
Gradient Descent
MATH2601: Control of Partial Differential Equations

Going downhill fast!

Location: http://people.sc.fsu.edu/∼jburkardt/classes/control 2019/gradient descent/gradient descent.pdf

A Minimization Problem

Given a function f(x) and its derivative f ′(x), find a value x for which f(x) attain its minimum
value.

This lab looks at the gradient descent method, which seeks a minimizer of a function.

1 Gradient Descent in 1D

Consider the function f(x) = 2x4 − 7x2 + 3x + 5. Suppose that this function measures a cost, based on the
choice of x, which we seek to minimize. We expect the value of x to be somewhere in the interval −2 ≤ x ≤ 2.
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At what x is f(x) minimized?

We could start by picking a value x at random. Thinking of the graph of the function as a hill, the value f(x)
tells us how high we are, but the value of f ′(x) tells us something more valuable, namely, which direction is
downhill. That information is enough to tell us how to adjust x so that f(x) decreases.

If we take a “small enough” step in the decreasing direction, then f(x) is guaranteed to decrease. We
hope to reach the minimizer, where f ′(x) is zero; if we pass it, the direction of decrease will switch, which
is enough of a warning to us to turn around.

In most cases, we will never reach an exact minimizer; how then can we decide to stop? One idea is to
watch the size of f ′(x), which tells us how “steep” the slope of the hill is. When this drops below some
tolerance, we may figure there is little point in continuing. Just for safety’s sake, we should probably also
impose a limit on the number of steps we are willing to take.

Exercise:: Create a MATLAB file gd1.m:

1 f a c t o r = 0 . 0 1 ;
2 x = −2 + 4 ∗ rand ( ) ;
3 for i = 1 : 10
4 fx = f1 (x ) ;
5 fpx = fp1 (x ) ;
6 fpr intf ( 1 , ’ %d %g %g %g\n ’ , i , x , fx , fpx ) ;
7 x = x − f a c t o r ∗ fpx ;
8 end

and a function file f1.m:

1 function fx = f1 ( x )
2 fx = 2 ∗ x .ˆ4 − 7 ∗ x .ˆ2 + 3 ∗ x + 5 ;
3 return
4 end

and a derivative fp1.m:

1 function fpx = fp1 ( x )
2 fpx = 8 ∗ x .ˆ3 − 14 ∗ x + 3 ;
3 return
4 end

If you run this code, you should expect to see the values of f(x) and the absolute values of f ′(x) both
decrease.

EXERCISE:

• Pick a fixed starting point, and increase the loop iteration until you feel that your minimization has
“converged”; Estimate both local minima this way and report the number of iterations;

• Replace the for loop by a while(true) statement. Iterate until the absolute value of the derivative
is “small”, say 10−8. How many iterations do you need?

• The quantity factor controls the stepsize we take. Using a fixed starting point, investigate the
relationship between the number of steps to convergence and the size of factor. In other words, if you
double factor, do you need about half as many steps? Can you double it again? When does this stop
paying off?

2 Gradient Descent in Higher Dimensions

Now suppose that the argument x of f(x) is an n-dimensional value, which we will think of as a row vector.
Then the derivative information we seek is known as the gradient, symbolized by ∇f , and also regarded as
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a row vector:

∇f =

[
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

]
It is simple to adjust our gradient descent algorithm for the n-dimensional case.

Consider the function of two variables:

f(x) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2
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Exercise:: Create a MATLAB file gd2.m:

1 f a c t o r = 0 . 0 2 ;
2 x = − 3 .0 + 6 .0 ∗ rand ( 2 , 1) ;
3 i = 0 ;
4
5 while ( t rue )
6 fx = f2 (x ) ;
7 fpx = fp2 (x ) ;
8 fpr intf ( 1 , ’ %d (%g,%g ) %g %g\n ’ , i , x (1 ) , x (2 ) , fx , norm ( fpx ) ) ;
9 i f ( norm ( fpx ) < 0 .001 )

10 break
11 end
12
13 i = i + 1 ;
14 x = x − f a c t o r ∗ fpx ;
15 end

and a function file f2.m:

1 function fx = f2 ( x )
2 fx = 2 ∗ x (1 ) . ˆ2 − 1 .05 ∗ x (1 ) . ˆ4 + x (1) . ˆ6 / 6 + x (1) ∗ x (2) + x (2) . ˆ 2 ;
3 return
4 end

and a derivative fp2.m:

1 function fpx = fp2 ( x )
2 fpx = zeros ( 2 , 1 ) ;
3 fpx (1 ) = 4 ∗ x (1) − 4 .2 ∗ x (1 ) . ˆ3 + 6 .0 ∗ x (1 ) . ˆ5 + x (2) ;
4 fpx (2 ) = x (1) + 2 .0 ∗ x (2) ;
5 return
6 end

EXERCISE:

1. Run the program three times;

2. Report the starting point, the computed minimizer, and the number of iterations;

The following commands will make a contour plot of the function. Does this plot suggest you have located
the minimizer?

1 x = linspace ( −2, +2, 101 ) ;
2 y = linspace ( −2, +2 ,101 ) ;
3 [X,Y] = meshgrid ( x , y ) ;
4 Z=2∗X.ˆ2−1.05∗X.ˆ4+X.ˆ6/6+X.∗Y+Y. ˆ 2 ;
5 contour f (X,Y, Z , 3 0 )
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3 A Challenging Case

We know that if stepsize that we have been calling factor is small enough, then a gradient descent step will
cause the function value to decrease. However, we have just guessed a reasonable value to use, and we have
stuck with that value throughout the computation. If an optimization problem is badly scaled, from time to
time we may need to decrease the stepsize.

In the simplest case, if the computation fails to converge, we cut the stepsize in half and try again.

In a more careful approach, we take a step, evaluate the function at the new point, and if it is larger than
the previous function value, we reject the step, cut the stepsize in half, and try again. On the other hand, if
a step is successful, we might consider trying a larger stepsize (up to some maximum) on the next iteration.

Because of these scalling problems, the Rosenbrock function can be difficult to optimize:

f(x, y) = (1− x)2 + 100(y − x2)2

OPTIONAL EXERCISE:

• write gd3.m, f3.m, fp3.m files for the Rosenbrock problem;
• Try to minimize this function using the starting point [2,-1] and a stepsize factor=0.01;
• Try reducing factor until your code “converges”, in the sense that the norm of the derivative is less

than 0.001; report your stepsize and the number of steps.
• If you are ambitious, try to modify gd3.m so that it starts out with factor=0.01 but never accepts a

step if the function value increases; instead, it repeats the attempt with half the stepsize. Report the
number of steps your new algorithm requires.
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