
Chapter 1
Introduction to Discretization

We begin the journey to understand numerical methods for differential equations
by concentrating on a specific type of ordinary differential equation (ODE) which
describes how some function evolves in time given its initial configuration. This
type of problem is called an initial value problem (IVP) for obvious reasons.
An example of this type of problem is modeling the growth of a population where
we know the initial population size, we have information on how the population
grows with time, (i.e., we have information on the first derivative) and we want to
determine the population at subsequent times. Another example is the motion of a
simple mechanical system such as a mass suspended from a spring where we want
to know the position (e.g., the displacement from the rest position of the spring)
at subsequent times. This system is modeled using Newton’s second law of motion
and thus an equation containing a second derivative of the displacement is obtained;
here we typically specify the initial displacement of the spring due to the mass and
the initial velocity.

Initial value problems can be either ordinary or partial differential equations;
however, here we focus on ODEs. In addition to IVPs being important in their own
right, our understanding of this type of problem will form a foundation for our study
of time dependent partial differential equations (PDEs).

We begin this chapter by looking at the prototype IVP that we consider initially.
The differential equation in this IVP is first order and gives information on the rate
of change of our unknown; in addition, an initial value for the unknown is specified.
Later, in Chapter 3, we consider higher order IVPs and we will see that higher order
IVPs can be written as a system of first order IVPs. In fact, most ODE software
for IVPs is written for first order problems. Before proceeding to approximating the
solution of this prototype IVP we investigate conditions which guarantee that the
analytic solution exists, is unique and depends continuously on the data. In the
sequel we will only be interested in approximating the solution to such problems.

Once we have specified our prototype IVP we introduce the idea of approximating
its solution using a difference equation. In general, we have to give up the notion
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of finding an analytic solution which gives an expression for the solution at any
time and instead find a discrete solution which is an approximation to the exact
solution at a set of finite times. The basic idea is that we discretize our domain, in
this case a time interval, and then derive a difference equation which approximates
the differential equation in some sense. The difference equation is in terms of a
discrete function and only involves differences in the function values; that is, it does
not contain any derivatives. Our hope is that as the difference equation is imposed
at more and more points (which much be chosen in a uniform manner) then its
solution will approach the exact solution to the IVP.

The simplest method for approximating the solution to our prototype IVP is
the Euler method which we derive by approximating the derivative in the differen-
tial equation by the slope of a secant line. In § 1.2.2 we demonstrate the linear
convergence of the method by introducing the concepts of local truncation error
and global error. The important difference in explicit and implicit methods is illus-
trated by comparing the forward and backward Euler methods. In § 1.3 we present
two models of growth/decay which fit into our prototype IVP and give results of
numerical simulations for specific problems. In addition, we demonstrate that our
numerical rate of convergence matches our theoretical rate.

We conclude this chapter by demonstrating several approaches to deriving the
Euler method. The reason for doing this is because the Euler method converges
rather slowly and so we need to derive methods which converge faster. In addition,
we will see that the forward Euler approximation may grow in an unbounded manner
for some problems and so clearly other methods are needed.

1.1 Prototype Initial Value Problem

One of the problems encountered in modeling is an initial value problem where we
seek a function whose value is known at some initial time and whose derivative is
specified for subsequent times. The following problems are examples of first order
IVPs for y(t):

y′(t) = sinπt; 0 < t ≤ 4 y′(t) + y(t) = t2; 2 < t ≤ 10
y(0) = 0 y(2) = 1 .

(1.1)

Clearly, these examples are special cases of the following general IVP.

General IVP: find y(t) satisfying

dy

dt
= f(t, y) t0 < t ≤ T (1.2a)

y(t0) = y0 . (1.2b)

Here f(t, y) is the given derivative of y(t) and y0 is the known value at the initial
time t0. For example, for the second IVP in (1.1) we have f(t, y) = t2− y, t0 = 2,
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T = 10 and y0 = 1. Note that both linear and nonlinear differential equations are
included in the general equation (1.2a).

One of the simplest situations is when f = f(t), i.e., f is a function of t and
not both t and y. In this case we can find the solution if the antiderivative1 of
f(t) can be found. We should expect that the solution to the differential equation
(1.2a) is not unique; actually there is an infinite family of solutions which satisfy the
differential equation. This should be apparent because the differential equation only
specifies the slope y′(t) at every point and not the value of y(t) itself. To be able
to determine a unique solution we have to specify y(t) at some point such as its
initial value. The following examples illustrate two standard techniques for solving
a differential equation of the form (1.2a). When we write a code to approximate
the solution of the IVP (1.2) we always want to test the code on a problem where
the exact solution is known so it is useful to review some standard approaches.

Example 1. Method of separation of variables for finding the analytic solution
of (1.2).

Consider the differential equation y′(t) = −ty(t) and find its general solution. Then impose the
initial condition y(0) = 2 to determine a unique solution to the IVP.

Because f(t, y) is a function of both y and t we can not directly integrate the differential

equation with respect to t to obtain the solution. However, if we rewrite the equation as dy
y

= −tdt
then we can integrate both sides of the equation to get

ln y + C1 = −
t2

2
+ C2 ⇒ eln y+C1 = e−

t2

2
+C2 ⇒ eC1y(t) = e−

t2

2 eC2 ⇒ y(t) = Ce−
t2

2 .

This technique can be applied whenever we can “separate variables”, i.e., bring all the terms
involving y to one side of the equation and those involving t to the other side. Note that the
general solution to this differential equation involves an arbitrary constant C and thus there is an
infinite family of solutions which satisfy the differential equation. Figure 1.1 illustrates some of
these solutions; note that as t→ ±∞ the solution approaches zero.

We can always verify that no errors have been made in computing the solution by demonstrating
that it satisfies the differential equation. Here we have

y(t) = Ce−
t2

2 ⇒ y′(t) = C
−2t

2
e−

t2

2 = −t
(
Ce−

t2

2

)
= −ty(t)

so the equation is satisfied.

To determine a unique solution we impose the value of y(t) at some point; here we set y(0) = 2

to get the particular solution y(t) = 2e−t
2/2 because

y(0) = 2, y(t) = Ce−
t2

2 ⇒ 2 = Ce0 ⇒ C = 2 .

Example 2. Method of using an integrating factor for finding the analytic solu-
tion to (1.2) .

Find the solution to the IVP

y′(t) + sin(t)y(t) = t2ecos(t) y(
π

2
) = 0

1The antiderivative of f(t) is a function y(t) whose derivative is f(t).
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Figure 1.1: Family of solutions of y′(t) = −ty(t).

Here f(t, y) = t2ecos(t)−sin(t)y(t) and we can not separate variables for this differential equation;
however, we can find a term to multiply the differential equation by so that it is integrable. Consider
the factor eµ where

µ =

∫
sin t) dt = − cos(t)

which is just the integral of the coefficient of y(t) when the coefficient of y′(t) is one. Multiplying
through the equation by eµ always makes the left hand side of the equation integrable. Here we
have

e− cos(t)
(
y′(t) + sin(t) y(t)

)
= t2

where the left hand side can be simplified as

d

dt

(
e− cos(t)y(t)

)
.

Now we separate variables and integrate to get∫
d
(
e− cos(t)y(t)

)
=

∫
t2 dt⇒ e− cos(t)y(t) =

t3

3
+ C ⇒ y(t) = ecos(t)

( t3
3

+ C
)
.

Of course this method relies on being able to integrate exactly the right-hand side times the
integrating factor. To determine C we impose the initial condition

0 = y(
π

2
) = e0

(π3

24
+ C

)
⇒ C = −

π3

24
.

Even if we are unable to determine the analytic solution to (1.2), we can still gain
some understanding of the behavior of the solution. This is done by the visualization
technique of plotting the tangent line to the solution at numerous points (t, y); recall
that the slope of the tangent line to the solution curve is given and is just f(t, y).
Many graphic packages provide commands for automatically drawing a direction
field with arrows which are scaled to indicate the magnitude of the slope; typically
software packages also offer the option of drawing some solutions or streamlines.
Using direction fields to determine the behavior of the solution is illustrated in the
following example.

Example 3. Direction Fields for (1.2)

Draw the direction fields for the ODE

y′(t) = t2 + y(t) 0 < t < 4

and indicate the specific solution which satisfies y(0) = 1.
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At each point (t, y) we draw the line with slope t2 + y; this is illustrated in Figure 1.2 where
numerous streamlines have been sketched. To thread a solution through the direction field start at
a point and follow the solution, remembering that solutions don’t cross and that nearby tangent
lines should be nearly the same.

To see which streamline corresponds to the solution with y(0) = 1 we locate the point (0, 1) and
follow the tangents; this solution is indicated by a thick line in the direction field plot. If a different
initial condition is imposed, then we get a different streamline. The exact solution to this IVP can
be found by using an integrating factor to get y(t) = −2 + 3et − 2t+ t2.

-2 -1 1 2

-4

-2

2

4

Figure 1.2: Direction field and streamlines for y′(t) = t2 + y(t). The exact
solution which satisfies y(0) = 1 is drawn with a thick line.

For some choices of f(t, y) we are able to find the analytic solution to the IVP;
that is, an explicit function which gives the solution for any time t. However, even
for the simplified case of f(t, y) = f(t) this is not always possible. For example,
consider f(t) = sin(t2) which has no explicit formula for its antiderivative; in fact, a
symbolic algebra software package like Mathematica gives the antiderivative in terms
of the Fresnel Integral which can be represented by an infinite power series near the
origin; consequently there is no closed form solution to the problem. Although there
are numerous techniques for finding the analytic solution of first order differential
equations, we are unable to easily obtain closed form analytic solutions for many
equations. When this is the case, we must turn to a numerical approximation to
the solution where we give up finding a formula for the solution at all times and
instead find an approximation at a set of distinct times.

Before we discuss the concept of discretizing the IVP (1.2) we first need to
ask ourselves if our prototype IVP actually has an analytic solution, even if we are
unable to find it. We are only interested in approximating the solution to IVPs
which have a unique solution. However, even if we know that a unique solution
exists, we may still have unreliable numerical results if the solution of the IVP does
not depend continuously on the data. If this is the case, then small changes in
the data can cause large changes in the solution and thus roundoff errors in our
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calculations can produce meaningless results. In this situation we say the IVP is
ill-posed or ill-conditioned , a situation we would like to avoid. Most differential
equations that arise from modeling real-world phenomena are well-posed so it is
reasonable to assume that we only want to approximate solutions of well-posed
problems.

The conditions that guarantee well-posedness of a solution to (1.2) are well
known and are presented in Theorem 1.1. Basically the theorem requires that the
derivative of y(t) (given by f(t, y)) is continuous and, moreover, this derivative is
not allowed to change too quickly as y changes. The precise requirement on f(t, y)
is that it is Lipschitz2 continuous in y. To understand this concept first think of a
function g(x) of one variable defined on an interval I. Lipschitz continuity requires
that the magnitude of the slope of the line joining any two points x1 and x2 in I
must be bounded by a real number. Formally, a function g(x) defined on a domain
D ⊂ R1 is Lipschitz continuous on D if for any x1, x2 ∈ D there is a constant L
such that

|g(x1)− g(x2)| ≤ L|x1 − x2| ,

or equivalently,
|g(x1)− g(x2)|
|x1 − x2|

≤ L .

Here L is called the Lipschitz constant. This condition says that we must find one
constant L which works for all points in the domain. Clearly the Lipschitz constant
is not unique; for example, if L = 5, then L = 5.1, 6, 10, 100, etc. also satisfy
the condition. Lipschitz continuity is a stronger condition than merely saying the
function is continuous so a Lipschitz continuous function is always continuous but
the converse is not true. For example, the function g(x) =

√
x is continuous on

D = [0, 1] but is not Lipschitz continuous on D. If g(x) is differentiable then
an easy way to determine the Lipschitz constant is to find a constant such that
|g′(x)| ≤ L for all x ∈ D. There are functions which are Lipschitz continuous but
not differentiable. For example, consider the continuous function g(x) = |x| on
D = [−1, 1]. Clearly it is not differentiable on D because it is not differentiable at
x = 0. However, it is Lipschitz continuous with L = 1 because the magnitude of
the slope of the secant line between any two points is always less than or equal to
one.

For the existence and uniqueness result for (1.2), we need f(t, y) to be Lipschitz
continuous in y so we need to extend the above definition because f is now a function
of two variables. Formally, we have that a function g(t, y) defined on a domain
D ⊂ R2 is Lipschitz continuous in D for the variable y if for any (t, y1), (t, y2) ∈ D
there is a constant L such that

|g(t, y1)− gt, y2)| ≤ L|y1 − y2| . (1.3)

We are now ready to state the theorem which guarantees existence and unique-
ness of a solution to (1.2) as well as guaranteeing that the solution depends continu-
ously on the data; i.e., the problem is well-posed. Note that y(t) is defined on [t0, T ]

2Named after the German mathematician Rudolf Lipschitz (1832-1903)
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whereas f(t, y) must be defined on a domain in R2. Specifically the first argument t
is in [t0, T ] but y can be any real number so that D = {(t, y) | t ∈ [t0, T ], y ∈ R1};
a shorter notation for expressing D is D = [t0, T ]×R1 which we will employ in the
sequel.

Theorem 1.1. Let D = [t0, T ]×R1 and assume that f(t, y) is continuous
on D and is Lipschitz continuous in y on D; i.e., it satisfies (1.3). Then
the IVP (1.2) has a unique solution in D and moreover, the problem is
well-posed.

In the sequel we will only consider IVPs which are well-posed, that is, which have a
unique solution that depends continuously on the data.

1.2 Discretization

One approach to discretizing a differential equation is to approximate the derivatives
in the equation by difference quotients; i.e., derive a difference equation which
involves only differences in function values. The solution to the difference equation
will not be a continuous function but rather a discrete function which is defined
over a set of points. If the solution is needed at some other point, interpolation
is often used. In this chapter we concentrate on two of the simplest difference
equations for (1.2a).

Because the difference equation is defined at a finite set of points we first
discretize the time domain [t0, T ]; alternately, if our solution depended on the
spatial domain x instead of t we would discretize the given spatial interval. For
now we use N + 1 evenly spaced points ti, i = 0, 1, 2, . . . , N

t1 = t0 + ∆t, t2 = t0 + 2∆t, · · · , tN = t0 +N∆t = T ,

where ∆t = (T − t0)/N and is called the step size or time step.
Our task is to find a means for approximating the solution at each of these

discrete values and our hope is that as we perform more calculations with N getting
large, or equivalently ∆t → 0, our approximate solution will approach the exact
solution in some sense. In the left plot in Figure 1.3 we plot an exact solution (the
continuous curve) to a specific IVP and a discrete approximation for ∆t = 0.5. The
approximate solutions are plotted only at the points where the difference equation
is enforced. From this plot we are unable to say if our discrete solution appears to
approach the continuous solution. However, in the figure on the right we plot this
discrete solution plus three additional discrete solutions where we cut ∆t in halve
for each approximation. By observing the plot and using the “eyeball norm” we can
convince ourselves that as ∆t→ 0 our discrete solution is approaching the analytic
solution. One of our goals is to make this statement precise and to determine the
rate at which our approximate solution converges to the exact solution.
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Figure 1.3: The exact solution to an IVP is shown as a solid curve. In the figure
on the left a discrete solution using ∆t = 0.5 is plotted. From this plot, it is
not possible to say that the discrete solution is approaching the exact solution.
However, in the figure on the right the discrete solutions for ∆t = 0.5, 0.25, 0.125,
and 0.625 are plotted. From this figure, the discrete approximations appear to
be approaching the exact solution as ∆t decreases.

We will see that there are many approaches to deriving discrete methods for
our IVP (1.2). The most straightforward approach to obtain a difference equation
is to approximate the derivative appearing in the equation; we discuss how to do
this next to obtain the Euler Method. Another goal of this section is to discuss the
discretization errors that occur when we implement a method on a computer.

1.2.1 The Euler Method

The simplest method for approximating the solution of (1.2) is called the Euler
Method named after Leonhard Euler who wrote about the method in the latter
half of the eighteenth century. The basic idea is to obtain a difference equation
which involves differences of approximations to y(t) at certain points ti and then use
the difference equation to approximate the solution in a step-by-step manner. For
example, to determine an approximation to y(t1) we use the initial value y0 = y(t0)
and the known function f at (t0, y0). Once this is done, we use this approximation
to y(t1) and the known function f at t1 and our approximation at y(t1) to get an
approximation to y(t2); we continue in this manner until we have reached the final
time T .

The Euler method can be derived from several different viewpoints; initially we
take the approach of replacing the derivative with an approximation but in § 1.4
we look at other approaches which will lead the way to obtaining more accurate
methods. From calculus we know that the definition of the derivative of a function
y(t) at a point t = a is

y′(a) = lim
h→0

y(a+ h)− y(a)

h
. (1.4)

Graphically this just says that we take the slope of the secant line joining
(
a, y(a)

)
and

(
a+h, y(a+h)

)
and as a+h gets closer to a the slope of the secant line gets

closer to the slope of the tangent line at a which is given by y′(a). If we compute
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the quotient in (1.4) for a small fixed h, then we have an approximation to y′(a).
We know that for the limit to exist, both the limit as h → 0 from the right and
from the left must agree. Initially we fix h > 0 and in the quotient in (1.4) we set
h = ∆t, a = t0 and let t1 = t0 + ∆t to get an approximation to y′(t0)

y′(t0) ≈ y(t1)− y(t0)

∆t
.

When we write a difference equation we need to use different notation for the
exact solution y(t) and its discrete approximation; to this end, we let Yi denote our
approximation to y(ti). Clearly Y0 = y0 which is the given initial condition (1.2b).
To obtain Euler’s method at t1 we use the above difference approximation in the
differential equation evaluated at t0, i.e., in y′(t0) = f(t0, y0) to get

Y1 − Y0

∆t
= f(t0, Y0) .

We have a starting point Y0 = y0 from our initial condition and thus we can solve
for our approximation to y(t1) from

Y1 = Y0 + ∆tf(t0, Y0)

which is a difference equation for Y1. Once Y1 is obtained we can repeat the process
to obtain a difference equation for Y2. This procedure is known as the forward Euler
method and is defined by the following formula.

Forward Euler: Yi+1 = Yi + ∆tf(ti, Yi) , i = 0, 1, 2, . . . , N − 1 (1.5)

The term “forward” is used in the name because we write the equation at the point
ti and difference forward in time to ti+1; note that this implies that the given slope
f is evaluated at the known point (ti, Yi).

A simple graphical interpretation for Euler’s method is shown in Figure 1.4. To
start the method, consider the slope of the tangent line at (t0, Y0) = (t0, y0) which
is a point which lies on the solution curve as well as on the tangent line. The
tangent line has slope y′(t0) = f(t0, Y0); if Y1 denotes the point on the tangent
line corresponding to t1 then the point (t1, Y1) satisfies the tangent line equation
Y1 − Y0 = f(t0, Y0)(t1 − t0) which is just Euler’s equation for the approximation
to y(t1). Now for the second step we don’t have a point on the solution curve
to compute the tangent line but if ∆t is small, then Y1 ≈ y(t1) and f(t1, Y1) ≈
f(t1, y(t1)) = y′(t1). So we write the equation passing through (t1, Y1) with slope
f(t1, Y1) and evaluate it at t2 to get Y2− Y1 = ∆tf(t1, Y1) which again is just the
formula for Y2 from (1.5).

The forward Euler method is straightforward to program and only involves a
single loop and a single evaluation of f(t, y) per step; in addition, only one value
Yi needs to be stored at any time because we can overwrite Yi−1 with Yi. If we
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Figure 1.4: Graphical interpretation of Euler’s method. At the first step Y1 is
found by writing the tangent line at (t0, Y0) which is on the solution curve (the
solid line) and evaluating it at t1. At the second step the slope of the tangent
line to the exact solution at t1 is not known so instead of using the exact slope
f(t1, y(t1)) we use the approximation f(t1, Y1).

need to save the values for plotting, then Yi can simply be written to a file once it
is computed. The numerical results in Figure 1.3 were obtained using the forward
Euler method. In § 1.3 we will approximate the solution for several IVPs using this
difference scheme.

The forward Euler scheme was derived by using the definition of the derivative
at a point a where we let h→ 0+, i.e., h approached zero through positive values.
We now want to see if we get the same difference equation when we let h → 0
through values less than zero in (1.4); in this case a + h lies to the left of a, that
is, we will use a secant line passing through (a, y(a)) and a point to its left to
approximate y′(a). In the quotient in (1.4) we set h = t0 − t1 < 0, a = t1, and
a+ h = t0 to get

y′(t1) ≈ y(t0)− y(t1)

t0 − t1
which leads to the approximation

Y1 − Y0

∆t
= f(t1, Y1) ,

where we have used the fact that t0−t1 = −∆t < 0. We have the following general
formula for the method.

Backward Euler: Yi+1 = Yi + ∆tf(ti, Yi+1) , i = 0, 1, 2, . . . , N − 1 (1.6)
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This method is called the backward Euler method because we are writing the equa-
tion at ti+1 and differencing backwards in time to ti. It is important to realize
that this method is inherently different from (1.5) because we must evaluate f(t, y)
at the unknown point (ti, Yi+1). In general, this leads to a nonlinear equation to
solve for each Yi which can be computationally expensive. For example, if we have
f(t, y) = ety then the equation for Y1 is

Y1 = Y0 + ∆tet1Y1

which is a nonlinear equation in the unknown Y1.
The difference between the forward and backward Euler schemes is so impor-

tant that we use this characteristic to broadly classify methods. The forward Euler
scheme given in (1.5) is called an explicit scheme because we can write the un-
known explicitly in terms of known values. The backward Euler method given in
(1.6) is called an implicit scheme because the unknown is written implicitly in
terms of known values and itself. The terms explicit/implicit are used in the same
manner as when one differentiates a function which is given explicitly in terms of
the independent variable (such as y(t) = t3 + sec t) or when it is given implicitly
(such as y2 + sin y − t2 = 4).

If we have an existing code for the forward Euler method and want to modify it
to use the backward Euler scheme then we need to add an interior loop to solve the
resulting nonlinear equation with a method such as Newton’s method. If f(t, y) is
linear in y(t) then the resulting equation will be linear and Newton’s method will
get the answer in one step. In § 1.3 we look at examples where we employ both
the forward and backward Euler methods. However, in practice we will use implicit
methods for IVPs with a different strategy because a straightforward approach leads
to the necessity of solving nonlinear equations for each ti. In the exercises you will
get practice in identifying schemes as explicit or implicit.

1.2.2 Discretization errors

When we implement the forward or backward Euler method on a computer the error
we make is due to both round-off and discretization error. Rounding error is due
to using a machine which has finite precision. First of all, we may not be able
to represent a number exactly; this is part of round-off error and is usually called
representation error. Even if we use numbers which can be represented exactly on
the computer, we encounter rounding errors when these numbers are manipulated
such as when we divide two integers like 3 and 7. In some problems, round-off
error can accumulate in such a way as to make our results meaningless; this often
happens in ill-conditioned problems.

We are mainly concerned with discretization error here and when we derive
error estimates we will assume that no rounding error exists. In Figure 1.5 we
illustrate approximations to a known exact solution. As you can see from the plot,
the approximate solution agrees with the exact solution at t0; at t1 there is an
error in our approximation due to the fact that we have used an approximation to
y′(t) at t0; i.e., we have solved a difference equation rather than the differential



CHAPTER 1. INTRODUCTION TO DISCRETIZATION 12

-

6

t
t0 t1 t2 t3

y(t)

�
�
�
�
�
��

s
Y0 = y(t0)

sY1







sY2�
�
�sY3

y(t1)c y(t2)c y(t3)
c

Figure 1.5: The exact solution and the discrete solution agree at t0. At t1
the error |Y1 − y(t1)| is due to approximating the derivative in the ODE by a
difference quotient. At t2 the error |Y2 − y(t2)| is due to approximating the
derivative in the ODE and the fact that the starting value, Y1, does not lie on
the solution curve as Y0 did.

equation. However at t2 and subsequent points the discretization error comes from
two sources; the first is our approximation to y′(t) and the second is because we
have started from the incorrect point, i.e., we did not start on the solution curve
as we did in calculating Y1. The global discretization error at a point ti
is the magnitude of the actual error at the point whereas the local truncation
error or local discretization error in the Euler method is the error made in
approximating the derivative by the difference quotient. Thus to measure the local
truncation error we take one step of the discrete method assuming that the exact
solution at ti−1 is used as a starting value. Ignoring round-off errors, the local
truncation error is solely due to the error in approximating the differential equation.

A comparison of the global error and the truncation error for the forward Euler
method is illustrated in Figure 1.6. The figure on the left demonstrates the global
error at t2 while the figure on the right illustrates the local truncation error at t2
because the approximation uses y(t1) instead of Y1.

To determine the local truncation error for the forward Euler method we compute
the error made in taking one step where we start on the solution curve, i.e., we
compute the difference in the exact solution at ti and the result of applying the
Euler method where we use y(ti−1) instead of Yi−1. Specifically we calculate

τi = |y(ti)− Ỹi| where Ỹi = y(ti−1) + ∆tf
(
ti−1, y(ti−1)

)
. (1.7)

Our strategy is to first quantify the local truncation error τi in terms of ∆t and
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Figure 1.6: A comparison of the global error (left figure) and the local truncation
error (right figure) at t2. The global error is the total error made whereas the
local truncation error is the error due to the discretization of the differential
equation.
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then use the result to determine the global error. The local truncation error is

τi =
∣∣y(ti)− y(ti−1)−∆tf

(
ti−1, y(ti−1)

)∣∣ ; (1.8)

in order to to simplify this expression we use a Taylor series with remainder for the
exact solution y(ti) = y(ti−1 + ∆t) because the expansion is in terms of y(ti−1)
and its derivatives at ti−1. Recall that the Taylor series expansion with remainder
for a differentiable function g(x) in the neighborhood of x = a is

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 +

g′′′(a)

3!
(x− a)3 + · · ·

+
g[n](a)

n!
(x− a)n +

g[n+1](ξ)

(n+ 1)!
(x− a)n+1 for ξ ∈ (a, x) .

Note that the result says that there exists a point ξ ∈ (a, x) where the expansion
holds but it does not give a means for determining the specific ξ; this makes sense
because the usual Taylor series is an infinite series and if we could find the ξ that
satisfies the remainder term then we would be converting an infinite series into a
finite one. We will typically use Taylor series in the form

g(t+ ∆t) = g(t) + ∆tg′(t) +
(∆t)2

2!
g′′(t) +

(∆t)3

3!
g′′′(t) + · · ·

+
(∆t)n

n!
g[n](t) +

(∆t)n+1

(n+ 1)!
g[n+1](ξ) ξ ∈ (t, t+ ∆t) ,

(1.9)

where we have set t + ∆t = x and t = a so x − a = ∆t. Setting t = ti−1 and
n = 1 in (1.9) gives the expansion for y(ti−1 + ∆t)) = y(ti)

y(ti) = y(ti−1) + ∆ty′(ti−1) +
(∆t)2

2!
y′′(ξi) ξi ∈ (ti−1, ti) .

Substituting this into our expression (1.8) for the truncation error τi yields

τi =
[
y(ti−1) + ∆tf

(
ti−1, y(ti−1)

)
+

(∆t)2

2!
y′′(ξi)

]
− y(ti−1)−∆tf

(
ti−1, y(ti−1)

)
=

(∆t)2

2!
y′′(ξi) ,

where we have used the differential equation at ti−1, i.e., y′(ti−1) = f
(
ti−1, y(ti−1)

)
.

If y′′(t) is bounded on [0, T ], say |y′′(t)| ≤M , then we have

τi =
∣∣y(ti)− Ỹi

∣∣ =
(∆t)2

2!

∣∣y′′(ξi)∣∣ ≤ (∆t)2M

2
. (1.10)

We say that the local truncation error for Euler’s method is order (∆t)2 which we
write as O

(
(∆t)2

)
. This says that the local error is proportional to the square of

the step size; i.e., it is a constant times the square of the step size. Remember,
however, that this is not the global error but rather the error made because we have
used a finite difference quotient to approximate y′(t).
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We now turn to estimating the global error in the forward Euler method. We
should expect to only be able to find an upper bound for the error because if we
can find a formula for the exact error, then we can calculate this and add it to the
approximation to get the exact solution.

Our goal is to demonstrate that the global discretization error for the forward
Euler method is O(∆t) which says that the method is first order, i.e., linear in ∆t.
At each step we make a local error of O

(
(∆t)2

)
due to approximating the derivative

in the differential equation; at each fixed time we have the accumulated errors of
all previous steps and we want to demonstrate that this error does not exceed a
constant times ∆t. We can intuitively see why this should be the case. Assume that
we are taking N steps of length ∆t = (T − t0)/N ; at each step we make an error
of order ∆t2 so for N steps we have NC(∆t)2 = [(T − t0)/∆t]C∆t2 = O(∆t).
The following result makes this argument precise. Later we will see that, in general,
if the local truncation error is O((∆t)r) then we expect the global error to be one
power of ∆t less, i.e., O((∆t)r−1).

Theorem 1.2 provides a formal statement and proof for the global error of the
forward Euler method. Note that one hypothesis of Theorem 1.2 is that f(t, y)
must be Lipschitz continuous in y which is also the hypothesis of Theorem 1.1
which guarantees existence and uniqueness of the solution to the IVP (1.2) so it
is a natural assumption. We also assume that y(t) possesses a bounded second
derivative; however, this condition can be relaxed but it is adequate for our needs.

Theorem 1.2. Let D = {(t, y) | t ∈ [t0, T ], y ∈ R1} and assume that f(t, y)
is continuous on D and is Lipschitz continuous in y on D; i.e., it satisfies
(1.3) with Lipschitz constant L. Also assume that there is a constant M
such that

|y′′(t)| ≤M for all t ∈ [t0, T ] .

Let τi represent the local truncation error of the forward Euler method given
in (1.10). Then the global error at each point ti satisfies

|y(ti)− Yi| ≤ C∆t where C =
MeTL

2L
(eTL − 1) ;

thus the forward Euler method converges linearly.

Proof. Let En represent the global discretization error at the specific time tn,
i.e., En = |y(tn)− Yn|. We want to demonstrate that

En ≤ KEn−1 + τ (1.11)

where K is the constant K = 1 + ∆tL and τ = maxi τi, i.e., the largest value of
τi given in (1.10) for i = 1, 2, . . . , N . If we can do this, then the proof follows.
To see this, first note that a common approach in error analysis is to apply a
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formula recursively; in our case we obtain

En ≤ KEn−1 + τ ≤ K[KEn−2 + τ ] + τ = K2En−2 + (K + 1)τ
≤ K3En−3 + (K2 +K + 1)τ
≤ · · ·

≤ KnE0 + τ

n−1∑
i=0

Ki .

Because we assume for analysis that there are no roundoff errors, E0 = |y0 −
Y0| = 0 so we are left with

∑n−1
i=0 τK

i. To simplify the sum we note that it is

a geometric series of the form
∑n−1
k=0 ar

k with a = τ and r = K. From calculus
we know that the sum is given by a(1 − rn)/(1 − r) so that if we use the fact
that K = 1 + ∆tL we arrive at

En ≤ τ
(
Kn − 1

K − 1

)
=

τ

∆tL
[(1 + ∆tL)n − 1] .

Also from the Taylor series expansion of ez near zero we have that 1 + z ≤ ez

so that (1 + z)n ≤ enz. If we set z = ∆tL in the last bound for En we have

En ≤
τ

∆tL
[(1 + ∆tL)n − 1] ≤ τ

∆tL
(en∆tL − 1) .

From the hypothesis of the theorem |y′′(t)| ≤M so using the expression (1.10)
we get

τ = max
1≤i≤N

τi = max
1≤i≤N

∆t2

2

∣∣y′′(ξi)∣∣ ≤M∆t2

2
.

Also n in En is the number of steps taken from t0 so n∆t = tn ≤ T where T is
our final time. Combining these gives the desired result that the global error is
linear in ∆t

En ≤
M∆t2

2∆tL
(eTL − 1) = C∆t where C =

M

2L
(eTL − 1) .

All that is left to complete the proof is to to demonstrate that (1.11) holds
with K = 1 + ∆tL. To show this we substitute the expression for the local
truncation error given in (1.8) and the forward Euler formula for Yn into the
expression for En to get

En =
∣∣y(tn)− Yn

∣∣ =
∣∣[y(tn−1) + ∆ty′(tn−1) + τn

]
−
[
Yn−1 + ∆tf(tn−1, Yn−1)

]∣∣
≤

∣∣y(tn−1)− Yn−1

∣∣+ ∆t
∣∣f(tn−1, y(tn−1)− f(tn−1, Yn−1)

∣∣+ τ

≤ En−1 + ∆t
∣∣f(tn−1, y(tn−1)− f(tn−1, Yn−1)

∣∣+ τ ,

where we have used the differential equation y′(t) = f(t, y) evaluated at the
point (tn−1, y(tn−1)) in the second step. To estimate the second term on the
right hand side recall that f(t, y) satisfies a Lipschitz condition on y so that
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|f
(
tn−1, y(tn−1)

)
− f

(
tn−1, Yn−1

)
| ≤ L

∣∣y(tn−1)− Yn−1

∣∣
and thus we have the final result

En ≤ En−1 + ∆tLEn−1 + τ = (1 + ∆tL)En−1 + τ .

�

In the following section we look at some specific examples of the IVP (1.2)
and use both forward and backward Euler methods; we will demonstrate that our
numerical rate of convergence agrees with the theoretical rate. However, we should
keep in mind that O(∆t) is a very slow rate of convergence and ultimately we need
to derive methods which converge more quickly to the solution.

The backward Euler method also has a local truncation error of O
(
(∆t)2

)
and a

global error of O
(
∆t
)
. You are asked to demonstrate this rigorously in the exercises.

1.3 Numerical Computations

In this section we provide some numerical simulations for IVPs of the form (1.2)
using both the forward and backward Euler methods. In particular, we look at two
common examples which arise in modeling which we describe in § 1.3.1. Our goal
is to determine if the numerical results are approaching the exact solution as ∆t
approaches zero and if the results are converging, determine if they are approaching
the exact solution at the linear rate that we derived. In § 1.3.2 we demonstrate
how to compute the numerical rate of convergence to verify this linear rate. We
will see that the forward Euler method does not converge for all choices of ∆t for
some problems. Reasons for this failure will be discussed in Chapter 3.

When we test numerical methods for (1.2) we apply the scheme to an IVP for
which we know the analytic solution. Techniques such as separation of variables
or using an integrating factor can be used to do this. However, in many cases,
we may not be able to solve the problem analytically; in fact, this is why we use
numerical methods. An approach to finding a test problem which avoids finding the
analytic solution is called the method of manufactured solutions. In this method
we begin by choosing a function which satisfies the desired initial and/or boundary
conditions and then plug it into the given differential equation to get the right hand
side. For the differential equation (1.2) whose right hand side is the slope we simply
differentiate the chosen function. The following examples illustrate this technique.

Example 4. Method of manufactured solutions
Use the method of manufactured solution to find an analytic solution to the IVP

y′(t) = f(t, y), 0 ≤ t ≤ 1 y(0) = 1 .

We begin by choosing a function y(t) which satisfies y(0) = 1; for example let y(t) = cosπt.
Then y′(t) = −π sinπt so the solution to

y′(t) = −π sinπt 0 ≤ t ≤ 1 y(0) = 1

is y(t) = cosπt.



CHAPTER 1. INTRODUCTION TO DISCRETIZATION 18

Example 5. Method of manufactured solutions
Use the method of manufactured solution to find an analytic solution to the second order IVP

y′′(t) + 2y′(t)− y2(t) = f(t, y), 0 ≤ t ≤ 1 y(0) = 0, y′(0) = 0.5 .

We begin by choosing a function y(t) which satisfies the initial conditions y(0) = 0, y′(0) = 0.5;
for example let y(t) = t3 + t

2
. Then y′(t) = 3t2 + 0.5 and y′′(t) = 6t so that

y′′(t) + 2y′(t)− y2(t) = 6t+ 2(3t2 + 0.5)−
(
t3 +

t

2

)2
= −t6 − t4 + t2(6−

1

4
) + 6t+ 1 .

Thus the function y(t) = t3 + t
2

satisfies the IVP

y′′(t) + 2y′(t)− y2(t) = −t6 − t4 +
23

4
t2 + 6t+ 1 y(0) = 0, y′(0) = 0.5 .

1.3.1 Exponential and Logistic Growth Models

A common problem that arises in modeling is an IVP whose solution obeys expo-
nential growth or decay. Exponential behavior just means that the solution can be
represented by the function Ceαt where α > 0 for growth and α < 0 for decay.
First we look at a description of an IVP whose solution is this type of exponential
growth or decay and then we look at the slightly more complicated model of logistic
growth.

Exponential growth and decay. Suppose you are interested in modeling the
growth of some quantity and your initial hypothesis is that the growth rate is pro-
portional to the amount present at any time and you know the population at some
initial time t0. To write an IVP for this model we have to translate this expression
into mathematical terms. We know that the derivative represents the instantaneous
rate of growth and the phrase “proportional to” just means a constant times the
given quantity. So if p(t) represents the population at time t and p0 represents the
initial population at time t = 0 we express the hypothesis that the growth rate is
proportional to the amount present at any time as

p′(t) = r0p(t) t ∈ (t0, T ] (1.12)

along with the initial condition
p(0) = p0 ,

where r0 is the given proportionality constant. We can solve this differential equation
as we did in the first example of this chapter where we took r0 = −1. We have∫ t

0

dp

p
= r0

∫ t

0

dt⇒ ln p(t)−ln p0 = r0(t−0)⇒ eln p = er0teln p0 ⇒ p(t) = p0e
r0t .

Thus we see that if the population at any time t is proportional to the amount
present at that time, then it behaves exponentially where the initial population is
a multiplicative constant and the proportionality constant r0 is the rate of growth
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if it is positive; otherwise it is the rate of decay. In the exercises you are asked to
explore an exponential growth model for bread mold.

Logistic growth and decay The previous model of population growth assumes
there is an endless supply of resources and no predators. Logistic growth of a
population attempts to incorporate resource availability by making the assumption
that the rate of population growth (i.e., the proportionality constant) is dependent
on the population density. Figure 1.7 compares exponential growth and logistic
growth; clearly exponential growth allows the population to grow in an unbounded
manner whereas logistic growth requires the population to stay below a fixed amount
K which is called the carrying capacity of the population. When the population
is considerably below this threshold the two models produce similar results. The
logistic model we consider restricts the growth rate in the following way

r = r0

(
1− p

K

)
(1.13)

where K is the maximum allowable population and r0 is a given growth rate for
small values of the population. As the population p increases to near the threshold
value K then p

K becomes closer to one (but less than one) and so the term (1− p
K )

gets closer to zero and the growth rate decreases because of fewer resources; the
limiting value is when p = K and the growth rate is zero. However when p is small
compared with K, the term (1 − p

K ) is near one and it behaves like exponential
growth with a rate of r0. Assuming the population at any time is proportional
to the current population using the proportionality constant (1.13), our differential
equation becomes

p′(t) = r0

(
1− p(t)

K

)
p(t) = r0p(t)−

r0

K
p2(t)

along with p(t0) = p0. This equation is nonlinear in the unknown p(t) due to
the p2(t) term and is more difficult to solve than the exponential growth equation.
However, it can be shown that the solution is

p(t) =
Kp0

(K − p0)e−r0t + p0
(1.14)

which can be verified by substitution into the differential equation. We expect that
as we take the limt→∞ p(t) we should get the threshold value K. Clearly this is
true because limt→∞ e−r0t = 0.

1.3.2 Computing the Numerical Rate of Convergence

In Figure 1.3 we plotted several approximations to an IVP using the forward Euler
method and from the plot it appeared that the discrete solution approached the
exact solution as ∆t → 0. However, from Theorem 1.2 we now know that the
analytic rate of convergence of the forward Euler method is first order, i.e., it is
linear in ∆t. Consequently, we want to verify that the numerical rate of convergence
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Figure 1.7: A comparison of exponential growth and logistic growth. The popu-
lation in the logistic model never reaches the carrying capacity of the population
which in this case is 50 while exponential growth is unbounded. For values of
the population much less than the threshold value, logistic growth is very similar
to exponential growth.

gets close to one as ∆t → 0. It is easy for us to tabulate the errors at a fixed
time t for a sequence of time steps. If ∆t is cut in half each time (for example,
∆t = 0.4, 0.2, 0.1, . . .) then we expect that the error should be approximately halved
at each step because the global error is linear. To see this let Ei denote the error
using time step (∆t)i; then for linear convergence we have E1 ≈ C(∆t)1 and
E2 ≈ C(∆t)2 and thus E2 ≈ .5C(∆t)1 ≈ 1

2E1 when (∆t)2 = .5(∆t)1.
To determine the actual numerical rate we assume that the numerical error using

step size ∆t at any point is E = C(∆t)r and our goal is to compute r. For the
Euler method we expect to show that r → 1 as ∆t → 0. Now when we use this
formula at a fixed value of the step size we have two unknowns C and r. To solve
for r we look at two calculations

E1 = C(∆t)r1 and E2 = C(∆t)r2

and solve for r from these. We have

E1

(∆t)r1
=

E2

(∆t)r2
⇒ E1

E2
=

(
(∆t)1

(∆t)2

)r
.

Using properties of logarithms we get

r =
ln E1

E2

ln (∆t)1
(∆t)2

(1.15)

and if the time step is halved each time we have

r =
ln E1

E2

ln 2
.

We will use this formula to calculate the numerical rate of convergence for the
examples in the following section and also in subsequent chapters.
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1.3.3 Numerical Examples Using Euler’s Method

We now consider examples involving the exponential and logistic growth/decay
models discussed in § 1.3.1. We apply both the forward and backward Euler methods
for each problem and compare the results and work involved. The global error is
computed at a fixed time and we expect that as ∆t decreases the global error at
that fixed time decreases. To confirm that the numerical approximations are valid,
for each pair of successive errors we use (1.15) to calculate the numerical rate. Then
we can easily see if the numerical rates approach one as ∆t→ 0. In the penultimate
example we compare the results from the forward and backward Euler methods for
an exponential decay problem and see that in this case the forward Euler method
gives numerical approximations which oscillate and grow unexpectedly whereas the
backward Euler method provides reliable results. In the last example, we compare
the local truncation error with the global error.

As we indicated previously, the computer implementation of the forward Euler
method requires a single loop where only the current value of the solution is saved.
The information which changes for each IVP is the interval [t0, T ], the initial condi-
tion, the given slope and the exact solution for the error calculation. We incorporate
separate functions for f(t, y) and the exact solution and input the other variables
as well as ∆t. When we modify the code to incorporate the backward Euler scheme
we must add a loop which solves the possibly nonlinear equation.

Example 6. The first example is the exponential growth problem

p′(t) = 0.8p(t) 0 < t ≤ 1, p(0) = 2

whose exact solution is p(t) = 2e.8t. The given slope in this problem is f(t, p) = 0.8p. The exact
solution along with three Euler approximations using uniform step sizes of ∆t = 0.5, 0.25, 0.125
are plotted in figure below and we can easily see that the error is decreasing as we decrease ∆t. A
line is drawn between points where the discrete solution is known for easier viewing but the discrete
solution is only known at specific points. To verify that the global error is O(∆t) we compare the
discrete solution to the exact solution at the point t = 1 where we know that the exact solution is
e.8=4.45108; we tabulate our approximations Pn to p(t) at t = 1, the actual errors at this point
and the computed numerical rates using (1.15) for successive errors. By looking at the errors we
see that as ∆t is halved the error is approximately halved so this suggests linear convergence; the
calculation of the numerical rate of convergence makes this result precise because we see that the
sequence {.825, .902, .948, .973, .986, .993} is tending to one. In the table the approximations and
errors at t = 1 are given to five digits of accuracy.

We can also demonstrate graphically that the convergence rate is linear by using a log-log plot.
Recall that if we plot a polynomial y = axr on a log-log scale then the slope is r.3 Because we
have that the error, E, is E = C∆tr then if we plot the error at each step size then for Euler’s
method we expect the slope to be one. In Figure ?? we plot the errors versus the step size from
the table below.

∆t 1/2 1/4 1/8 1/16 1/32 1/64 1/128
Pn 3.9200 4.1472 4.28718 4.36575 4.40751 4.42906 4.4400

|p(1)− Pn| 0.53108 0.30388 0.16390 0.085333 0.043568 0.022017 0.011068
num. rate 0.805 0.891 0.942 0.970 0.985 0.992

3Using the properties of logarithms we have log y = log a+r log x which implies Y = mX+b
where Y = log y, X = log x, m = r and b = log a.
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We can also demonstrate graphically that the convergence rate is linear by using a log-log plot.
Recall that if we plot a polynomial y = axr on a log-log scale then the slope is r.4 Because we
have that the error, E = C∆tr, then if we plot the error at each step size then for Euler’s method
we expect the slope to be one.

If we tabulate the errors at a different time then we will get different errors but the numerical rate
should still converge to one. In the table below we demonstrate this by computing the errors and
rates at t = 0.5; note that the error is smaller at t = 0.5 than t = 1 for a given step size because
we have not taken as many steps and we have less accumulated error.

∆t 1/2 1/4 1/8 1/16 1/32 1/64 1/128
Pn 2.8000 2.8800 2.9282 2.9549 2.9690 2.9763 2.9799

|p(1)− Pn| 0.18365 0.10365 0.055449 0.028739 0.014638 0.0073884 0.0037118
num. rate 0.825 0.902 0.948 0.973 0.986 0.993

To solve this IVP using the backward Euler method we see that for f = 0.8p the equation is linear:

Pi = Pi−1 + 0.8∆tPi

where Pi ≈ p(ti). Thus we do not need to use Newton’s method for this particular problem but
rather just solve the equation

Pi =
1

1 + 0.8∆t
Pi−1 .

The results are tabulated below. Note that the numerical rate of convergence is also approaching
one but for this method it is approaching one from above whereas using the forward Euler scheme
for this problem the convergence was from below, i.e., through values smaller than one. The
amount of work required for the backward Euler method is essentially the same as the forward
Euler for this problem because the derivative f(t, p) was linear in the unknown p.

∆t 1/2 1/4 1/8 1/16 1/32 1/64 1/128
Pn 5.5556 4.8828 4.6461 4.5441 4.4966 4.4736 4.4623

|p(1)− Pn| 1.1045 0.43173 0.19503 0.093065 0.045498 0.022499 0.011188
num. rate 1.355 1.146 1.067 1.032 1.015 1.008

4Using the properties of logarithms we have log y = log a+r log x which implies Y = mX+b
where Y = log y, X = log x, m = r and b = log a.
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Example 7. We now want to approximate the solution to the logistic model

p′(t) = 2

(
1−

p(t)

100

)
p(t) 0 < t ≤ 6 p(0) = 2

using both the forward and backward Euler schemes and demonstrate that we get linear con-
vergence. Also we want to compare the results from this example with those from the previous
example of exponential growth.

To obtain approximations to p(t) using the forward Euler method code we used in the previous
example all we have to do is modify the routines defining f(t, p) and the exact solution for the
error calculation; the initial condition p0 is the same. The exact solution to this problem is given
by (1.14). Before generating any simulations we should think about what we expect the behavior
of this solution to be compared with the exponential growth solution in the previous example.
Initially the population should grow faster because here r0 = 2 and in the previous example the
growth rate is 0.8. However, the solution should not grow unbounded but rather always stay below
the carrying capacity p = 100. The approximations at t = 1 for a sequence of decreasing values
of ∆t are presented below along with the calculated numerical rates. The exact value at t = 1 is
13.1037059. Again we see that the numerical rate approaches one.

∆t 1/8 1/16 1/32 1/64 1/128 1/256
Pn 11.0346 11.9695 12.5084 12.7985 12.94917 13.0259
|p(1)− Pn| 2.0691 1.1343 0.59535 0.30519 0.15454 0.077620
num. rate 0.867 0.930 0.964 0.982 0.991

Below we plot the approximate solution on [0, 6] for this logistic growth problem and the previous
exponential growth problem. Note that the exponential growth solution increases without bound
whereas the logistic growth solution never exceeds the carrying capacity of K = 100.

Logistic growth model

Exponential
growth model

1 2 3 4 5 6

20

40

60

80

100

120

140

If we compare the size of the errors in these two examples at say ∆t = 1/64 we see that the errors
for the logistic model are about a factor of ten larger than for the exponential problem. What
makes one error so much larger than the other even though they both are converging linearly?
When we say that the convergence is linear we mean that it is a constant times ∆t where for
the Euler method the constant depends on the second derivative of the exact solution. The exact
solution p(t) = 2e.8t to the exponential growth function has a second derivative of 1.28e.8t so it
is increasing on [0, 1] and has a maximum value of 2.849 whereas the exact solution to the logistic
equation has an increasing second derivative (it’s a bit messy to include here) on [0, 1] but its
maximum value is around 34 so this accounts for the difference.

We now turn to implementing the backward Euler scheme for this problem. At each step we have
the nonlinear problem

Pi = Pi−1 + 2∆t

(
Pi −

P 2
i

100

)
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for Pi. Thus to determine each Pi we have to employ a method such as Newton’s method. To
find the root z of the nonlinear equation g(z) = 0 (a function of one independent variable) each
iteration of Newton’s method is given by

zk = zk−1 −
g(zk−1)

g′(zk−1)

for k = 1, 2, . . . where an initial guess z0 is prescribed. For us, we have the nonlinear equation

g(z) = z − Pi−1 − 2∆t

(
z −

z2

100

)
= 0

where z = Pi plays the role of the independent variable; our goal is to approximate the value of z
which makes g(z) = 0 and this will be our approximation Pi. For an initial guess z0 we simply take
Pi−1 because if ∆t is small enough and the solution is smooth then the approximation at ti−1

will be close to the solution at ti. To implement Newton’s method we also need the derivative g′

which for us is just

g′(z) = 1− 2∆t
(

1−
z

50

)
.

The results using backward Euler are tabulated below; note that the numerical rates of convergence
approach one as ∆t → 0. We have imposed the convergence criteria for Newton’s method that
the normalized difference in successive iterates is less than a prescribed tolerance, i.e.,

|zk − zk−1|
|zk|

≤ 10−8 .

Typically, three to four Newton iterations were typically required to satisfy this convergence criteria.
Recall that Newton’s method typically converges quadratically (when it converges) and so the
convergence is rapid.

∆t 1/8 1/16 1/32 1/64 1/128 1/256
Pn 16.2227 14.4961 13.7633 13.4249 13.2622 13.1825
|p(1)− Pn| 3.1190 1.3924 0.65961 0.32124 0.15855 0.078765
num. rate 1.164 1.0779 1.038 1.019 1.009

Example 8. In this example we consider exponential decay where the decay rate is large. Specif-
ically, we seek y(t) such that

y′(t) = −20y(t) 0 < t ≤ 2, y(0) = 1

which has an exact solution of y(t) = e−20t. In the plot on the left of the figure below we plot the
approximate solutions on [0, 2] using the forward Euler method with ∆t = 1

4
and 1

8
. Note that for

this problem the approximate solution is oscillating and becoming unbounded. In the plot on the
right in the same figure we plot approximations using the backward Euler method and the exact
solution. As can be seen from the plot, it appears that the discrete solution is approaching the
exact solution as ∆t→ 0. Recall that the backward Euler method is an implicit scheme whereas
the forward Euler method is an explicit scheme.
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Why are the results for the forward Euler method not reliable for this problem whereas they were for
previous examples? In this example the numerical approximations are not converging as ∆t→ 0;
the reason for this is a stability issue which we address in Chapter 3. When we determined the
theoretical rate of convergence we tacitly assumed that the method converged; which of course
in this method it does not. The implicit backward Euler method provided convergent results but
remember that, in general, we have to solve a nonlinear equation at each time; in § 2.6 we will
investigate efficient approaches to implementing an implicit method for an IVP.

Example 9. We consider the IVP

y′(t) = cos(t)esin t 0 < t ≤ π y(0) = 0

whose exact solution is esin t. The goal of this example is to demonstrate that the local truncation
error for the forward Euler method is second order, i.e., O(∆t2) and to compare the local and
global errors at a fixed time.

The local truncation error at tn is computed from the formula

|y(tn)− Ỹn| where Ỹn = y(tn−1) + ∆tf(tn−1, y(tn−1)

that is, we use the correct value y(tn−1) instead of Yn−1 and evaluate the slope at the point
(tn−1, y(tn−1)) which is on the solution curve. In the table below we have tabulated the local and
global errors at t = π using decreasing values of ∆t and from the numerical rates of convergence
you can clearly see that the local truncation error is O(∆t2), as we demonstrated analytically. As
expected, the global error converges linearly. Except at the first step (where the local and global
errors are identical) the global error is always larger than the truncation error because it includes
the accumulated errors as well as the error made by approximating the derivative by a difference
quotient.

∆t 1/8 1/16 1/32 1/64 1/128
local error 7.713 10−3 1.947 10−3 4.879 10−4 1.220 10−4 3.052 10−5

num. rate 1.99 2.00 2.00 2.00
global error 2.835 10−2 1.391 10−2 6.854 10−3 3.366 10−3 1.681 10−3

num. rate 1.03 1.02 1.02 1.00

One different aspect about this problem is that in previous examples the stopping point was an
integer multiple of ∆t whereas here the interval is [0, π]. The computer implementation of the
method must check if the time the solution is being approximated at is greater than the final time.
If it is, then ∆t must be reset to the difference in the final time and the previous time so that
the last step is taken with a smaller time step; otherwise you will be comparing the solution at
different final times.

1.4 Alternate Approaches for Deriving Methods

We obtained both the forward and backward Euler methods by looking at the def-
inition of the derivative and realizing that we could use the slope of a secant line
to approximate the derivative. However, it is not obvious how to extend this idea
to derive higher order methods. In this section we illustrate several alternate ap-
proaches for deriving the forward Euler method and these will be helpful in the next
chapter when we look at higher order methods. The approaches we consider are
not exhaustive but they represent the major ones. In particular, we consider meth-
ods derived using Taylor series, numerical quadrature formulas, and interpolating
polynomials. In Chapter 2 we will investigate these approaches in more detail.
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The first approach we consider is using a Taylor series expansion for y(ti + ∆t)
when we know y(ti). From (1.9) we have

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
y′′(ti) + · · ·+ (∆t)k

k!
y[k](ti) + · · · .

This is an infinite series so if we truncate it then we have an approximation to
y(ti + ∆t). For example, if we truncation the series at the term which is O(∆t) we
have

y(ti + ∆t) ≈ y(ti) + ∆ty′(ti) = y(ti) + ∆tf(ti, y(ti))

which leads to our difference equation for the forward Euler Method Yi+1 = Yi +
∆tf(ti, Yi). So theoretically, if we keep additional terms in the series then we get
a higher order approximation to y′(t).

To derive the implicit backward Euler method using Taylor series we use the
expansion for y(ti −∆t)

y(ti −∆t) = y(ti)−∆ty′(ti) +
(∆t)2

2!
y′′(ti) + · · ·+ (−1)k

(∆t)k

k!
y[k](ti) + · · · .

and truncating the series yields

y(ti) ≈ y(ti −∆t) + ∆ty′(ti) = y(ti−1) + ∆tf(ti, y(ti)

which gives the difference equation Yi = Yi−1 + ∆tf(ti, Yi).
We explore using Taylor series to derive higher order methods in § 2.1. One of

the drawbacks of this approach is that as we add more terms we need higher order
derivatives of y(t) or equivalently of f(t, y). These may be tedious to compute or
not smooth. For this reason this approach is rarely used although it is probably the
most obvious strategy.

Another approach to derive the Euler method is to use numerical integration
rules to approximate the integrals obtained when we integrate (1.2a) from ti to
ti+1. Formally we have ∫ ti+1

ti

y′(t) dt =

∫ ti+1

ti

f(t, y) dt

and we note that the left hand side can be evaluated exactly by the Fundamental
Theorem of Calculus to get y(ti+1) − y(ti); however, in general, we must use
numerical quadrature to approximate the integral on the right hand side. Recall
from calculus that one of the simplest approximations to an integral is to use either
a left or right Riemann sum. If we use a left sum for the integral we approximate
the integral by a rectangle whose base is ∆t and whose height is determined by the
function at the left endpoint of the interval; i.e., we use the formula∫ b

a

g(x) ≈ g(a)(b− a) .



CHAPTER 1. INTRODUCTION TO DISCRETIZATION 27

Using the left Riemann sum to approximate the integral of f(t, y) gives

y(ti+1)− y(ti) =

∫ ti+1

ti

f(t, y) dt ≈ ∆tf(ti, y(ti))

which once again leads us to the difference equation for the forward Euler method.
In the exercises you will explore the implications of using a left Riemann sum.
Clearly different approximations to the integral of f(t, y) yield different methods;
we consider these in § 2.2.

Still another approach to derive the Euler method is to use interpolation. There
are basically two choices for how one can use an interpolating polynomial to derive
other schemes. One choice is to use an interpolating polynomial for y(t) through
grid points such as ti+1, ti, ti−1, etc., then differentiate it (this is easy because it’s
a polynomial) and substitute the derivative for y′(t). Another option is to use an
interpolating polynomial for f(t, y) and then integrate the differential equation as we
did above; the integral of f(t, y) is now trivial to integrate because f is approximated
by a polynomial. Both approaches yield difference equations to approximate the
solution to y′(t) = f(t, y).

We first look at the approach of representing y(t) by an interpolating polynomial.
The Lagrange form of the unique linear polynomial that passes through the points(
ti, y(ti)

)
and

(
ti+1, y(ti+1)

)
is

p1(t) = y(ti)
t− ti+1

−∆t
+ y(ti+1)

t− ti
∆t

.

If we use this linear interpolant to represent an approximation to y(t) at any point
between ti and ti+1 then differentiating with respect to t gives

p′1(t) =
−1

∆t
y(ti) +

1

∆t
y(ti+1)

which leads to the approximation

y′(t) ≈ y(ti+1)− y(ti)

∆t
.

Using this expression for y′(t) in the differential equation y′(t) = f(t, y) at ti yields
the forward Euler Method and at ti+1 gives the implicit backward Euler method.

The second choice for deriving schemes using an interpolating polynomial is to
use an interpolating polynomial for f(t, y). For example, suppose we approximate
f(t, y) by a polynomial of degree zero, i.e., a constant in the interval [ti, ti+1]. If use
the approximation f(t, y) ≈ f

(
ti, y(ti)

)
in [ti, ti+1] then integrating the differential

equation yields

y(ti+1)− y(ti) =

∫ ti+1

ti

f(t, y) dt ≈
∫ ti+1

ti

f
(
ti, y(ti)

)
dt = f

(
ti, y(ti)

)
∆t

which leads to the forward Euler method. If we choose to approximate f(t, y)
in [ti, ti+1] by f(ti+1, y(ti+1)) then we get the backward Euler method. We will
investigate methods derived using interpolating polynomials in § 2.3.
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EXERCISES

1. Classify each difference equation as explicit or implicit. Justify your answer.

a. Yi+1 = Yi−1 + 2∆tf(ti, Yi)

b. Yi+1 = Yi−1 + ∆t
3

[
f(ti+1, Yi+1) + 4f(ti, Yi) + f(ti−1, Yi−1)

]
c. Yi+1 = Yi+

∆t
2

[
f
(
ti, Yi+

∆t
2 f(ti, Yi)− ∆t

2 f(ti, Yi+1)
)]

+ ∆t
2

[
f
(
ti+1, Yi+

∆t
2 f(ti+1, Yi+1)

)]
d. Yi+1 = Yi + ∆t

4

[
f(ti, Yi) + 3f

(
ti + 2

3∆t, Yi + 2
3∆tf(ti + ∆t

3 , Yi +
∆t
3 f(ti, Yi)

)]
2. Assume that the following set of errors were obtained from three different

methods for approximating the solution of an IVP of the form (1.2) at a
specific time. First look at the errors and try to decide the accuracy of the
method. Then use the result (1.15) to determine a sequence of approximate
numerical rates for each method using successive pairs of errors. Use these
results to state whether the accuracy of the method is linear, quadratic, cubic
or quartic.

∆t Errors Errors Errors
Method I Method II Method III

1/4 0.23426×10−2 0.27688 0.71889×10−5

1/8 0.64406×10−3 0.15249 0.49840×10−6

1/16 0.16883×10−3 0.80353×10−1 0.32812×10−7

1/32 0.43215×10−4 0.41292×10−1 0.21048×10−8

3. Show that if we integrate the IVP (1.2a) from ti to ti+1 and use a right Rie-
mann sum to approximate the integral of f(t, y) then we obtain the backward
Euler method.

4. We showed that if we use a linear interpolating polynomial to approximate
y(t) on [ti, ti+1] then we obtain the Euler method. What happens if you use
a constant polynomial on [ti, ti+1] which interpolates y(ti)?

5. Write a code which implements the forward Euler method to solve an IVP of
the form (1.2). Use your code to approximate the solution of the IVP

y′(t) = 1− y2 y(0) = 0

which has an exact solution y(t) = (e2t − 1)/(e2x + 1). Compute the errors
at t = 1 using ∆t = 1/4, 1/8, 1/16, 1/32, 1/64.
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a. Tabulate the global error at t = 1 for each value of ∆t and demonstrate
that your method converges with accuracy O(∆t); justify your answer by
calculating the numerical rate of convergence for successive pairs of errors.

b. Tabulate the local error at t = 1 for each value of ∆t and determine the
rate of convergence of the local error; justify your answer by calculating the
numerical rate of convergence for successive pairs of errors. Compare your
results with those obtained in (a).

6. Suppose you are interested in modeling the growth of the Bread Mold Fungus,
Rhizopus stolonifer and comparing your numerical results to experimental
data that is taken by measuring the number of square inches of mold on a
slice of bread over a period of several days. Assume that the slice of bread is
a square of side 5 inches.

a. To obtain a model describing the growth of the mold you first make
the hypothesis that the growth rate of the fungus is proportional to the
amount of mold present at any time with a proportionality constant of
k. Assume that the initial amount of mold present is 0.25 square inches.
Let p(t) denote the number of square inches of mold present on day t.
Write an initial value problem for the growth of the mold.

b. Assume that the following data is collected over a period of ten days.
Assuming that k is a constant, use the data at day one to determine k.
Then using the forward Euler method with ∆t a fourth and an eight of
a day, obtain numerical estimates for each day of the ten day period;
tabulate your results and compare with the experimental data. When
do the results become physically unreasonable?

t = 0 p =0.25 t = 1 p =0.55
t = 2 p =1.1 t = 3 p =2.25
t = 5 p =7.5 t = 7 p =16.25
t = 8 p =19.5 t = 10 p =22.75

c. The difficulty with the exponential growth model is that the bread model
grows in an unbounded way as you saw in (b). To improve the model
for the growth of bread mold, we want to incorporate the fact that the
number of square inches of mold can’t exceed the number of square
inches in a slice of bread. Write a logistic differential equation which
models this growth using the same initial condition and growth rate as
before.

d. Use the forward Euler method with ∆t a fourth and an eighth of a day to
obtain numerical estimates for the amount of mold present on each of
the ten days using your logistic model. Tabulate your results as in (b)
and compare your results to those from the exponential growth model.

Fix tables for math font ADD problem about truncation error for backward Euler.



Chapter 2
Higher order accurate methods

In the last chapter we looked at the forward and backward Euler method for approx-
imating the solution to the first order IVP (1.2). Although it is simple to understand
and program, the method converges at a linear rate which is quite slow. In addi-
tion, we saw an example in which the forward Euler failed to converge as ∆t→ 0.
For these reasons, it is worthwhile to investigate schemes with a higher order of
accuracy and which have better convergence properties. Also, not all problems can
be solved efficiently with a uniform time step so we would like to develop methods
which allow us to determine a reasonable choice of ∆t at each time step.

In § 1.4 we demonstrated that the Euler method can be derived from several dif-
ferent viewpoints. In particular we used Taylor series expansions, quadrature rules,
and interpolating polynomials to obtain the forward and backward Euler methods.
We investigate these approaches in more detail in this chapter. We will see that
using Taylor series expansions is a straightforward approach to deriving higher or-
der schemes but it requires the repeated differentiation of f(t, y) which makes the
methods impractical. Integrating the differential equation (1.2a) requires approxi-

mating the integral
∫ ti+1

ti
f(t, y) dt which can be done by using a quadrature rule.

This leads to families of methods called Runge-Kutta methods. Another approach
to approximating this integral is to use an interpolating polynomial for f(t, y) so
that the resulting integral can be determined exactly. This approximation leads to
families of methods called multistep methods. Still another approach using an inter-
polating polynomial to derive methods is to approximate y(t) and then differentiate
the interpolating polynomial to get a difference equation.

In Chapter 1 we saw that implicit methods were inherently more costly to imple-
ment than explicit methods due to the fact that they typically require the solution
of a nonlinear equation at each time step. In this chapter we will investigate an
efficient way to implement an implicit method by pairing it with an explicit method
to yield the so-called Predictor-Corrector methods.

In the last chapter we demonstrated that the forward Euler method has a local
truncation error of O(∆t2) and a global error of O(∆t), i.e., the global error is one

30
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order of ∆t less than the truncation error. For difference schemes it is straightfor-
ward, but sometimes tedious, to compute the local truncation error because it just
involves Taylor series expansions. However, the global error is much more difficult
to determine. For the majority of convergent difference schemes for (1.2) the global
error follows the same pattern as Euler’s method, that is, the global error is one
power of ∆t less than the local truncation error. We will assume this is the case
for the methods we derive in this chapter. In the next chapter we will discuss the
properties of a scheme which guarantee that it is convergent.

2.1 Taylor Series Methods

Taylor Series is an extremely useful tool in numerical analysis, especially in deriving
and analyzing difference methods. Previously we saw that it can be used to derive
the Euler method by dropping all terms of O(∆t2) and higher; thus a natural
approach to obtaining higher order methods is to retain more terms in the expansion.
To see how this approach works, we now keep three terms in the expansion and
have a remainder term of O(∆t3). From (1.9) we have

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
y′′(ti) +

(∆t)3

3!
y′′′(ξi) ,

so we expect a local error of O(∆t3) which leads to an expected global error of
O(∆t2). The expression for y′(ti) is

y′(ti) =
y(ti + ∆t)− y(ti)

∆t
− ∆t

2!
y′′(ti) +

(∆t)2

3!
y′′′(ξi) .

Now the problem we have to address when we use this expansion is what to do with
y′′(ti) because we only know y′(t) = f(t, y). If our function is smooth enough, we
can differentiate this equation with respect to t to get y′′(t). To do this recall that
we have to use the chain rule because f is a function of t and y where y is also a
function t. Specifically, we have

y′(t) = f(t, y)⇒ y′′(t) =
∂f

∂t

dt

dt
+
∂f

∂y

dy

dt
= ft + fyf .

Substituting this into the expression for y′(ti) gives the approximation

y′(ti) ≈
y(ti + ∆t)− y(ti)

∆t
− ∆t

2!

[
ft
(
ti, y(ti)

)
+ f

(
ti, y(ti)

)
fy
(
ti, y(ti)

)]
which leads to the difference equation

Yi+1 − Yi
∆t

− ∆t

2
[ft(ti, Yi) + f(ti, Yi)fy(ti, Yi)] = f(ti, Yi) .
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Second order Taylor series method

Yi+1 = Yi + ∆tf(ti, Yi) +
(∆t)2

2
[ft(ti, Yi) + f(ti, Yi)fy(ti, Yi)] (2.1)

If we neglect the last terms on the right-hand side of this method which areO((∆t)2)
then we just have the forward Euler so we can view these terms as corrections to
the first order Euler method.

To implement this method, we must provide function routines not only for f(t, y)
but also ft(t, y) and fy(t, y). In some cases this will be easy, but in others it can
be tedious or even not possible. For these reasons, higher order Taylor series are
not often used in practice; in the sequel we will discuss other higher order methods
which are much more tractable. The following example applies the second order
Taylor scheme to a specific IVP and in the exercises we explore a third order Taylor
series method.

Although using Taylor series results in methods with higher order accuracy than
the Euler method, they are not considered practical because of the requirement of
repeated differentiation of f(t, y). For example, the first full derivative has two
terms and the second has five terms. So even if f(t, y) can be differentiated, the
methods become unwieldy. For this reason we look at other approaches to derive
higher order schemes.

Example 1. Second order Taylor method

We want to approximate the solution to

y′(t) = 3yt2 y(0) =
1

3

whose exact solution is 1
3
et

3
using (2.1). Then we want to verify numerically that its global error

convergences quadratically and compare the results with the first order forward Euler method.

Before writing a code for a particular method, it is helpful to first perform some calculations by
hand so it is clear that the method is completely understood and also to have some results with
which to compare the numerical simulations. To this end, we first calculate Y1 and Y2 using
∆t = 0.1. Then we provide numerical results at t = 1 for several choices of ∆t and compare with
a first order Taylor series method, i.e., with the forward Euler method.

From the discussion in this section, we know that we need ft and fy so

f(t, y) = 3yt2 ⇒ ft = 6ty and fy = 3t2 .

Substitution into the difference equation (2.1) gives the expression

Yi+1 = Yi + 3∆tYit
2
i +

(∆t)2

2

(
6tiYi + 9t4i Yi

)
. (2.2)

For Y0 = 1/3 we have

Y1 =
1

3
+ 0.1(3)

(
1

3

)
0 +

(.1)2

2
(0) =

1

3

Y2 =
1

3
+ 0.1(3)

(
1

3

)
(.1)2 +

(.1)2

2

(
6(.1)

1

3
+ 9(.1)4

1

3

)
= 0.335335 .

The exact solution at t = 0.2 is 0.336011 which gives an error of 0.675862 10−3.
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To implement this method in a computer code we modify our program for the forward Euler
method to include the O(∆t2) terms in (2.1). In addition to a function for f(t, y) we also need
to provide function routines for its first partial derivatives fy and ft; note that in our program
we code the general equation (2.1), not the equation (2.2) specific to our problem. We perform
calculations with decreasing values of ∆t and compare with results at t = 1 using the forward Euler
method. When we compute the numerical rate of convergence we see that the rate of convergence
is O(∆t2), as expected whereas the forward Euler is only linear. At each step the error in the
second order Taylor is much smaller than the corresponding error in the forward Euler method.

∆t Error in Numerical Error in Numerical
Euler rate second order Taylor rate

1/4 3.1689 10−1 1.2328 10−1

1/8 2.0007 10−1 0.663 4.1143 10−2 1.58
1/16 1.1521 10−1 0.796 1.1932 10−2 1.79
1/32 6.2350 10−2 0.886 3.2091 10−3 1.89
1/64 3.2516 10−2 0.939 8.3150 10−4 1.95
1/128 1.6615 10−2 0.969 2.1157 10−4 1.97

2.2 Methods from Integration Formulas

Another approach we used to obtain the Euler method in § 1.4 was to integrate
the differential equation with respect to t from ti to ti+1 and use the Fundamental
Theorem of Calculus to evaluate the left-hand side of the equation and a numerical
quadrature rule to evaluate the right hand side. We saw that a choice of the left
Riemann sum resulted in the forward Euler method and a choice of the right Riemann
sum resulted in the backward Euler method. Clearly there are many other choices
for quadrature rules. Recall that numerical quadrature rules for single integrals have
the general form ∫ b

a

g(t) dt ≈
Q∑
i=1

wig(qi)

where the scalars wi are called the quadrature weights and the points qi are the
quadrature points in [a, b].

One common numerical integration rule is the midpoint rule where, as the name
indicates, we evaluate the integrand at the midpoint of the interval; specifically the
midpoint quadrature rule is∫ b

a

g(t) dt ≈ (b− a)g

(
a+ b

2

)
.

Integrating the differential equation (1.2a) from ti to ti+1 and using the midpoint
quadrature rule to integrate f(t, y) over the domain gives

y(ti+1)− y(ti) ≈ ∆tf
(
ti +

∆t

2
, y(ti +

∆t

2
)
)
.

The problem with this approximation is that we don’t know y evaluated at the
midpoint so our only recourse is to use an approximation. If we use forward Euler
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starting at ti and take a step of length ∆t/2 then this produces an approximation
to y at the midpoint i.e.,

y(ti +
∆t

2
) ≈ y(ti) +

∆t

2
f
(
ti, y(ti)

)
.

Thus we can view our method as having two parts; first we approximate y at the
midpoint using Euler’s method and then use it to approximate y(ti+1). Combining
these into one equation allows the scheme to be written as

Yi+1 = Yi + ∆tf
(
ti +

∆t

2
, Yi +

1

2
∆tf(ti, Yi)

)
.

However, the method is usually written in the following way for simplicity and to
emphasize the fact that there are two function evaluations required.

Midpoint Rule

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + ∆t

2 , Yi + 1
2k1)

Yi+1 = Yi + k2

(2.3)

Computationally, we see that we have to do extra work compared with the
Euler method because we have to approximate the intermediate value y(ti+∆t/2);
the extra work required is an additional function evaluation f(ti + ∆t

2 , Yi + 1
2k1).

Because we are doing more work than the Euler method, we would like to think
that the scheme converges faster.

We now demonstrate that the local truncation error of the Midpoint method is
O(∆t3) so that we expect the method to converge with a global error of O(∆t2).
The steps in estimating the local truncation error for the Midpoint method are
analogous to the ones we performed for determining the local truncation error for
the Euler Method except now we will need to use a Taylor series expansion in two
independent variables for f(t, y) because of the term f(ti+

∆t
2 , Yi+

1
2k1). One way

to arrive at a Taylor series expansion for a function for two independent variables is
to first hold one variable fixed in (1.9) and expand in the other and then repeat the
procedure for all terms. For completeness we give Taylor series in two independent
variables in the following proposition. Note that in the result we assume that the
function is continuously differentiable so that the order of differentiation does not
matter; e.g., fxy = fyx.
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Proposition 2.1. Let f(x, y) be continuously differentiable. Then

f(x+ h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y)

+
h2

2!
fxx(x, y) +

k2

2!
fyy(x, y) + 2

kh

2!
fxy(x, y)

+
h3

3!
fxxx(x, y) +

k3

3!
fyyy(x, y) + 2

k2h

3!
fxyy(x, y)

+2
h2k

3!
fxxy(x, y) + · · ·

(2.4)

To estimate the local error recall that we apply one step of the difference formula
starting from the exact solution and compare the result with the actual solution.
For the Midpoint rule the local truncation error τi+1 at ti+1 is

τi+1 = y(ti+1)−
[
y(ti) + ∆tf

(
ti +

∆t

2
, y(ti) +

∆t

2
f(ti, y(ti))

)]
.

As before, we expand y(ti+1) with a Taylor series but this time we keep the actual
terms through (∆t)3 and have a remainder because we want to demonstrate that
terms in the expression for the truncation error through (∆t)2 cancel but terms
involving (∆t)3 do not; this way we will demonstrate that the local truncation is
exactly O(∆t3) rather than it is at least O(∆t3). We have

y(ti+1) = y(ti) + ∆ty′(ti) +
(∆t)2

2
y′′(ti) +

(∆t)3

3!
y′′′(ti) +O(∆t4) . (2.5)

We know that y′(t) = f(t, y) but the above expression also includes y′′(t) and
y′′′(t). To express y′′(t) in terms of f(t, y) and its partial derivatives we have to
differentiate f(t, y) with respect to t which requires the use of the chain rule. We
have

y′′(t) =
∂f

∂t

∂t

∂t
+
∂f

∂y

∂y

∂t
= ft + fyy

′ = ft + fyf .

Similarly,

y′′′(t) =
∂(ft + fyf)

∂t

∂t

∂t
+
∂(ft + fyf)

∂y

∂y

∂t

= ftt + fytf + fyft +
(
fty + fyyf + f2

y

)
f

= ftt + 2fytf + fyft + fyyf
2 + ff2

y .

In the expression for τi+1 we substitute the expansion (2.5) but we still have to
deal with the term f(ti+

∆t
2 , y(ti)+ ∆t

2 f(ti, y(ti))); because this term is a function
of two variables instead of one we need to use Proposition 2.4 for its expansion. To



CHAPTER 2. HIGHER ORDER ACCURATE METHODS 36

use this proposition we note that the change in the first variable t is h = ∆t/2 and
the change in the second variable y is k = (∆t/2)f

(
ti, y(ti)

)
. We have

∆tf
(
ti +

∆t

2
, y(ti) +

∆t

2
f(ti, y(ti))

)
= ∆t

[
f +

∆t

2
ft +

∆t

2
ffy

+
(∆t)2

4 · 2!
ftt +

(∆t)2

4 · 2!
f2fyy + 2

(∆t)2

4 · 2!
ffty

]
+O(∆t4) .

All terms involving f or its derivatives on the right-hand side of this equation are
evaluated at (ti, y(ti)) and we have omitted this explicit dependence for brevity.
Substituting this expansion and (2.5) into the expression for τi+1 and collecting
terms involving each power of ∆t yields

τi+1 = ∆t(y′ − f) +
∆t2

2

(
y′′ − (ft + ffy)

)
+∆t3

( 1

3!
y′′′ − 1

8

(
ftt + f2fyy + 2ffty

)
+O(∆t4) .

To cancel terms recall that using the differential equation and the chain rule allow us
to write y′′(t) = ft+ffy and y′′′ = ftt+2ffty+f2fyy+ftfy+ff2

y . Thus the terms
involving ∆t and (∆t)2 cancel but the terms involving (∆t)3 do not. Consequently
the local truncation error converges cubically and we expect the global convergence
rate to be quadratic in ∆t. The following example demonstrates the numerical
accuracy of the Midpoint method.

Example 2. Midpoint method (2.3)

Consider the IVP

y′(t) = 3yt2 y(0) =
1

3
that we approximated by a second order Taylor series method in the previous example. To imple-
ment the method we require two function evaluations as compared with the Euler method. The
following table provides errors at t = 1 for ∆t = 1/4, 1/8, . . . , 1/128 and the numerical rates. As
can be seen from the table, the numerical rate is approaching two as ∆t→ 0.

∆t Error Numerical rate

1/4 6.9664 10−2

1/8 2.2345 10−2 1.64
1/16 6.3312 10−3 1.82
1/32 1.6827 10−3 1.91
1/64 4.3346 10−4 1.96
1/128 1.0998 10−4 1.98

If we use a Riemann sum or the Midpoint rule to approximate an integral∫ b
a
g(t)dt where g(t) ≥ 0 on [a, b] then we are using a rectangle to approximate

the area. An alternate approach is to use a trapezoid to approximate this area.
The trapezoidal integration rule is found by calculating the area of the trapezoid
with base (b− a) and height determined by the line passing through (a, g(a)) and
(b, g(b)); specifically the rule is∫ b

a

g(t) dt ≈ (b− a)

2

(
g(a) + g(b)

)
.
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Integrating the differential equation (1.2a) from ti to ti+1 and using this quadrature
rule gives

y(ti+1)− y(ti) ≈
∆t

2

[
f
(
ti, y(ti)

)
+ f

(
ti+1, y(ti+1)

)]
.

Trapezoidal Rule Yi+1 = Yi +
∆t

2

[
f(ti, Yi) + f(ti+1, Yi+1)

]
(2.6)

However, like the backward Euler method this is an implicit scheme and thus for
each ti we need to solve a nonlinear equation for most choices of f(t, y). This can
be done, but there are better approaches for using implicit schemes in the context
of ODEs as we will see in § 2.6.

Other numerical quadrature rules lead to additional explicit and implicit meth-
ods. The Euler method, the Midpoint Rule and the Trapezoidal rule all belong to
a family of methods called Runge-Kutta methods. There is actually an easier
way to derive these methods which we discuss in § 2.4.

2.3 Methods from Interpolation

Another approach to deriving methods is to use an interpolating polynomial to
approximate either y(t) or f(t, y). If we choose to use an interpolating polynomial
for y(t) over some interval then we differentiate it and use this as an approximation
to y′(t) in the equation y′(t) = f(t, y). On the other hand, if we choose to use
an interpolating polynomial for f(t, y) then we integrate. Recall that in § 2.2 we
integrated our differential equation from ti to ti+1 and used a quadrature formula for
the integral involving f(t, y). However, if we approximate f(t, y) by an interpolating
polynomial then this can be integrated exactly. Both approaches lead to families of
methods called multistep methods discussed in detail in § 2.5. These methods
use previous approximations such as Yi, Yi−1, Yi−2, etc. and corresponding slopes
to extrapolate the solution at ti+1. This methods are contrasted with methods
such as the Midpoint or Trapezoidal method in § 2.3.3. We first look at methods
obtained by approximating y(t) by an interpolating polynomial and differentiating
and concentrate on the family of implicit methods called Backward Difference
Formulas (BDF) . Then we look at an example of a method derived by using an
interpolating polynomial for f(t, y) and integrating the equation.

2.3.1 Using an interpolation polynomial for y(t)

In § 1.4 we showed that if we use a linear interpolating polynomial p1(t) using the
points ti and ti+1 to approximate y(t) for ti ≤ t ≤ ti+1 then we can differentiate
it to get an approximation to y′(t). We can derive an explicit method such as
the forward Euler method by using p′1(ti) to approximate y′(ti) where we use the
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equation y′(ti) = f
(
ti, y(ti)

)
. On the other hand, if we use p′1(ti+1) to approxi-

mate y′(ti+1) then we use the equation y′(ti+1) = f
(
ti+1, y(ti+1)

)
and obtain the

implicit backward Euler scheme.
Backward difference formulas are a family of implicit multistep methods and

the backward Euler method is considered a first order BDF. Backward difference
formulas are especially useful when the IVP is difficult to solve in the sense that
smaller and smaller time steps are required. This property is discussed in Chapter 3.

If we want a higher order scheme than first order then an obvious approach is
to use a higher order interpolating polynomial to approximate y. For example, we
can use a quadratic polynomial; however we know that fitting a quadratic requires
three points. We have the points ti) and ti+1 but need to choose a third. In
multistep formulas information at previously calculated points are used; this has the
advantage that no additional function evaluations are required. Thus for a quadratic
interpolating polynomial the point ti−1 is chosen as the third point. The Lagrange
form of the interpolating polynomial p2(t) for the points (ti−1, y(ti−1)), (ti, y(ti)),
and (ti+1, y(ti+1)) is

p2(t) = y(ti−1)
(t− ti)(t− ti+1)

(ti−1 − ti)(ti−1 − ti+1)
+ y(ti)

(t− ti−1)(t− ti+1)

(ti − ti−1)(ti − ti+1)

+y(ti+1)
(t− ti−1)(t− ti)

(ti+1 − ti−1)(ti+1 − ti)

and differentiating with respect to t and assuming a constant ∆t gives

p′2(t) =
y(ti−1)

2(∆t)2

[
2t− ti− ti+1

]
− y(ti)

(∆t)2

[
2t− ti−1− ti+1

]
+
y(ti+1)

2(∆t)2

[
2t− ti−1− ti

]
.

We will concentrate on BDF schemes here so we want an implicit scheme; in the
exercises we look at an explicit formula derived using this interpolating polynomial.
Consequently, we use p′2(ti+1) as an approximation to y′(ti+1) in the equation
y′(ti+1) = f

(
ti+1, y(ti+1)

)
; we have

p′2(ti+1) =
y(ti−1)

2(∆t)2
∆t− y(ti)

(∆t)2
2∆t+

y(ti+1)

2(∆t)2
3∆t = f

(
ti+1, y(ti+1)

)
.

This suggest the BDF

3

2
Yi+1 − 2Yi +

1

2
Yi−1 = ∆tf(ti+1, Yi+1) .

Second order BDF Yi+1 =
4

3
Yi −

1

3
Yi−1 +

2

3
∆tf(ti+1, Yi+1) (2.7)

Some references give the BDF formulas so that the coefficient of Yi+1 is one
and others will not normalize by the coefficient of Yi+1. In general BDF formulas
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order s as1 as2 as3 as4 as5 β

1 1 1
2 4/3 -1/3 2/3
3 18/11 -9/11 2/11 6/11
4 48/25 -36/25 16/25 -3/25 12/25
5 300/137 -300/137 200/137 -75/137 12/137 60/137

Table 2.1: Coefficients for implicit BDF formulas of the form (2.8) where the
coefficient of Yi+1 is normalized to one.

using approximations at ti+1, ti, · · · , ti+1−s have the general normalized form

Yi+1 =

s∑
j=1

asjY(i+1)−j + β∆tf(ti+1, Yi+1) . (2.8)

For our scheme (2.7) we have s = 2, a21 = 4/3, a22 = 1/3 and β = 2/3. Table 2.1
gives coefficients for other uniform BDF formulas using the terminology of (2.8).
Note that we have included the order of accuracy of each method in Table 2.1.
However, we have not rigorously proved that the method (2.7) is second order but
it is what we should expect from interpolation theory. Recall that the backward
Euler method can be derived by using a linear polynomial to interpolate y(t) and
for (2.7) we used a quadratic interpolating polynomial so we should expect to gain
one power of ∆t. This can be rigorously demonstrated.

It is also possible to derive BDFs for nonuniform time steps. The formulas
are derived in an analogous manner but are a bit more complicated because for
the interpolating polynomial we must keep track of each ∆ti; in the case of a
uniform ∆t there are some cancellations which simplify the resulting formulas. In
the exercises a BDF formula corresponding to (2.7) is explored for nonuniform time
steps.

2.3.2 Using an interpolating polynomial for f(t,y)

Another way to derive schemes using interpolation is to use an interpolation poly-
nomial to approximate f(t, y). If we do this, then when we must integrate the
equation over the interval [ti, ti+1] where the integral of the interpolating polyno-
mial for f(t, y) can be integrated exactly. The interpolating polynomial can include
the point ti+1 or not; if it includes that point then the resulting scheme will be
implicit because it will involve f(ti+1, Yi+1); otherwise it will be explicit.

To see how to derive a scheme, suppose we want an explicit method where we use
the previous information at ti and ti−1. We write the linear interpolating polynomial
for f(t, y) through the two points and integrate the equation from ti to ti+1. As

before we use the Fundamental Theorem of Calculus to integrate
∫ ti+1

ti
y′(t) dt.
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Using uniform step sizes, we have

y(ti+1)− y(ti) ≈
∫ ti+1

ti

[
f
(
ti−1, y(ti−1)

) t− ti
−∆t

+ f
(
ti, y(ti)

) t− ti−1

∆t

]
dt

= − 1

∆t
f
(
ti−1, y(ti−1)

) (t− ti)2

2

∣∣∣ti+1

ti
+

1

∆t
f
(
ti, y(ti)

) (t− ti−1)2

2

∣∣∣ti+1

ti

= − 1

∆t
f
(
ti−1, y(ti−1)

)( (∆t)2

2

)
+

1

∆t
f
(
ti, y(ti)

)3∆t2

2

which suggests the scheme

Yi+1 = Yi +
3

2
∆tf

(
ti, y(ti)

)
− ∆t

2
f
(
ti−1, y(ti−1)

)
. (2.9)

This is an example of a multistep method; these types of methods will be discussed
in detail in § 2.5.

2.3.3 Single step versus multistep methods

Note that the BDF scheme (2.8) and the method (2.9) differ from the other schemes
we derived because they use the history of approximations to y and f to extrapolate
the solution at ti+1. For example, (2.7) specifically uses approximations to y(t) at
ti and ti−1 and (2.9) using approximations to the slope at ti and ti−1. These types
of methods are called multistep methods because they use the approximate solution
and the slope at previously calculated points other than at ti to approximate the
solution at the next point ti+1. This is in contrast to a method such as the Midpoint
method which uses only one previously calculated approximation, Yi, to approximate
Yi+1; of course it also uses an approximation at ti + ∆t

2 . Such a method is called
a single step method.

Single step methods perform approximations to y(t) in the interval [ti, ti+1] as
a means to bootstrap an approximation to y(ti+1). Multistep methods combine
information that was previously calculated at points such as ti, ti−1, ti−2 . . . to
extrapolate the solution at ti+1. A method is called an m-step method if it uses
information from m grid points (including ti) to calculate Yi+1; this is why a single
step method is also called a one-step method since it only uses ti.

There are advantages and disadvantages to both single step and multistep meth-
ods. Because multistep methods use previously calculated information, we must
store these values; this is not an issue when we are solving a single IVP but if we
have a system then our solution and the slope are vectors and so this requires more
storage. However multistep methods have the advantage that f(t, y) has already
been evaluated at prior points so this information can be stored. Consequently mul-
tistep methods require fewer function evaluations per step than single step methods
and should be used where it is costly to evaluate f(t, y).

If we look at the second order BDF (2.7) that we derived then we realize another
shortcoming of multistep methods. Initially we set Y0 = y(t0) and use this to start
a single step method such as the Midpoint method. However, in (2.7) we need both
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Y0 and Y1 to implement the scheme. How can we get an approximation to y(t1)?
The obvious approach is to use a single step method. So if we use m previous
values (including ti) then we must take m − 1 steps of a single step method to
start the simulations; it is m − 1 steps because we have the value Y0. Of course
care must be taken in the choice of which single step method to use. For example,
if our multistep method is O(∆tr) then we should choose a single step method of
the same accuracy; a lower order accurate scheme could contaminate the error.

2.4 Runge-Kutta Methods

Runge-Kutta (RK) methods are a family of single step methods which include both
explicit and implicit methods. The forward Euler and the Midpoint method are
examples of explicit RK methods. The backward Euler and the Trapezoidal method
are examples of implicit RK methods. When we derived the Midpoint and Trape-
zoidal methods we used a numerical quadrature rule to approximate

∫ ti+1

ti
f(t, y)dt.

To derive other single step methods we can use other numerical quadrature rules
such as Gauss quadrature. However, there is an easier approach to deriving families
of single step methods which have a desired accuracy which we will introduce here.

Runge was a German mathematician who first pointed out that it was possi-
ble to get higher order accurate methods without having to perform the successive
differentiation of f(t, y) that is required in Taylor series methods. Instead of approx-
imating the integral by the unsymmetrical and somewhat inaccurate left or right
Riemann sum, Runge used more accurate formulas such as the Midpoint or Trape-
zoidal method. In 1895 he published a seminal paper putting forth these ideas and
demonstrating the improved accuracy of the methods over the Euler method. The
family of RK methods were developed primarily from 1895 to 1925 and involved
work by Heun, Kutta and Nystrom. Interested readers should refer to the paper by
J.C. Butcher entitled “A history of Runge-Kutta methods.”

The standard approach to deriving families of RK methods is to form a problem
with undetermined parameters and approximate y(t) and its slope f(t, y) at a fixed
number of unknown points in [ti, ti+1]; we then determine the parameters so that the
accuracy is as high as possible. We assume a total of s unknown points (including
the approximation at ti) in [ti, ti+1] and write the most general formula for such
a method which will involve unknown parameters. Then we use Taylor series to
determine the parameters governing the points in [ti, ti+1] which guarantee the
highest local truncation error possible. In the following examples we illustrate how
this approach works.

Example 3. Derivation of a first order RK method

When s = 1 we only use y and its slope at ti so the most general difference equation is

Yi+1 = βYi + b1f(ti, Yi) ,

where we have two unknown parameters β and b1. Now we determine the parameters so that the
scheme has as high a local truncation error as possible. We proceed as before when we determined
a local truncation error and we expand y(ti+1) in a Taylor series to get

τi+1 =
[
y(ti) + ∆ty′(ti) +

∆t2

2
y′′(ξi)

]
−
[
βy(ti) + b1f(ti, y(ti))

]
.
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We want to choose the parameters β, b1 so that all terms (∆t)r for r = 0, 1, . . . R vanish for the
largest possible value of R. If we force the terms involving (∆t)0 and (∆t)1 to be zero we get

(∆t)0
[
y(ti)− βy(ti)

]
= 0 and (∆t)1

[
y′(ti)− b1y′(ti)

]
= 0

where we have used the differential equation y′ = f(t, y). Clearly we have β = 1 and b1 = 1
but are unable to make the term which is O(∆t2) vanish. This method is just the forward Euler
method so it is the simplest explicit RK method and the local truncation error is second order. In
the sequel we will dispense with the coefficient β because it must always be equal to one.

Example 4. Derivation of a second order RK method

When s = 2 we use the slope at one intermediate point in (ti, ti+1] in addition to the point ti.
Because we are doing an additional function evaluation, we expect that we should be able to make
the truncation error smaller if we choose the parameters correctly; i.e., we choose an appropriate
point in (ti, ti+1]. We must leave the choice of the location of the point as a variable so our
general difference equation is

Yi+1 = Yi + b1∆tf(ti, Yi) + b2∆tf
(
ti + c2∆t, Yi + a21∆tf(ti, Yi)

)
where our new point in (ti, ti+1] is

(
ti + c2∆t, Yi + a21∆tf(ti, Yi)

)
. To determine constraints

on the parameters b1, b2, c2 and a21 which result in the highest order for the truncation error, we
compute the local truncation error and use Taylor series to expand the terms. For simplicity, in the
following expansion we have omitted the explicit evaluation of f and its derivatives at the point
(ti, y(ti)); however, if f is evaluated at some other point we have explicitly noted this. We use
Proposition 2.4 for a Taylor series expansion in two variables to get

τi+1 =

[
y + ∆ty′ +

∆t2

2!
y′′ +

∆t3

3!
y′′′ +O(∆t4)

]
−
[
y + b1∆tf + b2∆tf(ti + c2∆t, y + a21∆tf)

]
=

[
∆tf +

∆t2

2

(
ft + ffy

)
+

∆t3

6

(
ftt + 2ffty + f2fyy + ftfy + ff2y

)
+O(∆t)4)

]
−b1∆tf − b2∆t

[
f + c2∆tft + a21∆tffy

+
c22(∆t)2

2
ftt +

a221(∆t)2f2

2
fyy + c2a21(∆t)2ffty +O(∆t3)

]
.

We first see if we can determine the parameters so that the scheme has a local truncation error of
O(∆t3); to this end we must determine the equations that the unknowns coefficients must satisfy
in order for the terms involving (∆t)1 and (∆t)2 to vanish:

∆t [f(1− b1 − b2)] = 0

∆t2
[
ft
(1

2
− b2c2

)
+ ffy

(1

2
− b2a21

)]
= 0

where once again we have dropped the explicit evaluation of y and f at (ti, y(ti)). Thus we have
the conditions

b1 + b2 = 1, b2c2 =
1

2
and b2a21 =

1

2
. (2.10)

Note that the Midpoint method given in (2.3) satisfies these equations with b1 = 0, b2 = 1,
c2 = a21 = 1/2.

Because we have four parameters and only three constraints we might ask ourselves if it is possible
to choose the parameters so that the local truncation error is one order higher, i.e., O(∆t4). To see
that this is impossible note that in the expansion of y(ti+1) the term y′′′ involves terms such as ftfy
for which there are no corresponding terms in the expansion of f

(
ti + c2∆t, Yi + a21∆tf(ti, Yi)

)
so these O(∆t3) terms will remain.
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There are many other schemes which satisfy the conditions (2.10) because we
only have three constraints and four degrees of freedom or parameters. A commonly
used choice is the Heun method where the intermediate point is

(
ti + 2

3∆t, Yi +
2
3∆tf(ti, Yi)

)
; note that y(ti + 2

3∆t) is approximated by taking an Euler step of
length 2

3∆t. Specifically the Heun method is

Yi+1 = Yi +
1

4
∆tf(ti, Yi) +

3

4
∆tf

(
ti +

2

3
∆t, Yi +

2

3
∆tf(ti, Yi)

)
where b1 = 1/4, b2 = 3/4, c2 = 2/3 and a21 = 2/3. RK methods are usually
written in a slightly different form to make clear how many points in [ti, ti+1] are
used to approximate y(ti+1) and thus how many function evaluations are needed.

Heun Method
k1 = ∆tf(ti, Yi)

k2 = ∆tf(ti + 2
3∆t, Yi + 2

3k1)

Yi+1 = Yi + 1
4k1 + 3

4k2

(2.11)

So any choice of coefficients which satisfy (2.10) leads to a RK scheme which has
a local truncation error of O(∆t3) and thus a global error of O(∆t2).

To obtain a RK scheme which has a local truncation error of O(∆t4) we need to
use approximations at two intermediate points in the interval (ti, ti+1). In general,
we have a scheme of the form

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + c2∆t, Yi + a21k1)
k3 = ∆tf(ti + c3∆t, Yi + a31k1 + a32k2)

Yi+1 = Yi + b1k1 + b2k2 + b3k3 .

To obtain conditions on the eight coefficients we would proceed as before by writing
the local truncation error and using Taylor expansions; the calculation is straight-
forward but tedious. The calculations demonstrate that we can find a family of
methods which have a local truncation of O(∆t4) but not higher using ti and two
additional points in (ti, ti+1].

There is a general form for explicit RK methods and we identify the methods by
the number of stages s and the coefficients.

General s-stage explicit RK method

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + c2∆t, Yi + a21k1)
k3 = ∆tf(ti + c3∆t, Yi + a31k1 + a32k2)

...
ks = ∆tf(ti + cs∆t, Yi + as1k1 + as2k2 + · · ·+ ass−1ks−1

Yi+1 = Yi +
∑s
j=1 bjkj

(2.12)
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For example, the forward Euler method is a one-stage (s = 1) RK method and the
Midpoint method and the Heun method are two-stage (s = 2) methods. To carry
out a single step of an s stage RK method we need to evaluate s slopes; i.e., we
must evaluate f(t, y) at s points. In addition, we have (s− 1) values to compute,
Yi + a21k1, Yi + a31k1 + a32k2, · · · , Yi + as1k1 + as2k2 + · · ·+ ass−1ks−1.

Once the stage s is set and the coefficients are determined, the method is
completely specified; for this reason, the RK explicit methods are often described
by a Butcher1 tableau of the form

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

(2.13)

for an s-stage RK method. Note that c1 = 0 because we always use the point
(ti, Yi). As an example, a commonly used 4-stage RK method is described by the
tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(2.14)

which uses an approximation at the point ti, two approximations at the point ti +
∆t/2, and the fourth approximation at ti+1. In the examples of RK methods
provided, it is important to note that ci in the term ti + ci∆t satisfy the property
that ci =

∑i−1
j=1 aij so that along a row of the tableau the aij must sum to the ci.

In addition, the weights bi satisfy
∑s
i=1 bi = 1. This is true in general and can be

used as a check in a computer code to confirm the coefficients have been entered
correctly.

Many RK methods were derived in the early part of the 1900’s; initially, the
impetus was to find higher order explicit methods. We have seen examples where
a one-stage RK method produced a global error of O(∆t), a two-stage RK method
produced a global error of O(∆t2) and a three-stage method produced a O(∆t3)
accuracy. One might be tempted to generalize that an s-stage method always
produces a method with global error O(∆ts), however, this is not the case. In the
table below we give the minimum stage number required to gain a specific accuracy.
As you can see from the table, a five-stage RK method does not produce a fifth

1Named after John C. Butcher, a mathematician from New Zealand.
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order scheme; we need a six-stage method to produce that accuracy. Consequently
higher stage RK methods are not as efficient as RK methods with ≤ 4 stages. Once
it was realized that the stage number of a RK method did not correspond to the
accuracy, the effort to derive additional RK methods moved to finding methods
which optimize the local truncation error and to investigating implicit RK methods.

Order 1 2 3 4 5 6 7 8 9
Min. stage 1 2 3 4 6 7 9 11 11

Analogous to the general explicit s-stage RK scheme (2.12) we can write a
general form of an implicit s-stage RK method. The difference in implicit methods
is that in the calculation of ki the approximation to y(ti + ci∆t) can be over all
values of s whereas in explicit methods the sum only goes through the previous kj ,
j = 1, · · · , j − 1 terms.

General s-stage implicit RK method

k1 = ∆tf(ti, Yi + a11k1 + +a12k2 + · · · a1sks)
k2 = ∆tf(ti, Yi + a21k1 + +a22k2 + · · · a2sks)

...
ks = ∆tf(ti + cs∆t, Yi + as1k1 + as2k2 + · · ·+ ass1ks)

Yi+1 = Yi +
∑s
j=1 bjkj

(2.15)

and its tableau is no longer upper triangular

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

(2.16)

Unlike explicit RK methods, implicit s-stage RK methods can have an accuracy
higher than s; in fact, it can be shown that the maximum possible accuracy of
an s-stage implicit RK method is 2s. Interest in deriving methods which can be
used for error control blossomed in the 1960’s; we will look at error control in the
next section. Interest in implicit methods also rose when solving more difficult stiff
problems became important; this will be discussed in § 3.5.

2.4.1 Step size control in Runge Kutta methods

So far we have assumed that the step size ∆t is uniform; however, in many problems
this is not practical when the solution varies much more rapidly at one time than
another. At instances when the solution varies quickly, i.e., the slope is large, we
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need to take a small step size and at times when the solution hardly changes using a
large step size makes the scheme more efficient. The question is how to determine
the appropriate step size at any instance. It turns out that there is an way to do
this with RK methods.

To use RK methods for step size control we use two different methods to approx-
imate the solution at ti+1 and compare the approximations. If the results are close,
then we are confident that a correct step size was chosen; if they vary considerably
then we assume that too large a step size was chosen and if they are extremely close
then this suggests a larger step size can be used. Of course, to efficiently implement
this approach we should choose the methods so that they have function evaluations
in common to reduce the work.

A commonly used pair for error control is a combination of a fourth and fifth
order explicit method; it is called the Runge-Kutta-Fehlberg method (RKF45) and
was developed by the mathematician Erwin Fehlberg in the late 1960’s. Recall
that to get an accuracy of (∆t)5 at least six function evaluations are required.
Specifically we have

k1 = f(ti, Yi)

k2 = f(ti +
1

4
∆t, Yi +

1

4
k1)

k3 = f(ti +
3

8
∆t, Yi +

3

32
k1 +

9

32
k2)

k4 = f(ti +
12

13
∆t, Yi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)

k5 = f(ti + ∆t, Yi +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

k6 = f(ti +
1

2
∆t, Yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5) .

and the fourth order RK method

Yi+1 = Yi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5 (2.17)

is used to approximate y(ti+1) and the fifth order RK method

Yi+1 = Yi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6 (2.18)

is used for comparison. Note that the fifth order method uses all of the coefficients
of the fourth order method so it is efficient to implement because it only requires
a single additional function evaluation. Typically the Butcher tableau is written
for the fifth order method and then two lines are appended at the bottom for the
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coefficients bi in each method. For example, for RKF45 the tableau is

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

25
216 0 1408

2565
2197
4104 − 1

5 0
16
135 0 6656

12825
2856
56430 − 9

50
2
55

To implement the RKF45 scheme we find two approximations, Y
(4)
i+1 using the

fourth order scheme (2.17) and Y
(5)
i+1 using the fifth order scheme (2.18). We then

determine the difference |Y (5)
i+1 − Y

(4)
i+1| which should be O(∆t). This error is used

to make the decision whether to accept the step or not; if we accept the step then
the decision must be made whether or not to increase the step size for the next
calculation or keep it the same. One must choose a priori a minimum and maximum

acceptable value for the normalized difference between Y
(4)
i+1 and Y

(5)
i+1 and use these

values for deciding whether a step is acceptable or not.

2.5 Multistep Methods

Recall that single step methods such as RK methods use information at additional
points in the interval (ti, ti+1] to obtain an approximation at ti+1 whereas multistep
methods take the viewpoint that the history of the solution should affect the ap-
proximation at the next time level. The BDF formula (2.7) derived in § 2.3.1 is an
example of an implicit multistep method. Specifically, explicit multistep methods
use information at ti plus additional computed approximations at previous times
such as ti−1, ti−2 to extrapolate the solution at ti+1, i.e., it uses information at
multiple grid points. Implicit multistep methods include the point ti+1 and inter-
polate the solution there. This is illustrated in Figure ??. A method is called an
m-step method if it uses information from m grid points (including ti) to calculate
Yi+1. An advantage of using a multistep method over a single step method is that
it requires fewer function evaluations. A disadvantage is that it requires storing
previous values which is only an issue when we are solving systems of equations.
In addition, multistep methods require the use of a single step method to obtain
additional starting values.
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General m-step multistep method

Yi+1 = am−1Yi + am−2Yi−1 + am−3Yi−2 + · · ·+ a0Yi+1−m

+∆t
[
bmf(ti+1, Yi+1) + bm−1f(ti, Yi) + bm−2f(ti−1, Yi−1)

+ · · ·+ b0f(ti+1−m, Yi+1−m)
]
.

(2.19)

If bm = 0 then the method is explicit; otherwise it is implicit.
A commonly used family of explicit multistep methods are called Adams-

Bashforth which use the derivative f evaluated at m prior points (including ti)
but only use the approximation to y(t) at ti; i.e., a0 = · · · = am−2 = 0. The one
step Adams-Bashforth method is the forward Euler method. In § 2.3.2 we used an
interpolation polynomial for f(t, y) to derive the 2-step scheme

Yi+1 = Yi +
3

2
∆tf

(
ti, y(ti)

)
− ∆t

2
f
(
ti−1, y(ti−1)

)
which belongs to the Adams-Bashforth family with b2 = 0, b1 = 3/2 and b0 = −1/2.
In the exercises, you are asked to rigorously demonstrate that the local truncation
error for (2.9) is third order and thus the scheme is second order accurate. The
methods up to five steps are listed here for completeness.

Adams-Bashforth 2-step, 3-step, 4-step and 5-step methods

Yi+1 = Yi + ∆t

(
3

2
f(ti, Yi)−

1

2
f(ti−1, Yi−1)

)
Yi+1 = Yi + ∆t

(
23

12
f(ti, Yi)−

4

3
f(ti−1, Yi−1) +

5

12
f(ti−2, Yi−2)

)
Yi+1 = Yi + ∆t

(
55

24
f(ti, Yi)−

59

24
f(ti−1, Yi−1) +

37

24
f(ti−2, Yi−2)

−3

8
f(ti−3, Yi−3)

)
Yi+1 = Yi + ∆t

(
1901

720
f(ti, Yi)−

1387

360
f(ti−1, Yi−1) +

109

30
f(ti−2, Yi−2)

−637

360
f(ti−3, Yi−3) +

251

720
f(ti−4, Yi−4)

)
(2.20)

Schemes in the Adams-Moulton family are commonly used implicit multistep
method which use the derivative f evaluated at ti+1 plus m prior points but only
use Yi. The first step Adams-Moulton method is the backward Euler scheme and
the 2-step method is the Trapezoidal rule; several methods are listed here for com-
pleteness.
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Adams-Moulton 2-step, 3-step, 4-step and 5-step methods

Yi+1 = Yi +
∆t

2

(
f(ti+1, Yi+1) + f(ti, Yi)

)
Yi+1 = Yi + ∆t

(
5

12
f(ti+1, Yi+1) +

2

3
f(ti, Yi)−

1

12
f(ti−1, Yi−1)

)
Yi+1 = Yi + ∆t

(
3

8
f(ti+1, Yi+1) +

19

24
f(ti, Yi)−

5

24
f(ti−1, Yi−1)

+
1

24
f(ti−2, Yi−2)

)
Yi+1 = Yi + ∆t

(
251

720
f(ti+1, Yi+1) +

646

720
f(ti, Yi)−

264

720
f(ti−1, Yi−1)

+
106

720
f(ti−2, Yi−2)− 19

720
f(ti−3, Yi−3)

)
(2.21)

One drawback of an m-step method is that we need m starting values Y0, Y1,
Y2, . . . , Ym−1 and we only have Y0 from the initial condition. Typically one uses
a single step method to start the scheme. How do we decide what method to
use? A “safe” approach is to use a method which has the same accuracy as the
multistep method but we will see in the following examples that you can actually
use a method which has one power of ∆t less because we are only taking a small
number of steps with the method. For example, if we use the 2-step second order
Adams-Bashforth method we need Y1 in addition to Y0. If we take one step with the
forward Euler method it is actually second order accurate at the first step because
the error there is only due to the local truncation error. However, if we use a 3-step
third order Adams-Bashforth method then using the forward Euler method to get
the two starting values results in a loss of accuracy. This issue is illustrated in the
following examples.

Example 5. starting values for multistep methods

In this example we implement the 3-step third order accurate Adams Bashforth method given in
(2.20) to solve the IVP

y′(t)t2 + y(t) 2 < t < 5 y(2) = 1 ,

which has the exact solution
y(t) = 11et−2 − t2 + 2t+ 2 .

We compare the numerical rates of convergence when we use different methods to generate the
starting values. Specifically we use RK methods of order one through four to generate the starting
values which for a 4-step method are Y1, Y2, and Y3 because we have Y0 = 1. The results are
tabulated below for the errors at t = 3. As you can see from the table, if a second, third or fourth
order scheme is used to compute the starting values then the method is third order. There is
nothing gained by using a higher order scheme (the fourth order) for the starting values. However,
if a first order scheme (forward Euler) is used then the rate is degraded to second order even though
we only used it to calculate two values, Y1 and Y2. Consequently to compute starting values we
should use a scheme that has the same overall accuracy or one degree less than the method we
are using.
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accuracy of starting method
first second third fourth

∆t error rate error rate error rate error rate

1/10 2.425 10−1 1.618 10−2 8.231 10−3 8.042 10−3

1/20 6.106 10−2 1.99 2.241 10−3 2.87 1.208 10−3 2.77 1.195 10−3 2.75
1/40 1.529 10−2 2.00 2.946 10−4 2.92 1.628 10−4 2.89 1.620 10−4 2.88
1/80 3.823 10−3 2.00 3.777 10−5 2.96 2.112 10−5 2.95 2.107 10−5 2.94

Example 6. comparison of adams bashforth methods

In this example we solve the IVP from the previous example a by 2-step through 5-step Adams
Bashforth method. In each case we use a scheme that is one degree less accurate to calculate the
starting values. As can be seen from the table, all methods have the expected numerical rate of
convergence.

2-step method 3-step method 4-step method 5-step method
∆t error rate error rate error rate error rate

1/10 2.240 10−1 1.618 10−2 9.146 10−4 5.567 10−5

1/20 5.896 10−2 1.93 2.241 10−3 2.87 6.986 10−5 3.71 2.463 10−6 4.50
1/40 1.509 10−2 1.97 2.946 10−4 2.92 4.802 10−6 3.86 8.983 10−8 4.78
1/80 3.816 10−3 1.98 3.777 10−5 2.96 3.144 10−7 3.93 3.022 10−9 4.89

2.6 Predictor-Corrector Methods

We have considered several implicit schemes for approximating the solution of an
IVP. However, when we implement these schemes the solution of a nonlinear equa-
tion is usually necessary. This requires extra work and we know that methods
such as the Newton-Raphson method for nonlinear equations are not guaranteed
to converge globally. For this reason, we need a more efficient way to use implicit
schemes.

In predictor-corrector (PC) methods implicit schemes are used to improve (or
correct) the solution that is first obtained (or predicted) by an explicit scheme. The
implicit scheme is implemented as an explicit scheme because instead of computing
f(ti+1, Yi+1) we use the predicted value for Yi+1. In simulations where a variable
step size is needed, we can also use predictor-corrector methods to estimate the
appropriate step size.

For example, we first consider the Euler-Trapezoidal predictor-corrector pair
where the explicit scheme is forward Euler and the implicit scheme is the Trapezoidal
method (2.6). Recall that the forward Euler scheme is first order and the Trapezoidal
is second order. If the result of the predicted solution at ti+1 is Y pi+1 then we have
the pair

Euler-Trapezoidal Predictor-Corrector Method

Y pi+1 = Yi + ∆tf(ti, Yi)

Yi+1 = Yi + ∆t
2

[
f(ti+1, Y

p
i+1) + f(ti, Yi)

]
(2.22)
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It is important to realize that the implicit Trapezoidal method is now implemented
like an explicit method because we evaluate f(ti+1, Y

p
i+1) instead of the unknown

point f(ti+1, Yi+1). The predicted solution Y pi+1 from the forward Euler method is
first order but we add a correction to it using the Trapezoidal method and improve
the error. We can view the predictor-corrector pair as implementing the difference
scheme

Yi+1 = Yi +
∆t

2

[
f
(
ti+1, Yi + ∆tf(ti, Yi)

)
+ f(ti, Yi)

]
which uses an average of the slope at (ti, Yi) and ti+1 and the Euler approximation
there. In the exercises you are asked to show that this predictor-corrector pair is
second order.

Example 7. euler-trapezoidal predictor-corrector pair

In this example we perform two steps of the Euler-Trapezoidal predictor-corrector pair by hand to
demonstrate how it is implemented and then compare the numerical results with those obtained
by just using the forward Euler method. Specifically we consider the IVP

y′(t) = −ty(t) y(0) =
1

2

Using Y0 = 0.5 and ∆t = 0.1 we first predict the value at 0.1 using the forward Euler method
with f(t, y) = −ty to get

Y p1 = Y0 + .1f(t0, Y0) = 0.5 + 0.1(−0 · .5) = 0.5

and then correct to obtain the approximation at t1

Y1 = Y0 +
0.1

2

[
f(t1, Y

P
1 ) + f(t0, Y0)

]
= 0.5 + 0.05

[
− .05 + 0

]
= 0.4975 .

To get the approximation at t2 = .2 we predict with

Y P2 = Y1 + .1f(t1, Y1) = 0.4975 + .1(−.04975) = 0.492525

and correct to get

Y2 = Y1 +
0.1

2

[
f(t2, Y

P
2 ) + f(t1, Y1)

]
= 0.4975 + 0.05

[
− 0.098505− 0.04975

]
= 0.490087 .

The exact values are y(.1) = 0.497506 and y(.2) = 0.490099.

The results for the approximate solutions at t = 1 are given in the table below using decreasing
values of ∆t; the corresponding results from just using the forward Euler method are also given. As
can be seen from the table, the predictor-corrector pair is second order. Note that it requires one
additional function evaluation, f(ti+1, Y

P
i ), than the Euler method. The Midpoint rule requires

the same number of function evaluations and has the same accuracy as this predictor-corrector
pair. However, the predictor-corrector pair provides an easy way to estimate the error at each step.

Predictor only PC pair
∆t Error rate Error rate

1/10 1.0813 10−2 9.3644 10−5

1/20 5.2266 10−3 1.05 2.7654 10−5 1.76
1/40 2.5698 10−3 1.02 7.4148 10−6 1.90
1/80 1.2742 10−3 1.01 1.9146 10−6 1.95
1/160 6.3444 10−4 1.01 4.8616 10−7 1.98

Typically predictor-corrector pairs consist of an explicit multistep method such
as an Adams-Bashforth method and a corresponding implicit Adams-Moulton mul-
tistep method. The pair should be chosen so that the only additional function
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evaluation in the corrector equation is at the predicted point. One can demonstrate
that if the order of the corrector is p, then the order of the pair is order p provided
the order of the predictor is not less than p− 1.

For example, one such pair is an explicit third order Adams-Bashforth predictor
coupled with an implicit third order Adams-Moulton.

Third order Adams-Moulton predictor-corrector pair

Y pi+1 = Yi + ∆t
12

[
23f(ti, Yi)− 16f(ti−1, Yi−1) + 5f(ti−2, Yi−2)

]
Yi+1 = Yi + ∆t

12

[
5f(ti+1, Y

p
i+1) + 8f(ti, Yi)− f(ti−1, Yi−1)

] (2.23)

Example 8. third order adams-moulton predictor corrector pair

In the table below we compare the errors and rates of convergence for the PC pair (2.23) and
the third order Adams-Bashforth method defined in (2.20). Note that both numerical rates are
approaching three but the error in the PC pair is almost an order of magnitude smaller at a fixed
∆t.

Predictor only PC pair
∆t Error rate Error rate

1/10 2.0100 10−2 1.5300 10−3

1/20 3.6475 10−3 2.47 3.3482 10−4 2.19
1/40 5.4518 10−4 2.74 5.5105 10−5 2.60
1/80 7.4570 10−5 2.87 7.9035 10−6 2.80
1/160 9.7513 10−6 2.93 1.0583 10−6 2.90

Using predictor-corrector pairs also provides a way to estimate the error and thus
determine if the current step size is appropriate. For example, for our third order
predictor and corrector pair (2.23) one can specifically compute the constant in the
local truncation error to get

|y(ti+1)− Y pi+1| =
9

24
y[4](ξ)(∆t)4 |y(ti+1)− Yi+1| =

1

24
y[4](η)(∆t)4 .

For small ∆t we assume that the fourth derivative is constant over the interval and
so

|y(ti+1)− Yi+1| ≈
1

9
|y(ti+1)− Y pi+1| .

If the step size ∆t is too large, then the assumption that the fourth derivative is
constant from ti to ti+1 may not hold and the above relationship is not true. Typi-
cally the exact solution y(ti+1) is not known so instead we monitor the difference in
the predicted and corrected solution |Yi+1−Y pi+1|. If it is larger than our prescribed
tolerance, then the step is rejected and ∆t is decreased. Otherwise the step is
accepted; if the difference is below the minimum prescribed tolerance then the step
size is increased in the next calculation.
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EXERCISES

1. Each of the following Runge-Kutta schemes is written in the Butcher tableau
format. Identify each scheme as explicit or implicit and then write the scheme
as

Yi+1 = Yi +

s∑
i=1

bif(ti + ci, Yi + ki)

where the appropriate values are substituted for bi, ci, and ki.

a.

0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

b.

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12
1 1

6
2
3

1
6

1
6

2
3

1
6

2. Modify the derivation of the explicit second order Taylor series method in
§ 2.1 to derive an implicit second order Taylor series method.

3. Use a Taylor series to derive a third order accurate explicit difference equation
for the IVP (1.2).

4. Gauss quadrature rules are popular for numerical integration because one
gets the highest accuracy possible for a fixed number of quadrature points;
however one gives up the “niceness” of the quadrature points. In addition,
these rules are defined over the interval [−1, 1]. For example, the one-point
Gauss quadrature rule is ∫ 1

−1

g(x) dx =
1

2
g(0)

and the two-point Gauss quadrature rule is∫ 1

−1

g(x) dx =
1

2

[
g(
−1√

3
) + g(

1√
3

)

Use the one-point Gauss rule to derive a Gauss-Runge-Kutta method. Is
the method explicit or implicit? Does it coincide with any method we have
derived?

5. Simpson’s numerical integration rule is given by∫ b

a

g(x) dx =
b− a

6

[
g(a) + 4g

(
a+ b

2

)
+ g(b)]

If g(x) ≥ 0 on [a, b] then it approximates the area under the curve g(x) by the
area under a parabola passing through the points (a, g(a)), (b, g(b)) and ((a+
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b)/2, g((a+b)/2)). Use this quadrature rule to approximate
∫ ti+1

ti
f(t, y) dt to

obtain an explicit 3-stage RK method. When you need to evaluate terms such
as f at ti + ∆t/2 use an appropriate Euler step to obtain an approximation
to the corresponding y value as we did in the Midpoint method. Write your
method in the format of (2.12) and in a Butcher tableau.

6. In § 2.3 we derived a second order BDF formula for uniform grids. In an
analogous manner, derive the corresponding method for a nonuniform grid.

7. Use an appropriate interpolating polynomial to derive the multistep method

Yi+1 = Yi−1 + 2∆tf(ti, Yi) .

Determine the accuracy of this method.

8. Determine the local truncation error for the 2-step Adams-Bashforth method
(2.9).



Chapter 3
Systems and Stability Issues

When modeling phenomena where we know the initial state and how it changes with
time, we often have either a higher order IVP or a system of IVPs rather than a single
first order IVP. In this chapter we first demonstrate how a higher order IVP can be
transformed into a system of first order IVPs. Then we extend in a straightforward
manner some of the methods from Chapter 2 to systems of equations. We discuss
implementation issues and examples that illustrate the use of systems of IVPs.

The final concept we investigate in our study of IVPs is that of stability and
its affect on convergence. So far we have demonstrated the accuracy of certain
methods, that is, as ∆t → 0 we determined the rate at which the error goes to
zero. However, in these calculations we tacitly assumed convergence. Now we
look at convergence in more depth because, as we saw in some examples, not all
methods converge for every problem. Lastly we will look at so-called stiff systems of
IVPs which have characteristics that make simulations using many explicit schemes
unreliable.

3.1 Higher Order IVPs

Suppose we have the second order IVP

y′′(t) = 2y′(t)− sin(πy) + 4t 0 < t ≤ 2
y(0) = 1
y′(0) = 0

where now the right-hand side is a function of t, y and y′. The methods we have
learned only apply to first order IVPs. However, we can easily convert this second
order IVP into two coupled first order IVPs. To do this, we let w1(t) = y(t),
w2(t) = y′(t) and substitute into the equations and initial conditions to get a first

55



CHAPTER 3. SYSTEMS AND STABILITY ISSUES 56

order system for w1, w2

w′1(t) = w2(t) 0 < t ≤ 2
w′2(t) = 2w2(t)− sin(πw1) + 4t 0 < t ≤ 2
w1(0) = 1 w2(0) = 0 .

Note that these two differential equations are coupled, that is, the differential equa-
tion for w1 depends on w2 and the equation for w2 depends on w1.

In general, if we have the pth order IVP for y(t)

y[p](t) = f(t, y, y′, y′′, · · · , y[p−1]) t0 < t ≤ T
y(t0) = α1, y′(t0) = α2, y′′(t0) = α3, · · · y[p−1](t0) = αp

then we convert it to a system of p first-order IVPs by letting w1(t) = y(t), w2(t) =
y′(t), · · · , wp(t) = y[p−1](t) which yields the first order coupled system

w′1(t) = w2(t)
w′2(t) = w3(t)

...
w′p−1(t) = wp(t)
w′p(t) = f(t, w1, w2, . . . , wp)

(3.1)

along with the initial conditions wk = αk, k = 1, 2, . . . , p. Thus any higher order
IVP that we encounter can be transformed into a coupled system of first order IVPs.

Example 1. converting a high order ivp into a system

Write the fourth order IVP

y[4](t) + 2y′′(t) + 4y(t) = 5 y(0) = 1, y′(0) = −3, y′′(0) = 0, y′′′(0) = 2

as a system of first order equations.

We want four first order differential equations for wi(t), i = 1, 2, 3, 4; to this end let w1 = y,
w2 = y′, w3 = y′′, and w4 = y′′′. Using the first two expressions we have w′1 = w2, and the
second and third gives w′2 = w3, the third and fourth gives w′3 = w4 and the original differential
equation provides the last first order equation w′4 + 2w3 + 4w1 = 5. The system of equations is
thus

w′1(t)− w2(t) = 0
w′2(t)− w3(t) = 0
w′3(t)− w4(t) = 0

w′4 + 2w3 + 4w1 = 5

along with the initial conditions

w1(0) = 1, w2(0) = −3, w3(0) = 0, and w4(0) = 2.

Oftentimes our model is already in the form of a system of first order IVPs. Our
goal is to apply the methods of the previous chapter to a system of first order IVPs.
The notation we use for a general system of N first order IVPs is

w′1(t) = f1(t, w1, w2, . . . , wN ) t0 < t ≤ T
w′2(t) = f2(t, w1, w2, . . . , wN ) t0 < t ≤ T

...
w′N (t) = fN (t, w1, w2, . . . , wN ) t0 < t ≤ T

(3.2)
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along with the initial conditions wk(t0) = αk, k = 1, 2, . . . , N . For example, using
this notation the pth order IVP written as the system (3.1) has f1 = w2, f2 = w3,
etc.

Existence, uniqueness and continuous dependence of the solution to the system
(3.2) can be established. Analogous to the case of a single IVP each function fi
must satisfy a Lipschitz condition. Details of this analysis can be found in standards
texts in ODEs. For the sequel, we will assume that each system has a unique solution
which depends continuously on the data.

In the next two sections we demonstrate how the single step and multistep
methods from Chapter 2 are easily extended to the system of N equations (3.2).
We use the notation Wk,i as the approximation to wk(ti) where the first subscript
of W refers to the unknown number and the second to the point ti.

3.2 Single Step Methods for Systems

We now want to extend single step methods to the system (3.2). For simplicity
we first extend the forward Euler method for a system and then with the intuition
gained from that method we extend a general explicit Runge-Kutta method to a
system. Implicit RK methods can be extended in an analogous way.

Suppose we have the first order system (3.2) with the initial conditions wk(t0) =
αk for k = 1, 2, . . . , N . The forward Euler method for each equation is

Wk,i+1 = Wk,i + ∆tfk
(
ti,W1,i,W2,i, · · · ,WN,i

)
.

We write the Euler method as a vector equation so we can solve for all N un-
knowns simultaneously at each ti; this is not necessary but results in an effi-

cient implementation of the method. We set Wi =
(
W1,i,W2,i, · · · ,WN,i

)T
,

W0 = (α1, α2, . . . , αN )T , and Fi =
(
f1(ti,Wi), f2(ti,Wi), · · · , fN (ti,Wi)

)T
.

For i = 0, 1, 2, . . . we have the following vector equation for the forward Euler
method for a system

Wi+1 = Wi + ∆tFi . (3.3)

To implement the scheme at each point ti we have N function evaluations to form
the vector Fi, then we perform the scalar multiplication to get ∆tFi and then a
vector addition to obtain the final result Wi+1.

Example 2. forward euler for a system

Consider the system of three IVPs

w′1(t) = 2w2(t)− 4t 0 < t < 10
w′2(t) = −w1(t) + w3(t)− et + 2 0 < t < 10
w′3(t) = w1(t)− 2w2(t) + w3(t) + 4t 0 < t < 10
w1(0) = −1, w2(0) = 0, w3(0) = 2

for the unknown (w1, w2, w3)T . The exact solution is (− cos(2t), sin(2t)+2t, cos(2t)+et)T . We
want to compute an approximation at t = 0.2 using ∆t = 0.1 and the forward Euler method. We
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set W0 = (−1, 0, 2)T and because Fi =
(
2W2,i − 4ti,−W1,i +W3,i − eti + 2,W1,i − 2W2,i +

W3,i + 4ti
)T

we have F0 = (0, 4, 1)T . With ∆t = 0.1 we form W1 from

W1 = W0 + ∆tF0 =

 −1
0
2

+ 0.1

 0
4
1

 =

 −1.0
0.4
2.1

 .

Now to determine W2 we need F1 which is given by

F1 =

 2(0.4)− 4(.1)
1 + 2.1− e.1 + 2
−1− 2(.4) + 2.1 + 4(.1)

 =

 0.400
3.995

0.7000


so that

W2 = W1 + ∆tF1 =

 −1.0
0.4
2.1

+ 0.1

 0.400
3.995
0.700

 =

 −0.9600
0.7995
2.1700

 .

The exact solution at t = 0.2 is (−0.921061, 0.789418, 2.14246)T . Unlike the case of a single
IVP we now have an error vector instead of a single number; at t = 0.2 the error vector in our
calculations is (0.038939, .010082, .02754)T . To obtain a single number from this vector to use
in the calculation of a numerical rate, we must use a vector norm. A common vector norm is the
standard Euclidean norm which is often called `2 norm or the “little l2 norm”. For this calculation
at t = 0.2 the Euclidean norm of the error is 1.98 10−2.

In the table below we tabulate the results using the forward Euler method for this system at t = 1
where both the normalized `2-norm and `∞-norm (i.e., the maximum norm) of the error normalized
by the corresponding norm of the solution is reported. Clearly we have linear convergence as we
did in the case of a single equation.

∆t `2 Error rate `∞ Error rate
1/10 6.630 10−2 6.019 10−2

1/20 3.336 10−2 0.99 3.156 10−2 0.93
1/40 1.670 10−2 1.00 1.631 10−2 0.95
1/80 8.350 10−3 1.00 8.277 10−3 0.98

Suppose now that we have an s-stage RK method; recall that for a single first
order equation we have s function evaluations for each ti. If we have N first order
IVPs, then we need sN function evaluations at each ti. For example, if we use
a 4-stage RK with 10,000 equations then at each time we need 40,000 function
evaluations; if we do 100 time steps then we have 4 million function evaluations. If
function evaluations are expensive, multistep methods may be more efficient.

In an s-stage RK method for a single equation we must compute each ki,
i = 1, 2, . . . , s as defined in (2.12). For a system, we have a vector of slopes so
each ki is a vector. Thus for a system an s-stage RK method is written as

k1 = ∆tF
(
ti,Wi

)
k2 = ∆tF

(
ti + c2∆t,Wi + a21k1

)
k3 = ∆tF

(
ti + c3∆t,Wi + a31k1 + a32k2

)
...

ks = ∆tF
(
ti + cs∆t,Wi + as1k1 + as2k2 + · · ·+ ass−1ks−1

)
Wi+1 = Wi +

s∑
j=1

bjkj .
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The following example uses the Heun method, a 2-stage RK scheme given in (2.11),
to approximate the solution to the IVP in the previous example.

Example 3. heun method for a system

We want to approximate the solution to the system given in the previous example using the Heun
method. Recall for the Heun method the coefficients are c2 = 2/3, a21 = 2/3, b1 = 1/4 and
b2 = 3/4 so for a system we have

k1 = ∆tF(ti,Wi)

k2 = ∆tF(ti + 2
3

∆t,Wi + 2
3
k1)

Wi+1 = Wi + 1
4
k1 + 3

4
k2 .

As in the previous example, W0 = (−1, 0, 2)T and Fi =
(
2W2,i − 4ti,−W1,i + W3,i − eti +

2,W1,i − 2W2,i +W3,i + 4ti
)T

. For the first step of length ∆t = 0.1 we have k1 = 0.1(0, 4, 1)T

and to determine k2 we need to evaluate F at ( 2
3

(.1),W0 + 2
3
k1); performing this calculation

gives k2 = (.026667, .399773, .08)T so that

W1 =

 −1
0
2

+
1

4

 0.0
0.4
0.1

+
3

4

 .026667
.399773
.080000

 =

 −0.98000
0.39983
2.08500

 .

Similarly for the approximation at 0.2 we have

W2 =

 −0.98000
0.39983
2.08500

+
1

4

 0.039966
0.395983
−0.070534

+
3

4

 0.066097
0.390402
0.051767

 =

 −0.92040
0.79163
2.14150

 .

The exact solution at t = 0.2 is (−0.921061, 0.789418, 2.14246)T giving an error vector of
(0.000661, .002215, .000096)T ; calculating the standard Euclidean norm of the error and nor-
malizing by the Euclidean norm of the solution gives 1.0166× 10−3 which is considerably smaller
than we obtained for the forward Euler. The following table provides results at t = 1 with the error
measured in both the normalized `2 and `∞ norms. The rates of convergence clearly demonstrate
quadratic convergence.

∆t `2 Error rate `∞ Error rate
1/10 5.176 10−3 5.074 10−3

1/20 1.285 10−3 2.01 1.242 10−3 2.03
1/40 3.198 10−4 2.01 3.067 10−4 2.02
1/80 7.975 10−5 2.00 7.614 10−5 2.01

3.3 Multistep methods for systems

Recall that explicit multistep methods use values from previously calculated times
to extrapolate the solution to the new point. The m-step explicit method from
§ 2.5 for a single IVP is

Yi+1 = am−1Yi + am−2Yi−1 + am−3Yi−2 + · · ·+ a0Yi+1−m

+∆t
[
bm−1f(ti, Yi) + bm−2f(ti−1, Yi−1)

+ · · ·+ b0f(ti+1−m, Yi+1−m)
]
.

For a system of N equations the function f is now a vector F so we must store its
value at the previous m steps. In the Adams-Bashforth or Adams Moulton methods
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a0, a1, . . . , am−2 = 0 so only the solution at ti is used. This saves additional storage
because we only have to store m slope vectors and a single vector approximation to
the solution. So for the system of N equations using an m-step Adams-Bashforth
method we must store (m+ 1) vectors of length N .

As a concrete example, consider the 2-step Adams-Bashforth method

Yi+1 = Yi + ∆t
[3

2
f(ti, Yi)−

1

2
f(ti−1, Yi−1)

]
for a single IVP. Using the notation of the previous section we extend the method
for the system of N equations as

Wi+1 = Wi + ∆t
[3

2
F(ti,Wi)−

1

2
F(ti−1,Wi−1)

]
. (3.4)

At each step we must store three vectors Wi, F(ti,Wi), and F(ti−1,Wi−1). In the
next example we apply this 2-step method to the system of the previous examples.

Example 4. adams-bashforth method for a system

To apply the 2-step Adams-Bashforth method (3.4) to the system of the previous examples we
need values for W1 because we set W0 from the initial conditions. Because this method is second
order we can use either a first or second order scheme to generate an approximation to W1. Here
we use the results from the Heun method from the previous example for W1 and use ∆t = 0.1 as
before. Consequently we have

W0 =

 −1
0
2

 and W1 =

 −0.98000
0.39982
2.08500

 .

From the previous example we have F(0,W0) = (0.0, 4.0, 1.0)T and F(0.1,W1)=(.39966,
3.95982,−.704659)T . Then W2 is given by

W2 =

 −0.98000
0.39982
2.08500

+ 0.1

3

2

 0.39966
3.95983
−0.70466

− 1

2

 0.0
4.0
1.0

 =

 −0.92005
0.79380
1.92930

 .

The table below tabulates the errors at t = 1. Of course we can only use the starting value
W1 = (.− 0.98000, 0.39982, 2.08500)T as starting values for the computations at ∆t = 0.1; for
the other step sizes we must generate starting values at the different value of t1. From the results
we see that the rate is two, as expected.

∆t `2 Error rate `∞ Error rate
1/10 1.346 10−2 1.340 10−2

1/20 3.392 10−3 1.99 3.364 10−3 1.99
1/40 8.550 10−4 1.99 8.456 10−4 1.99
1/80 2.149 10−5 1.99 2.121 10−5 1.99

3.4 Consistency, Stability and Convergence

For a difference scheme to give meaningful results we require the discrete solution
to be close to the analytic solution in the sense that the global error at each point
goes to zero as ∆t approaches zero. In the previous chapters we investigated the
accuracy of many of the methods we derived; specifically we obtained results of
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the form O(∆tr) for the rate of convergence. Of course in doing this, we tacitly
assumed that the methods converged but this may not always be the case. Recall
that for the IVP y′(t) = −20y(t) the forward Euler method exhibited unbounded
behavior for some choices of ∆t whereas the backward Euler appeared to converge.
Why does one numerical method produce reasonable results and the other produces
unbounded results even though their global error is theoretically the same? The
answer lies in the stability properties of the numerical scheme. It is important to
realize that when we implement methods small errors are introduced due to round
off and so we want to make sure that the solutions we compute remain close to
the ones we would get if exact arithmetic was used. The local truncation error τi
measures the error after one step in the exact solution of the differential equation
and the exact solution of the difference method assuming both start at the same
point so it only addresses the error due to the choice of discretization method for
the derivative. We know that we want the global error 1

∆tτi to approach zero as
∆t → 0 but the requirement that τi = O(∆tr) for r ≥ 2 does not guarantee
this. The additional condition needed is stability. In this section we introduce the
concepts of consistency and stability which are necessary for a convergent method
and investigate the numerical stability for single step and multistep methods. The
literature on stability of single step and multistep methods is quite extensive; we
will only touch on some of the results here but interested readers should consult
standard texts in numerical ODEs for a well-developed analysis.

Any numerical scheme we use must be consistent with the differential equation
we are approximating; the requirement of consistency is that the local truncation
error is small enough that the accumulated errors must go to zero as the step size
approaches zero. For example, we demonstrated that the forward Euler method
for (1.2) has a local truncation error of O(∆t2) and a global error of O(∆t) so it
is consistent. If we have a difference method that has a local truncation error of
O(∆t) we would expect a global error of a constant so it would not be consistent.
Unfortunately, we have seen in our numerical simulations that a consistent method
does not always converge.

We now want to determine how to make a consistent scheme convergent. Intu-
itively we know that for a scheme to be convergent the discrete solution must get
closer to the exact solution as the step size reduces. To write this precisely, we form
two sequences; the first is a sequence of values of ∆t which approach zero mono-
tonically such as 0.1, 0.05, 0.025, 0.0125, . . . and the second is a sequence where the
kth term is the maximum global error in [t0, T ] where the ∆t used is the value in
the kth term of the first sequence. Then the method is convergent if the limit of the
sequence of errors goes to zero. Formally we write that a method is convergent if

lim
∆t→0

max
1≤i≤m

|y(ti)− Yi| = 0

where m = (T − t0)/∆t; for a system we have

lim
∆t→0

max
1≤i≤m

‖w(ti)−Wi‖ = 0

where ‖·‖ is a norm on RN . The reason the consistency requirement is not sufficient
for convergence is that it requires the exact solution to the difference equation to be
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close to the exact solution of the differential equation. It does not take into account
the fact that we are not computing the exact solution of the difference equation due
to round off. It turns out that the additional condition that is needed is stability
which requires the difference in the computed solution to the difference equation
and its exact solution to be small. This requirement combined with consistency
gives convergence.

Consistency + Stability = Convergence

Let Ỹi represent the computed solution to the difference equation which has an
actual solution of Yi at time ti. We want to show that the difference between y(ti)

and Ỹi is sufficiently small. At a specific ti we have

|y(ti)− Ỹi| = |y(ti)− Yi + Yi − Ỹi| ≤ |y(ti)− Yi|+ |Yi − Ỹi| ,

where we have used the triangle inequality. Now the first term |y(ti) − Yi| is
governed by making the local truncation error sufficiently small and the second
term is controlled by the stability requirement. So if each of these two terms can
be made sufficiently small then when we take the maximum over all points ti and
take the limit as ∆t approaches zero we get convergence. In the remainder of this
section we investigate the stability of both single step and multistep methods.

3.4.1 Stability of Single Step Methods

For stability we want to know that the computed solution to the difference equation
remains close to the actual solution of the difference equation and so does not grow
in an unbounded manner. We first look at stability of the differential equation for
the model problem

y′(t) = λy 0 < t ≤ T, λ ∈ C, (3.5)

with the initial condition y(0) = y0 and solution y(t) = y0e
λt. Note that in general

λ is a complex number but to understand why we look at this particular problem
first consider the case when λ is real. If λ > 0 then small changes in the initial
condition can result in the solutions becoming far apart. For example, if we have
two initial conditions say y1(0) = α and y2(0) = β which differ by δ = |β−α| then
the solutions y1 = αeλt and y2 = βeλt differ by δeλt. Consequently, for large λ > 0
these solutions can differ dramatically as illustrated in the table below for various
choices of δ and λ; however, if λ < 0 the term δeλt approaches zero as t → 0.
Therefore for stability of this model IVP when λ is real we require λ < 0.
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λ δ |y1(0.5)− y2(0.5)| |y1(1)− y2(1)| |y1(10)− y2(10)|

1 0.01 0.0165 0.0272 220
1 0.1 0.165 0.272 2203

10 0.01 1.48 220 1041

10 0.1 14.8 2203 1042

−1 0.1 6.07 10−2 3.68 10−2 4.54 10−6

−10 0.1 6.73 10−4 4.54 10−6 10−45

In general, λ is complex so it can be written as λ = α+ iβ where α, β are real
numbers and i =

√
−1. The exact solution is

y(t) = y0e
λt = y0e

αt+iβt = y0e
αteiβt .

Now eiβt = cos(βt) + i sin(βt) so this term does not grow in time; however the
term eαt will grow in an unbounded manner if α > 0. Consequently we say that
the differential equation y′ = λy is stable when the real part of λ is less than or
equal to zero, i.e., Re(λ) ≤ 0 or λ is in the left half of the complex plane.

When we approximate our model IVP (3.5) we want to know that small changes,
such as those due to round off, do not cause large changes in the solution. Here we
are going look at stability of a difference equation of the form

Yi+1 = ζ(λ∆t)Yi (3.6)

applied to the model problem (3.5). Our single step methods fit into this framework.
For example, for the forward Euler method applied to the differential equation
y′ = λy we have Yi+1 = Yi+∆tλYi so ζ(λ∆t) = 1+∆tλ. For the backward Euler
method we have Yi+1 = Yi + ∆tλYi+1 so ζ(λ∆t) = 1/(1− λ∆t). For explicit RK
methods ζ(z) will be a polynomial in z and for implicit RK methods it will be a
rational function. We will address stability of multistep methods later.

We apply the difference equation (3.6) recursively to get

Yi = ζ(λ∆t)Yi−1 = ζ2(λ∆t)Yi−2 = · · · = ζi(λ∆t)Y0

so we can view ζ as an amplification factor because the solution at time ti−1

is amplified by a factor of ζ to get the solution at ti, the solution at time ti−2

is amplified by a factor of ζ2 to get the solution at ti, etc. We know that the
magnitude of ζ must be less than or equal to one or else Yi will become unbounded.
This condition is known as absolute stability. There are many other definitions
of different types of stability; some of these are explored in the exercises.

Definition 1. The region of absolute stability for the difference equation (3.6)
is {λ∆t ∈ C | |ζ(λ∆t)| ≤ 1}. A method is called A-stable if |ζ(λ∆t)| ≤ 1 for the
entire left half plane.

Example 5. We want to determine if the forward Euler method and the backward Euler method
are A-stable; if not, we want to determine the region of absolute stability. We then discuss our
previous numerical results for y′(t) = −20y(t) in light of these results.
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For the forward Euler method ζ(λ∆t) = 1+λ∆t so the condition for A-stability is that |1+λ∆t| ≤
1 for the entire left plane. Now λ is, in general, complex which we can write as λ = α + iβ but
let’s first look at the real case, i.e., β = 0. Then we have

−1 ≤ 1 + λ∆t ≤ 1⇒ −2 ≤ λ∆t ≤ 0

so on the real axis we have the interval [−2, 0]. This says that for a fixed real λ < 0, ∆t must
satisfy ∆t ≤ 2/|λ| and thus the method is not A-stable but has a region [−2, 0] of absolute
stability if λ is real. If β 6= 0 then we have the region of stability as a circle in the complex plane
of radius one centered at -1. For example, when λ = −20 ∆t must satisfy ∆t ≤ 0.1. In Figure ??
we plotted results for ∆t = 1/4 and 1/8 which do not satisfy the stability criteria. In the figure
below we plot approximations to the same problem using ∆t = 1/20, 1/40 and 1/60. As you can
see from the graph, the solution appears to be converging.

Out[654]=

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

For the backward Euler method ζ(λ∆t) = 1/(1− λ∆t). To determine if it is A-stable we see if it
satisfies the stability criteria for the entire left plane. As before, we first find the region when λ is
real. For λ ≤ 0 have 1−λ∆t ≥ 1 so that ζ(λ∆t) ≤ 1 for all ∆t and we have the entire left plane.
The backward Euler method is A-stable so any choice of ∆t provides stable results for λ < 0.

To be precise, the region of absolute stability for the backward Euler method is actually the region
outside the circle in the complex plane centered at one with radius one. Clearly, this includes the
left half plane. To see this, note that when λ∆t ≥ 2 then |1/(1 − λ∆t)| ≤ 1. However, we are
mainly interested in the case when Re(λ) < 0 because the differential equation y′(t) = λy is
stable.

Example 6. In this example we investigate the regions of absolute stability for the explicit 2-
stage Heun method

Yi+1 = Yi +
∆t

4

[
f(ti, Yi) + 3f

(
ti +

2

3
∆t, Yi +

2

3
∆tf(ti, Yi)

)]
.

We have written the scheme as a single equation rather than the standard way of specifying ki
because this makes it easier to determine the amplification factor.

We apply the difference scheme to the model problem y′ = λy where f(t, y) = λy(t) to get

Yi+1 = Yi +
∆t

4

[
λYi + 3λ(Yi +

2

3
∆tλYi)] =

[
1 +

1

4
(λ∆t) +

3

4
(λ∆t) +

1

2
(λ∆t)2

]
Yi

so ζ(λ∆t) = 1 + λ∆t+ 1
2

(λ∆t)2. The region of absolute stability is all points z in the complex
plane where |ζ(z)| ≤ 1. If λ is real and non-positive we have

−1 ≤ 1 + z +
z2

2
≤ 1⇒ −2 ≤ z(1 +

z

2
) ≤ 0 .

For λ ≤ 0 so that z = λ∆t ≤ 0 we must have 1 + 1
2
λ∆t ≥ 0 which says ∆tλ ≥ −2. Thus the

region of stability is [−2, 0] when λ is real and when it is complex we have a circle of radius one
centered at −1. This is the same region as the one computed for the forward Euler method.
In Figure 3.1 numerical results are presented for the case when λ = −20. For this choice of λ the
stability criteria becomes ∆t ≤ 0.1.
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Figure 3.1: Approximations for the IVP y′(t) = −20y, y(0) = 1 using the Heun
method. For the plot on the left the step size ∆t is too large and numerical
instability is occurring. When we reduce the step size the method converges as
the graph on the right demonstrates.

It can be shown that there is no explicit RK method that has an unbounded
region of absolute stability such as the left half plane region of stability that we got
for the backward Euler method. In general, implicit methods do not have stability
restrictions so this is one reason that we need implicit methods. Implicit methods
will be especially important when we study initial boundary value problems.

Oftentimes we have a system of first order IVPs or we have a higher order
IVP which we first write as a system of first order IVPs. We want to extend our
definition of absolute stability to a system but we first look at stability for the
differential equations themselves. Analogous to the problem y′(t) = λy we consider
the linear model problem

w′(t) = Aw

for an N×N system of IVPs where A is an N×N matrix. Consider first the simple
case where A is a diagonal matrix and the equations are uncoupled so basically we
have the same situation as a single equation. Thus the stability criteria is that
the real part of each diagonal entry must be less than or equal to zero. But the
diagonal entries of a diagonal matrix are just its N eigenvalues λi

1 counted according
to multiplicity. So an equivalent statement of stability when A is diagonal is that
Re(λi) < 0, i = 1, 2, . . . , N ; it turns out that this is the stability criteria for a
general matrix A. Recall that even if the entries of A are real the eigenvalues may
be complex. If A is symmetric we are guaranteed that the eigenvalues are real. If we
have the general system (3.2) where fi(t,w) is not linear in w, then the condition
becomes one on the eigenvalues of the Jacobian matrix for f ; the (i, j) entry of the
Jacobian is ∂fi/∂wj .

1The eigenvalues of an N ×N matrix A are scalars λ such that Ax = λx; the vector x is
called the eigenvector corresponding to the eigenvalue λ.
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Now if we apply the forward Euler method to the system w′(t) = Aw where
the entries of A are aij then we have the system

Wi+1 =


1 + ∆ta11 ∆ta12 ∆ta13 · · · ∆ta1N

∆ta21 1 + ∆ta22 ∆ta23 · · · ∆ta2N

. . .
. . .

· · · · · · ∆taN,N−1 1 + ∆taN,N

Wi

The condition on ∆t is determined by choosing it so that all the eigenvalues of the
matrix have real parts less than zero. If the system is not linear, then the condition
is on the eigenvalues of the Jacobian matrix.

3.4.2 Stability of Multistep Methods

The numerical stability of a single step method depends on the initial condition y0

but in a m-step multistep method there are m− 1 other starting values Y1, Y2, . . . ,
Ym−1 which are obtained by another method such as a RK method. In 1956
Dahlquist2 published a seminal work formulating criteria for the stability of linear
multistep methods. We will give an overview of the results here.

We first rewrite the m-step multistep method (2.19) by shifting the indices to
get

Yi+m = am−1Yi+m−1 + am−2Yi+m−2 + am−3Yi+m−3 + · · ·+ a0Yi

+∆t
[
bmf(ti+m, Yi+m) + bm−1f(ti+m−1, Yi+m−1)

+bm−2f(ti+m−2, Yi+m−2) + · · ·+ b0f(ti, Yi)
]

or equivalently

Yi+m −
m−1∑
j=0

ajYi+j = ∆t

m∑
j=0

bjf(ti+j , Yi+j) .

As before, we apply it to the model IVP y′ = λy, y(0) = y0 for Re(λ) < 0 which
guarantees the IVP itself is stable. Substituting f = λy into the difference equation
gives

Yi+m −
m−1∑
j=0

ajYi+j = ∆t

m∑
j=0

bjλYi+j .

Recall that a technique for solving a linear homogeneous ODE such as y′′(t) +
2y′(t)− y(t) = 0 is to look for solutions of the form y = ert and get a polynomial
equation for r such as ert(r2 + 2r − 1) = 0 and then determine the roots of the
equation. We take the analogous approach for the difference equation and seek a
solution of the form Yi = zi. Substitution into the difference equation yields

zi+m −
m−1∑
j=0

ajz
i+j = ∆t

m∑
j=0

bjλz
i+j .

2Germund Dahlquist (1925-2005) was a Swedish mathematician.
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Canceling the lowest order term zi gives a polynomial equation in z which is a
function of λ and ∆t resulting in the stability equation

Q(λ∆t) = zm −
m−1∑
j=0

ajz
j −∆t

m∑
j=0

bjλz
j = ρ(z)−∆tλσ(z) ,

where

ρ(z) = zm −
m−1∑
j=0

ajz
j and σ(z) =

m∑
j=0

bjz
j . (3.7)

For stability, we need the roots of ρ(z) to have magnitude ≤ 1 and if a root is
identically one then it must be a simple root. If this root condition is violated,
then the method is unstable so a simple check is to first see if the root condition is
satisfied; if the root condition is satisfied then we need to find the region of stability.
To do this, we find the roots of Q(λ∆t) and require that each root has magnitude
less than or equal to one. To simplify the calculations we rewrite Q(λ∆t) as

Q(λ∆t) = zm(1− λ∆tbm)− zm−1(am−1 + bm−1λ∆t)

−zm−2(am−2 + bm−2λ∆t)− · · · − (a0 + b0λ∆t) .

The following two examples determine the region of stability using this approach.

Example 7. In this example we investigate the stability of the forward and backward Euler
methods by first demonstrating that the root condition for ρ(z) is satisfied and then finding the
region of absolute stability; we confirm that we get the same results as before.

The forward Euler method is written as Yi+1 = Yi + ∆tf(ti, Yi) so in the form of a multistep
method with m = 1 we have a0 = 1, b0 = 1, b1 = 0 and thus ρ(z) = z − 1 whose root
is z = 1 so the root condition is satisfied. To find the region of absolute stability we have
Q(λ∆t) = z − (1 + λ∆t) which has a single root 1 + λ∆t; thus the region of absolute stability
is |1 + λ∆t| ≤ 1 which is the condition we got before by analyzing the method as a single step
method.

For the backward Euler method a0 = 1, b0 = 0, b1 = 1 and so ρ(z) = z − 1 which has the
root z = 1 and so the root condition is satisfied. To find the region of absolute stability we have
Q(λ∆t) = z(1− λ∆t)− 1 which has a single root 1/(1− λ∆t) and we get the same restriction
that we got before by analyzing the method as a single step method.

Example 8. In this example we want to show that the 2-step Adams-Bashforth method

Yi+1 = Yi +
∆t

2
[3f(ti, Yi)− f(ti−1, Yi−1)]

is stable.

For this Adams-Bashforth method we have m = 2, a0 = 0, a1 = 1, b0 = −1/2, b1 = 3/2, and
b2 = 0. The characteristic polynomial is ρ(z) = z2 − z = z(z − 1) whose two roots are z = 0, 1
and the root condition is satisfied.

In summary, we have seen that some methods can be unstable if the step size
∆t is too large (such as the forward Euler method) while others are stable even
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for a large choice of ∆t (such as the backward Euler method). In general, explicit
methods have stability restrictions whereas implicit methods are stable for all step
sizes. Of course, one must have a small enough step size for accuracy. We have
just touched on the ideas of stability of numerical methods for IVPs; the interested
reader is referred to standard texts in numerical analysis for a thorough treatment
of stability. The important concept is that we need a consistent and stable method
to guarantee convergence of our results.

3.5 Stiff Systems

Some differential equations are more difficult to solve than others. We know that
for problems where the solution curve varies a lot, we should take a small step size
and where it changes very little a larger step size should be used for efficiency. If
the change in the solution curve is relatively small everywhere then a uniform step
size is the most efficient approach. This all seems very heuristic. However, there are
problems which require a very small step size even when the solution curve is very
smooth. There is no universally accepted definition of stiff differential equations
but typically the solution curve changes rapidly and then tends towards a slowly-
varying solution. Because the stability region for implicit methods is typically much
larger than explicit methods, most stiff equations are approximated using an implicit
method.

To illustrate the concept of stiffness we look at a single IVP which is considered
stiff. The example is from a combustion model and is due to Shampine (2003)
who is one of the authors of the Matlab ODE suite. The idea is to model flame
propagation as when you light a match. We know that the flame grows rapidly
initially until it reaches a critical size which is dependent on the amount of oxygen.
We assume that the flame is a ball and y(t) represents its radius; in addition we
assume that the problem is normalized so that the maximum radius is one. We
have the IVP

y′(t) = y2(1− y) 0 < t ≤ 2

δ
; y(0) = δ (3.8)

where δ << 1 is the small given initial radius. At ignition the solution y increases
rapidly to a limiting value of one; this happens quickly on the interval [0, 1/δ] but
on the interval [1/δ, 2/δ] the solution is approximately equal to one. Knowing the
behavior of the problem suggests that we should take a small step size initially and
then on [1/δ, 2/δ] where the solution is almost constant we should be able to take a
large step size. However, if we use the RKF45 method with an automatic step size
selector, then we can capture the solution on [0, 1/δ] but on [1/δ, 2/δ] the step size
is reduced by so much that the minimum allowable step size is surpassed and the
method often fails if the minimum step size is set too large. Initially the problem
is not stiff but it becomes stiff as its approaches the value one, its steady state
solution. The term “stiff” was used to described this phenomena because it was
felt the steady state solution is so “rigid”.

When one has a system of equations like (3.2) the stiffness of the problem
depends upon the eigenvalues of the Jacobian matrix. Recall that we said we need
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all eigenvalues to have real part less than zero for stability. If the Jacobi matrix has
eigenvalues which have a very large negative real part and eigenvalues with a very
small negative real part, then the system is stiff and special care must be used to
solve it. You probably don’t know a priori if a system is stiff but if you encounter
behavior where the solution curve is not changing much but you find that your step
size needs to be smaller and smaller, then your system is probably stiff. In that
case, an implicit method is typically used.

EXERCISES

1. Convert each IVP into a system of first order IVPs.

a. y′′(t) + 6y′(t)− 1
2y(t) = 4 y(0) = 1, y′(0) = −3

b. y′′′(t)− 2y′(t) + y2(t) = 0 y(0) = 0, y′(0) = 1, y′′(0) = 4

2. Determine the amplification factor for the Midpoint method (2.3). Then
determine the region of absolute stability.

3. Show that all members of Adams multistep methods (both explicit and im-
plicit) are stable.


