
HokieSpeed, a Cluster for Parallel Computing
CMDA 3634: Computer Science Foundations for Computational Modeling and Data Analytics

Presented by John Burkardt, Advanced Research Computing, 23 February 2017

1 HokieSpeed

HokieSpeed is a CPU/GPU cluster of 204 nodes, built with an NSF grant in 2012. Each node is outfitted with 24
GB of memory, two six-core Xeon E5645 CPU’s and two NVIDIA M2050 / C2050 GPU’s, each with 448 CUDA
cores. HokieSpeed is managed and maintained by Advanced Research Computing at Virginia Tech.

There are two login nodes, hokiespeed1 and hokiespeed2, which allow interactive users to login, create directories,
transfer and edit files, and to submit jobs to the compute nodes, hokiespeed3 and up. The compute nodes are
normally only accessed indirectly, through a batch queue system. However, for development and testing, there is
an interact command which allows a user to request exclusive interactive access to a single compute node.

HokieSpeed retires in June 2017, replaced by ARC’s newriver, cascades, dragonstooth and blueridge clusters.

2 Login and File Transfers to HokieSpeed

All students in CMDA3634 have been given accounts on HokieSpeed. From a terminal on your computer, log into
hokiespeed1 or hokiespeed2 with your PID and password:

ssh PID@hokiespeed1.arc.vt.edu

Your terminal is now “talking” to Hokiespeed, and will continue to do so until you enter the logout command.
An alternative form of the ssh command is

ssh -X PID@hokiespeed2.arc.vt.edu

which is necessary if you want to do any graphical operations while logged into the remote system. This includes
using the graphical interface to the emacs editor.

To transfer files between your system and HokieSpeed, a command like

sftp PID@hokiespeed2.arc.vt.edu

will establish a connection between a directory on your local system and a directory on the remote system, which
is initially the login directory. Commands to sftp will refer to the remote system, HokieSpeed, unless they are
preceded by the letter l for “local”. Some of these commands include:

ls pattern list files on remote system

lls pattern list files on local system

cd directory change directory on remote system

lcd directory change directory on local system

pwd report current remote directory

lpwd report current local directory

mkdir directory make a directory on the remote system

rmdir directory delete a directory on the remote system

rename old new rename remote file from old name to new name

rm file delete a remote file

lrm file delete a local file

get file copy remote file to local directory

put file copy local file to remote directory

quit terminate sftp.

1



3 Practice: File Transfer with SFTP

1. open a terminal on your laptop;

2. create a directory alice;

3. move to that directory;

4. create a file there, with the command touch bob.txt;

5. establish an sftp connection to HokieSpeed;

6. create a remote directory on HokieSpeed called cher;

7. change your remote directory to cher;

8. put a copy of bob.txt into cher;

9. rename the remote file dirk.txt;

10. get a remote directory listing to verify;

11. copy the remote file dirk.txt to your local directory;

12. get a local directory listing to verify you have bob.txt and dirk.txt;

13. remove the remote file dirk.txt;

14. change remote directory to .. (go up one level);

15. remove the remote directory cher;

16. quit sftp;

17. remove the files bob.txt and dirk.txt;

18. change directory to ..

19. remove the directory alice.

4 HokieSpeed Environment

HokieSpeed runs a version of Linux, so the operating system is very similar to your Ubuntu machine.

In order to serve a variety of users. HokieSpeed uses the module command to customize the software environment.
When you log in, the default environment includes a compiler family (probably intel) and a version of MPI
(probably openmpi). Using versions of the module command, you can list the current software environment,
replace items, and load up other software such as the pgi compiler, cuda, python, or OpenFOAM.

Command Example Meaning

module list List the modules currently loaded

module avail List modules that are available to be loaded

module purge Unload all modules

module show name module show cuda Print information about the cuda module

module load name module load R Load the R module

module unload name module unload ffmpeg Unload the ffmpeg module

module spider name module spider namd Search for a namd module

module swap names module swap intel gcc Replace intel by gcc & reload dependencies

5 Practice: Compile and Run

The integral I =
∫ 1
0

1
1+x dx = ln(2) ≈ 0.6931471805.

A left Riemann sum might use n intervals, defining a spacing h = 1
n , and nodes xi = i

n , resulting in an approxi-
mation Q = h ∗

∑ i<n
i=0

1
1+xi

. The approximation error is E = ||Q− I||.

2



Figure 1: The HokieSpeed cluster has 2 login nodes and 202 compute nodes.

1. on your laptop, write a C program quad.c which is given n, and prints n, q, and e.

2. compile and run your program locally, using n = 1000.

3. make a note of the value of e, the approximation error.

4. use sftp to connect to HokieSpeed.

5. create a remote directory quad, move there, and put a copy of quad.c there.

6. open a second terminal window, and use ssh to connect interactively to HokieSpeed.

7. move to the remote quad subdirectory.

8. use a module command to determine what modules are loaded.

9. assuming gcc is not the current compiler, use module commands to make it so.

10. compile and run your program remotely, using n = 1000.

11. verify that your remote program got the same value for e, the approximation error.

12. logout of your ssh session.

13. quit your sftp session.

6 Running Batch Jobs

HokieSpeed has 204 nodes, but you can only log into 2; the rest are compute nodes. Any subset of these nodes
can be assigned to work together on a user task; but in order for this to happen smoothly, a job scheduler is used.
Instead of you issuing your commands, you write them down in a file, and notify the scheduler. It adds them to a
list of job requests, and only runs your job when the appropriate number of nodes are available and nobody more
important than you wants them!

Your request to run a job is done through a batch file, which we might call quad.sh. This file consists of two parts

1. information to the scheduler, such as job size and time limits;

2. the commands you would have entered interactively.

3



Here is what the job file quad.sh might look like:

#! /bin/bash

#PBS -l walltime=00:05:00 <-- At most 5 minutes of time

#PBS -l nodes=1;ppn=1 <-- One node please, and just one of 12 cores

#PBS -W group_list=hokiespeed

#PBS -q normal_q <-- Specifies the queue to use

#PBS -j oe <-- return output and erros in a single file

module purge

module load gcc

cd $PBS_O_WORKDIR <-- Run job where this batch file is

gcc -o quad quad.c -lm <-- need -lm for math library (log, fabs)

./quad 1000 <-- could read n from commandline

7 Practice: Batch Job

1. on your laptop, create the batch script quad.sh;

2. use sftp to connect to HokieSpeed.

3. move to your remote directory quad, and put a copy of quad.sh there.

4. open a second terminal window, and use ssh to connect interactively to HokieSpeed.

5. move to the quad subdirectory.

6. submit your job request using the command qsub quad.sh.

7. note the number in the system response 123456.master.cluster, (I’m pretending it’s 123456!).

8. check your directory using the ls command.

9. check your job with the command checkjob -v 123456.

10. keep issuing ls commands until you see a file called quad.sh.o123456.

11. use sftp to get a copy of quad.sh.o123456 back to your laptop.

12. verify that your remote batch program got the same value for e, the approximation error.

13. quit your sftp session.

14. logout of your ssh session.

8 Parallel Programming with MPI

MPI, the Message Passing Interface, is one way to write parallel programs. We can see that our integral estimation
could be handled by cooperating programs or processes, each of which works on a separate subinterval. It’s MPI’s
job to show how the problem should be divided up among the processes. The user program is modified so that
each process has a copy of the same instructions, but also has an individual ID, which allows it to determine its
portion of the problem.

In order to get the total of the individual estimates, MPI allows processes to send messages to each other. Because
of the modifications to the user program, a special version of the compiler must be used. Because multiple programs
must be initialized, synchronized, and allowed to communicate, a special command is needed to execute the MPI
program.

Here is what the MPI version of our program might look like:

# include <math.h>

# include <mpi.h> <-- Need this

# include <stdio.h>

4



# include <stdlib.h>

int main ( int argc, char *argv[] )

{

double e;

double h;

int i;

int my_id; <-- Holds my process number.

double my_q; <-- Holds my piece of the answer.

int n;

int p_num; <-- Holds the number of processes.

double q;

double x;

MPI_Init ( &argc, &argv );

MPI_Comm_rank ( MPI_COMM_WORLD, &my_id );

MPI_Comm_size ( MPI_COMM_WORLD, &p_num );

n = atoi ( argv[1] ); <-- read value of n from command line

h = 1.0 / ( double ) n / ( double ) ( p_num );

x = ( double ) ( my_id ) / ( double ) ( p_num );

my_q = 0.0;

for ( i = 0; i < n; i++ )

{

my_q = my_q + h * 1.0 / ( x + 1.0 );

x = x + h;

}

printf ( " P:%d MY_Q=%14.6g\n", my_id, my_q );

%

% MPI_Reduce sends my piece of the answer to process 0,

% which sums the pieces to get Q.

%

MPI_Reduce ( &my_q, &q, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD );

if ( my_id == 0 )

{

e = fabs ( q - log ( 2.0 ) );

printf ( " N=%6d Q=%14.6g E=%10.2e\n", n, q, e );

}

MPI_Finalize ( );

return 0;

}

For our job file quad mpi.sh has some significant differences compared to the previous example:

• ask for more than one core; the node has 12, but we’ll just ask for 4;
• choose and load an MPI module;
• use an MPI version of the C compiler;
• use the mpirun command to create, synchronize and execute the multiple MPI processes.

5



#! /bin/bash

#PBS -l walltime=00:05:00

#PBS -l nodes=1;ppn=4 <-- One node please, and just 4 of 12 cores

#PBS -W group_list=hokiespeed

#PBS -q normal_q

#PBS -j oe

module purge

module load gcc

module load openmpi <-- Load a version of MPI.

cd $PBS_O_WORKDIR

mpicc -o quad_mpi quad_mpi.c -lm <-- MPI-aware compiler

mpirun -np 4 ./quad_mpi 250 <-- run the program using 4 processes

<-- mpiexec -n 4 ... will also work.

The job quad mpi.sh is submitted with the usual qsub command.

9 Practice: MPI Batch Job

1. on your laptop, create the MPI program quad mpi.c (note that we will use n=250 here!);

2. on your laptop, create the batch script quad mpi.sh;

3. use sftp to connect to HokieSpeed.

4. create a remote directory quad mpi, and put these two files there.

5. open a second terminal window, and use ssh to connect interactively to HokieSpeed.

6. move to the quad mpi subdirectory.

7. submit your job request using the command qsub quad mpi.sh.

8. when your output file is returned, make sure the run was successful;

9. use sftp to get a copy of your output file back to your laptop;

10. quit your sftp session.

11. logout of your ssh session;

12. verify that your remote batch MPI program got the same value for e, the approximation error.

10 References

• http://www.arc.vt.edu/hokiespeed describes HokieSpeed’s hardware, usage policies, and software, and
provides some step-by-step examples.
• http://www.arc.vt.edu/modules describes how to use ARC’s software modules.
• http://www.arc.vt.edu/scheduler describes how to interact with the scheduler, submit and check jobs,

view output.
• http://www.arc.vt.edu/faq provides answers to some frequently asked questions.

6

http://www.arc.vt.edu/hokiespeed
http://www.arc.vt.edu/modules
http://www.arc.vt.edu/scheduler
http://www.arc.vt.edu/faq

