boundary condition equation, sandwiching nx−2
discretized Poisson equations:

u1,j = g(x1, yj)

−ui−1,j + 2ui,j − ui+1,j

hx2
+
−ui,j−1 + 2ui,j − ui,j+1

hy2
= f(xi, yj)

unx,j = g(xnx, yj)

The last row of nx points will have the same form as the first row.

2



It is helpful to see the pattern that this system of equations forms when written in matrix form. If we
suppose nx = ny = 5, then the first block of equations, which are entirely boundary conditions, has the
“interesting part”:

1 2 3 4 5 RHS

1 1 0 0 0 0 g(x1,y1)

2 0 1 0 0 0 g(x2,y1)

3 0 0 1 0 0 g(x3,y1)

4 0 0 0 1 0 g(x4,y1)

5 0 0 0 0 1 g(x5,y1)

The second block of equations begins and ends with a boundary condition, and in between, specifies 3
discrete Poisson relations. Here, to make the illustration legible, we pretend that the coefficients of the
Poisson relation are simply +4 for the central point, and -1 for the four neighbors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RHS

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 g(x1,y2)

7 0 -1 0 0 0 0 4 0 0 0 0 -1 0 0 0 f(x2,y2)

8 0 0 -1 0 0 0 0 4 0 0 0 0 -1 0 0 f(x3,y2)

9 0 0 0 -1 0 0 0 0 4 0 0 0 0 -1 0 f(x4,y2)

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 g(x5,y2)

The linear system has two more blocks of equations like this, followed by a final block that is once again
entirely boundary conditions.

4 A MATLAB code to solve a Poisson equation

The following program accepts input from the user which defines the discretization of a rectangle, and the
right hand side functions f(x, y) and g(x, y), and returns matrices U , X, and Y containing the computed
solution and coordinate values at the grid points:

1 function [ U, X, Y ] = po i s son ( nx , ny , xmin , xmax , ymin , ymax , f , g )
2
3 hx = ( xmax − xmin ) / ( nx − 1 ) ;
4 hy = ( ymax − ymin ) / ( ny − 1 ) ;
5
6 x = linspace ( xmin , xmax , nx ) ;
7 y = linspace ( ymin , ymax , ny ) ;
8
9 A = zeros ( nx ∗ ny , nx ∗ ny ) ;

10 rhs = zeros ( nx ∗ ny , 1 ) ;
11
12 keq = 0 ;
13 for j = 1 : ny
14 for i = 1 : nx
15 keq = keq + 1 ;
16 i f ( i == 1 | | i == nx | | j == 1 | | j == ny )
17 A( keq , keq ) = 1 . 0 ;
18 rhs ( keq ) = g ( x ( i ) , y ( j ) ) ;
19 else
20 A( keq , keq ) = 2 .0 / hx / hx + 2 .0 / hy / hy ;
21 A( keq , keq−1) = − 1 .0 / hx / hx ;
22 A( keq , keq+1) = − 1 .0 / hx / hx ;
23 A( keq , keq−nx ) = − 1 .0 / hy / hy ;
24 A( keq , keq+nx ) = − 1 .0 / hy / hy ;
25 rhs ( keq ) = f ( x ( i ) , y ( j ) ) ;

3



26 end
27 end
28 end
29
30 u = A \ rhs ;
31
32 U = ( reshape ( u , nx , ny ) ) ’ ;
33 [ X, Y ] = meshgrid ( x , y ) ;
34
35 return
36 end

Listing 1: poisson.m

5 Solving a particular problem

To solve a specific problem, the user needs to specify the discretization of the rectangle, and supply the
names of MATLAB objects that evaluate f(x, y) and g(x, y). Here is an aexample:

1 nx = 21 ;
2 ny = 41 ;
3
4 xmin = 0 . 0 ;
5 xmax = 1 . 0 ;
6 ymin = 1 . 0 ;
7 ymax = 3 . 0 ;
8
9 [ U, X, Y ] = po i s son ( nx , ny , xmin , xmax , ymin , ymax , @f , @g ) ;

10
11 function value = f ( x , y )
12 value = pi ∗ pi ∗ ( x .∗ x + y .∗ y ) .∗ sin ( pi ∗ x .∗ y ) ;
13 return
14 end
15 function value = g ( x , y )
16 value = sin ( pi ∗ x .∗ y ) ;
17 return
18 end

Listing 2: poisson test.m

6 Postprocessing

The RMS error can be a useful statistic. Assuming that the user-supplied function g(x, y) is actually a
formula for the exact solution everywhere, we can easily compute as follows:

1 e r r = 0 . 0 ;
2 for i = 1 : ny
3 for j = 1 : nx
4 e r r = e r r + ( U( i , j ) − g (X( i , j ) ,Y( i , j ) ) ) ˆ2 ;
5 end
6 end
7 e r r = sqrt ( e r r / nx / ny ) ;

Listing 3: Computing the RMS error

A convergence study can be done by repeatedly doubling the fineness of the mesh, and plotting the corre-
sponding sequence of RMS errors.

Surface or contour plots of the computed solution can also be made:

4



1 figure ( 1 )
2 surf ( X, Y, U ) ;
3 t i t l e ( ’Computed s o l u t i o n ’ ) ;
4 print ( ’−dpng ’ , ’ p o i s s o n s u r f a c e . png ’ ) ;
5
6 figure ( 2 )
7 contour f ( X, Y, U )
8 t i t l e ( ’Computed s o l u t i o n ’ ) ;
9 print ( ’−dpng ’ , ’ po i s s on con tou r s . png ’ ) ;

Listing 4: Surface and contour plots

Surface and contour plots of computed solution.

5


