
Computational Geometry Lab:

TRIANGULATIONS

John Burkardt
Information Technology Department

Virginia Tech
http://people.sc.fsu.edu/∼jburkardt/presentations/cg lab triangulations.pdf

August 28, 2018

1 Introduction

This lab continues the topic of Computational Geometry. Having studied triangles, we will now turn to
triangulations, which are collections of triangles. The fundamental role of a triangulation is to analyze
a geometric shape or region, making it easy to study by breaking it down into simple shapes. Regions
with holes or separate parts can be treated this way, and regions with curved edges can at least be well
approximated. With some simple adjustments, triangulations can also be used to define non-planar surfaces,
such as the wing of an aircraft, the shape of a teapot, or the surface of the earth.

In this lab, we will not be concerned with how a triangulation is created. That is the topic of a different
lab. Here we will assume that a triangulation has been created for us, and we will consider some very
basic questions, including how we can represent the triangulation in a computer program. There is much
information hidden in the raw representation of a triangle, and we will investigate how the basic data can be
analyzed to produce a list of the boundary edges of the triangulation, and an table of the pairs of neighboring
triangles that share an edge.

After we have gotten an idea of how to represent a triangulation and work with its data structure, we
will be ready to consider a wide variety of tasks of computational geometry. We can find the area of the
triangulated region, determine if a point is inside the region and which triangle contains it, we can list the
triangles that lie along the boundary, we can compute the integral of a function over the region. We have
also laid the groundwork for the finite element method, which will allow us to approximate and solve partial
differential equations on the region.

2 A Logical Representation

Our informal definition of a triangulation will simply be that it is a collection of triangles. We’ll assume that
these triangles don’t actual overlap, although they can touch. We’ll also assume that any two triangles that
touch have exactly one vertex in common, or two vertices and the entire edge between them. This rules out
some irregular cases that we don’t want to deal with.

Just as a triangle t can be thought of as a list of vertices, t = {a, b, c}, we can think of a triangulation τ
as being a list of triangles τ = {t1, t2, . . . , tn}. Of course, this is just a logical representation. We will need
to come up with a way to store this information on a computer, in such a way that we can conveniently
extract information that we need.

1



Figure 1: The ”house3” triangulation.

3 A Computational Representation

Because we are dealing with triangulations, we’re going to have a lot of triangles, and a lot of vertices. We
need a simple format that will allow us to represent the triangulation, either as data in files, or as variables
in a program.

The two basic quantities in the triangulation are the nodes and the triangles.
Nodes are simple to represent, since they can be identified simply by their Cartesian coordinates. Thus,

to represent the node information, we might need a counter variable node num and a real array node xy
of order 2 by node num to contain the coordinates.

To describe the triangles, we first need a counter, which we might call triangle num. Now how do we
store the triangles?

The triangles can be defined by listing the nodes that are their vertices. These vertices should not be
listed by their coordinate values, but rather by their indices in the node xy array. Let us call the array
that defines the triangles triangle node. It will be an integer array, of order 3 by triangle num.

(This brings up a side issue of whether we count from 0 or from 1. In these notes, we will generally use
indices that start at 1.)

A second issue for triangles is the question of orientation. Recall from our lab on triangles that it is
useful to consistently describe every triangle with the same counterclockwise orientation (“CCW”). In the
“house3” triangulation, triangle number 2 has vertices 2, 4 and 3, listed in CCW order. Thus, we might
describe this triangle as any of {2,4,3} or {4,3,2} or {3,2,4}, since all three lists travel along the triangle in
the CCW direction. However, it would be inconsistent to describe the triangle using the list {2,3,4}, since
this list goes clockwise instead.

To summarize, we now have a simple scheme for representing a triangulation involving four variables:

• node num, the number of points;

• node xy, a 2 by node num real array of points;

• triangle num, the number of triangles;

• triangle node, a 3 by triangle num integer array of node indices, listed in CCW order.

For instance, here is the data structure associated with the triangulation of a child’s drawing of a house:

2



node_num = 5;

node_xy = { { 0.0, 0.0 },

{ 2.0, 0.0 },

{ 0.0, 2.0 },

{ 2.0, 2.0 },

{ 1.0, 3.0 } };

triangle_num = 3;

triangle_node = { { 1, 2, 3 },

{ 2, 4, 3 },

{ 3, 4, 5 } };

If you think about our definition of a triangulation, we’re loosely suggesting that it’s a list of triangles,
while each triangle is a list of (three) points, and each point is a list of two coordinates.

Small triangulations are easy to store internally. Bigger triangulations may need to be read from files,
one containing the point coordinates, and one the point indices that define the triangles.

We will follow a simple convention in naming the two files that define a triangulation. If we refer to a
triangulation as the “elbow3” data, then that means that the two files will be called “elbow3 nodes.txt” and
“elbow3 triangles.txt”. A number of such files are available at
http://people.sc.fsu.edu/∼burkardt/data/triangulation order3/triangulation order3.html.

4 Program #1: Read and Store a Triangulation

Our first program will simply read a pair of files defining a triangulation and print out the data.
The ideal program would be invoked by a command like this:

tri_read house3

It would be able to read the string “house3” from the command line, figure out the names of the two
triangulation files, read the data inside them, and print that data.

Things you may not know how to do might include:

• how a program can read a command line argument, so that the tri read program knows that it’s
supposed to read the “house3” data

• how to read an input string from the user and append “ nodes.txt” to it to make the name of the node
file

• how to open text files for reading

• how to read an unknown amount of data into a program

All of these things are worth learning, but if you have an unreasonable amount of difficulty in getting any
one of them to work, please ask for help!

Using your program, read in the “house3” triangulation data.
The node file is called “house3 nodes.txt” and looks like this:

0.0 0.0

2.0 0.0

0.0 2.0

2.0 2.0

1.0 3.0

3



Figure 2: The “elbow3” triangulation.

The triangle file is called “house3 triangles.txt” and looks like this:

1 2 3

2 4 3

3 4 5

Your program should print out the following information:

• the name of the triangulation data: “house3” in this case;

• the number of nodes, and the number of triangles;

• the coordinates of each node;

• the indexes of the nodes that form each triangle.

If you are satisfied with your program’s performance on “house3”, try the “elbow3” dataset as well.

5 The Area of a Triangulation

An important property of a triangulation is its area. Since a triangulation is made up of triangles, and we
require that these triangles not overlap, the area of the triangulation is the sum of the areas of the triangles.
From our previous lab on the properties of triangles, we know how to compute the area of one triangle.

In order to compute the area of a triangulation, we must understand how to write a program that reads
in a triangulation, processes one triangle at a time, and for that triangle, correctly determines the vertex
coordinate information needed to compute the area. This involves using the indices in triangle node to
access coordinates in the node xy array.

4



Figure 3: The “hex holes3” triangulation.

6 Program #2: The Area of a Triangulation

Write a program that reads a triangulation and computes and prints its area.
Debug your program using the “housed” triangulation, whose area is 5.0 square units, Now test your

program by computing the areas of the “elbow3” and “hex holes3” triangulations.

7 The Boundary of a Triangulation

Our simple data structure stores a triangulation, but there are a number of interesting facts about that
triangulation, hidden within the data, which we may need to know. We will start by considering the very
simple question of the boundary of the triangulated region. Since the boundary is formed by some of the
edges of the triangles, a crude description of the boundary would be a list of those edges. Thus, for the
“house3” triangulation, the boundary would be

house3.boundary = { {1,2},{2,3},{4,5},{5,3},{3,1} }

Notice that in this list we have given each edge with the same orientation that it has as part of its
triangle. We have also listed the edges in a way which happens to form a closed curve, that is, the second
node of each edge is the first node of the next edge. Giving the boundary this way makes it easier to carry
out other tasks.

Looking at a picture of a triangulation, it’s easy to see the boundary. But staring at the data in our two
files, it’s not so clear what is going on. However, there is a fairly easy way to understand how the boundary
can be defined. The key to this idea is related to our insistence that our triangles all be oriented in the same
CCW sense.

So let’s imagine drawing the triangulation by drawing every triangle. That’s actually a bit wasteful,
because it means every line will be drawn twice, since it’s shared by two triangles. But wait a minute,

5



there will be some lines drawn only once . . . because they are only part of one triangle . . . and those lines are
exactly the lines that form the boundary.

There’s even more going on with this idea. Suppose that our triangulation includes an interior hole. The
lines along this interior hole will also only be drawn once, so it sounds like they should be included as part
of the boundary. Perhaps, though, we should distinguish this boundary by calling it an internal boundary
as opposed to the external boundary.

Interestingly, if we follow the external boundary along the orientation of the lines that make it up, we go
in the CCW orientation. In contrast, the internal boundary will be traced in the CW orientation! This is a
useful distinction to keep in mind, and it makes sense geometrically.

If we have multiple boundaries like this in a triangulation, then it is useful for other computations if we
are careful to list the boundary components one at a time, and for each component, give the edges in order
as suggested earlier in the “house3” discussion.

8 Algorithm: Finding the Boundary Edges by Brute Force

It may be hard to see how we can compute the boundary of an arbitrary triangulation. In order to get
started, let’s just use a brute force approach. It won’t be clever, but it will get the job done.

Our algorithm is guided by the idea that the boundary is the set of all edges that only occur once. From
the triangle node array we can make a list of edges, and then cross off the duplicates (remembering that
the second occurrence of an edge will show up with the opposite ordering of the nodes). Here’s the edge list
for “house3”, with the two pairs of duplicates already marked:

1 2

2 3<---+

3 1 |

2 4 |

4 3<---|-----+

3 2<---+ |

3 4<---------+

4 5

5 3

Now you can see that {2,3} and {3,2} cancel out, and so do {4,3} and {3,4}. Everything else is a boundary
edge, so we’ve got our list!

Once we have gotten the boundary edges, we should try to order the edges. Assuming the boundary
involves only a single component, we can pick any edge, say {1,2} to start with. Then we try to match
the second node of this edge against the first node of a new edge. This leads us to the edge {2,4}, and we
continue until we finish with edge {3,1}.

9 Program #3: Finding the Boundary Edges

Write a program that reads in a triangulation, computes the list of boundary edges, arranges the boundary
edges into a connected list, and prints the list out.

Debug your program on the “house3” triangulation. Then try it on the “elbow3” triangulation.

10 Doing a Better Job

Our brute force boundary calculation was simple, and not difficult to program. However, it was not efficient.
That is, if we let N be the number of edges in the triangulation, the process of comparing each edge with
all the other edges in the list requires on the order of N2 operations.

6



There are more efficient approaches. In particular, we note that setting up a sorted list of N objects
takes about N logN operations. So here we sketch another method of computing the boundary edges that
will run more quickly.

Instead of immediately creating a list of edges, we imagine instead that we start with an empty list.
Whenever we add or remove items from this list, we will do so in a way that keeps it sorted in order. We
begin by examining the edges of the first triangle. If an edge of this triangle appears in the list, then we
remove that occurrence from the list. Otherwise, the triangle’s edge is added to the list (inserted in the
correct spot that preserves the sorted ordering.) Because the list is always in sorted, our searches for a
match occur much more quickly than with the brute force search.

The extra complications in programming this procedure are rewarded by a much improved running time.
We will not require you to investigate this topic further. However, it’s important to be aware of the fact
that the straightforward solution to a problem can often be greatly improved with a little thought.

11 Multiple Boundaries

The second stage of the boundary program strings the edges together to make a connected curve that traces
the boundary of the region. What happens if the region has holes? In that case, the boundary will not be
a single connected curve, but several. So if we string together the boundary edges, we will return to our
starting node but will have unused edges left over. That means we need to keep track of how many boundary
edges we found, and how many we have strung together. As long as there are boundary edges remaining,
we have at least one more boundary curve to follow. So we can pick any unused edge, and start tracing that
curve til we return to our start, repeating this process for as many holes as we have to deal with.

12 Program #4: Multiple Boundaries

Modify your boundary program so that it can handle the case of multiple boundary curves.
Use “hex holes3” to test your program. By looking at the diagram of this region, what edges do you

expect to see? In what orientation will these edges come out?
Can your program figure out which of the boundary curves is the one that corresponds to the outer

boundary, and which ones are holes in the region?

13 Neighboring Triangles

We say that two triangles t1 and t2 in a triangulation are neighbors if they have a common edge. We assume
that our triangles have a common CCW orientation. If we suppose that in triangle t1, the common edge
involves nodes p and q in that order, then in t2 the nodes must be listed in the opposite order.

It can be useful to make a list of the neighbor triangles of each triangle. We will call this list the
triangle neighbor array. We can think of it as a table of triangle num rows and 3 columns.

Entry triangle neighbor(i,j) will identify triangle ti’s neighbor on the j-th side. In order to define
sides, we will say that side #1 of a triangle is the side opposite from vertex #1, and so on. In a few cases,
a triangle will have no neighbor on a given side, because that side lies along a boundary. In that case, we
can store a special value in the array entry to indicate this. For now, let us simply store the value -1 when
there is no neighbor.

For our simple ”house3” triangle, our array will be mostly boundary entries:

triangle_neighbor = { { 2, -1, -1 },

{ 3, 1, -1 },

{ -1, -1, 2 } };

7



Every entry in this array means something, and is precisely where it should be. Make sure you could
determine these entries based entirely on the values in triangle node!

It’s not too hard to set up the triangle neighbor array if we are allowed to draw a picture. Since the
computer has to work from the information in triangle node array, let us think of how we can do this.

Suppose we need to determine the value of triangle neighbor(i,j). We start out by initializing the
entry to -1, in case we don’t find a neighbor. We are working with triangle ti, whose vertices are a, b, c.
Depending on the value of j, we now need to consider the sides {b, c} or {c,a} or {a,b}. Let’s suppose that
j is 2, so we are working with side {c,a}.

If there is a neighbor of ti on side j, that neighbor will have an edge of the form {a,c} (because the
orientation is the opposite). To find whether this neighbor exists, we look through the entire triangle node
array. We are searching for any occurrence of the node a. If we find it in row k, we then check whether
whether the very next node is c. (Warning! If a occurs in column 3 of triangle node, then the “next”
entry is in column 1!) If so, we have found that the neighbor of triangle ti on side j is triangle tk, so we set
triangle neighbor(i,j)=k.

14 Program #5: Triangle Neighbors

Write a program which reads in a triangulation and computes and prints the triangle neighbor array.
Debug your program using the “house3” triangulation.
Test your program on the “hex holes3“ triangulation. The first 5 rows of your results should be:

-1 4 67

-1 40 158

149 84 176

1 115 62

193 80 194

This program is challenging! Take your time, and be careful.
When you search for neighboring triangles, you will probably simply do a brute force search, as we did

for the boundary edges. You may want to think about how it would be possible to use sorting to somehow
make this search go faster.

8


