
Initial Value Problems
MATH2601: Control of Partial Differential Equations

A differential equation models a changing system.

Location: http://people.sc.fsu.edu/∼jburkardt/classes/control 2019/ivp/ivp.pdf

Differential equations describe changes in a quantity u which depends on a variable t. The differential
equation is written in terms of the derivative d u

dt , sometimes also written ut or u̇. A common form is
d u
dt = f(t, u). Mathematically, solving the differential equation means determining an explicit formula for
u(t).

There are several classes of differential equation problems that can be posed. In the initial value problem or
IVP, the problem is posed as seeking a solution u(t) which satisfies the differential equation over the interval
[a, b], and which has the initial value u(a) = ua.

Except for textbook problems, differential equations cannot be solved. Hence, we employ computational
techniques. Computationally solving a differential equation means determining a sequence of pairs of values
(ti, ui) which we think of as approximate samples of the true solution. In this lab, we will look at some
techniques for computing such approximations.

Computational Solution of Initial Value Problems

Given an IVP: u′ = f(t, y) over [a, b], u(a) = ua

• replace the continuous variables t by a sequence ti;
• replace the differential equation for t and u by a sequence of discrete equations for ti and ui;
• solve the discrete equations for (ti, ui);
• estimate the errors |u(ti)− ui|;
• plot the solution;

1 The Euler Method

In order to apply a computational approach to the differential equation, we need to change it from a statement
about a continuous variables to one about discrete variables. The obvious approach is to approximate the
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derivative by a finite difference, so that we have:

∆u

∆t
=
u(t+ ∆t)− u(t)

∆t
= f(t, u(t))

A reasonable computational solution would define n + 1 equally spaced values a = t0 < t1 < ... < tn = b,
meaning that ∆t = b−a

n , and try to estimate the corresponding sequence u0, u1, ..., un, where we hope that
ui ≈ u(ti).

We start off knowing u0 = ua. The finite difference equation can be used to relate u0 and u1:

∆u

∆t
=
u1 − u0

∆t
= f(t0, u0)

u1 = u0 + ∆t ∗ f(t0, u0)

After determining u1, we can write use a similar equation to relate u1 and u2, and proceed in this way until
we have completed the calculation.

A MATLAB procedure for this process might look like this:

1
2 function [ t , u ] = ode eu l e r ( f , a , b , ua , n )
3
4 dt = ( b − a ) / n ;
5 t = linspace ( a , b , n + 1 ) ;
6 u = zeros ( n + 1 , 1 ) ;
7
8 u (1 ) = ua ;
9 for i = 1 : n

10 u( i +1) = u( i ) + dt ∗ f ( t ( i ) , u ( i ) ) ;
11 end
12
13 return
14 end

To solve the problem u′ = −sin(t) over [0, π] with u(0) = 1, we either first prepare an M file f.m that
evaluates the right hand side:

1 function value = f ( t , u )
2 value = −sin ( t ) ;
3 return
4 end

or we can create an anonymous function:

1 f = @( t , u) −sin ( t ) ;

Once f is defined, we can issue the commmands:

1 [ t , u ] = ode eu l e r ( f , 0 , 2∗pi , 1 . 0 , 10 ) ;

Plotting our 11 computed points versus the continuous solution curve u = cos(t), we see that the method is
able to provide a rough idea of the true solution.

1 plot ( t , u , ’ markers i ze ’ , 25 ) ;
2 te = linspace ( 0 , 2∗pi , 101 ) ;
3 ye = cos ( te ) ;
4 hold ( ’ on ’ ) ;
5 plot ( te , ye ) ;
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2 Errors

Since we know the exact answer to the IVP, we can see that the results from the Euler computation are
wrong. We can measure the error E by using the RMS norm: square the difference of each computed value
and exact value, sum these terms, average them (divide by n) and then take the square root. We will write
E(n), because the number of steps will be an interesting parameter that can affect the error.

E(n) =

√√√√ 1

n

n∑
i=1

(ui − u(ti))2

It seems reasonable to assume that the E(n) will decrease if we increase n.

EXERCISE:

• Solve the IVP problem with n = 10, 20, 40, 80, 160;
• For each solution, compute E(n)
• What seems to happen to E(n) each time we double n?

Although it is convenient for us to think in terms of the parameter n, error behavior is more often described in
terms of the stepsiz. We are calling the stepsize dt; it is also often termed h. If we switch to this perspective,
then we would represent the error norm as E(dt). In general, we will see that the error norm behaves like a
linear function of dt. We say that the error is roughly a linear function of stepsize E ≈ α ∗ dt, or that the
error is “of order dt” E = O(dt).

3 The Backward Euler Method

The backward Euler method seems like a simple variation of Euler’s method

∆u

∆t
=
u(t+ ∆t)− u(t)

∆t
= f(t+ ∆t, u(t+ ∆t))

BLAHBLAH

A MATLAB procedure for this process might look like this:
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1 function [ t , u ] = ode eu ler backward ( f , a , b , ua , n )
2
3 dt = ( b − a ) / n ;
4 t = linspace ( a , b , n + 1 ) ;
5 u = zeros ( n + 1 , 1 ) ;
6
7 u (1 ) = ua ;
8 for i = 1 : n
9 v = u( i ) ;

10 for j = 1 : 10
11 v = u( i ) + dt ∗ f ( t ( i +1) , v ) ;
12 end
13 u( i +1) = v ;
14 end
15
16 return
17 end

EXERCISE: Consider the IVP u′ = −λ ∗ u over the interval [0.0, 0.2] with u(0)=1. The exact solution is
u(t) = e−λt. Suppose that λ = 100. Solve this problem for dt = 0.1, 0.05, 0.025, 0.0125, 0.00625 (which is
n = 2, 4, 8, 16, 32); Make a table of your estimates for u(0.2).

Estimated value of u(0.2):

dt Euler Backward Euler

-------------------------------------

0.1 .......... ..........

0.05 .......... ..........

0.025 .......... ..........

0.0125 .......... ..........

0.00625 .......... ..........
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