Computational Geometry Lab:
SEARCHING A TRIANGULATION

John Burkardt
Information Technology Department
Virginia Tech
http://people.sc.fsu.edu/~jburkardt /presentations/cg_lab_search_triangulation.pdf

August 28, 2018

1 Introduction

This lab continues the topic of Computational Geometry. Having studied triangles and triangulations, we
will now turn to the question of searching. In particular, we will suppose that we have a computational
region R, and a set of points P which are contained in R. (Actually, we will also allow the possibility that
some points are outside the region.)

We further suppose that we have constructed a triangulation 7 of R, consisting of t_num triangles, with
a typical triangle indicated by T;. We now wish to know, for each point p;, the identity of the triangle T;
that contains the point. If the point is shared by several triangles, it is sufficient to give just one triangle. If
the point does not lie in any of the triangles, then we may be satisfied with a flag value of “-1”, or perhaps
we would be interested in the index of a triangle that is near to the point.

We already know, from a previous lab, how to determine whether a point lies inside a triangle. So if we
have a triangulation, and ask which triangle contains a point, we could simply check each triangle, stopping
as soon as we find one. This would mean that on average we’d have to check about t*”% triangles.

It’s hard to imagine, but it’s possible to carry out this task much faster. There is a method called the
Delaunay search, which makes roughly only +/t_num checks to locate a point in a triangulation. It is not
unusual for a triangulation to have a million triangles, in which case the Delaunay method is about 500
times faster than the straightforward searching method. And the advantage becomes even greater when we
go to a 3D mesh.

This faster method only works on special triangulations, namely, those that have the Delaunay property,
which is explained and discussed in another lab. Moreover, a certain amount of preprocessing must be done
in order to record which triangles are neighbors of each other. However, once that is done, the algorithm
works beautifully, starting with a random tetrahedron as a first guess, and then “walking” from one triangle
to the next, more or less directly towards the correct one.

1.1 Where is a Point Relative to a Triangle?

Let us recall information from the lab on barycentric coordinates for triangles. We suppose we have a triangle
T={a,b,c} and a point p. We presume we have a function Area(a,b,c) for the area of the triangle formed



T={{4.0}.{3,4].{0.1}

Figure 1: The Point-Triangle Orientation Test for Triangle Tex4.

by any three points. The barycentric coordinates of p are defined as:

_ Area(p, b, c)
a ~ Area(a, b, c)
_ Area(a, p, c)
& = Area(a,b,c)
_ Area(a, b,p)
e Area(a, b, c)

It should be clear that the sum of the barycentric coordinates is 1. Moreover, the values of the coordinates
tell us about the position of p. If p is

e inside the triangle, then all the coordinates are positive;

e on the boundary, one coordinates is zero;

e a vertex, two coordinates are 0, and one is 1;

e outside the triangle, then one or perhaps two of the coordinates will be negative.

In particular, if £, is negative, then relative to the edge {b,c}, the point p lies on one side and vertex a

on the other. Similar statements hold for the other two barycentric coordinates.

1.2 Program #1: Where is a Point Relative to a Triangle?

Write a program which
e reads the definition of a triangle T={a,b,c};

e reads a point p;



Figure 2: The Box3 triangulation (element indices in red, node indices in blue ).

e computes the barycentric coordinates (&4, &, &.) of p with respect to T;

e prints p, the barycentric coordinates, and the word “inside” or “outside”, depending on whether p is
inside T or not.

Use the triangle Tex4 defined by {{4,0},{3,4},{0,1}}. For p, use the points (1,4), (2,1), (2,3), (3,2),
(3,4), (3,5), (4,1) and (4,5) to see if your program can detect inside/outside/on.

1.3 Box3, an example triangulation

For some of the coming exercises, we will want to have a simple triangulation to work with. We will use the
Box3 triangulation, which is illustrated and defined here.
The node coordinate array for Box3 is

0.0 0.0
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0
0.0 1.0
1.0 1.0
2.0 1.0
3.0 1.0
4.0 1.0
0.0 2.0
1.0 2.0
2.0 2.0
3.0 2.0
4.0 2.0
0.0 3.0
1.0 3.0
2.0 3.0



3.0 3.0
4.0 3.0

The element node array for Box3 is:

6 1 2
7T 6 2
7 11 6
12 11 7
16 11 12
16 12 17
7T 2 3
8 7 3
8§ 12 7
13 12 8
17 12 13
17 13 18
8 3 4
9 8 4
9 13 8
14 13 9
18 13 14
18 14 19
9 4 b5
10 9 b5
10 14 9
15 14 10
19 14 15
19 15 20

1.4 Where is a Point Relative to a Triangulation?

Now suppose we have a triangulation 7 and a point p. How do we determine the index of the triangle Ti
that contains the point? How quickly can we do this?

The obvious approach, known as the naive search, simply checks each triangle. Such a search can take
up to t_num steps. If the point is guaranteed to be in at least one of the triangles, and if we stop as soon
as we find that triangle, the average number of steps is actually U‘%

When we “check” a triangle Ti to see if it contains p, we actually simply compute the barycentric
coordinates of p with respect to Ti. If all 3 coordinates are nonnegative, we have found our triangle.
Otherwise, we prepare to check the next triangle in the list.

1.5 Program #2: Where is a Point Relative to a Triangulation?

Write a program which
e Reads the element node and node coordinate arrays of a triangulation 7;
e Reads a point p.
e Performs the naive search algorithm to find the triangle containing p;

e Prints the triangle index, and the number of steps required.



For your triangulation, use the Box3 example. For your point p, try each of the following: {2,5,1.8},
{3.8,2.9}, {0.0,1.6}, {4.0,0.0}, {5.0,2.5}.

It’s possible that a point is not contained in any triangle. In that case, let’s print out the value “-1” in
place of the triangle index.

1.6 The Neighbor Triangle Array

In order to apply a faster method for finding points in a triangulation, we must define the neighbor triangle
array, a crucial piece of information that will help us find our way to the answer.

The neighbor triangle array is easily defined. If we think about the edges in a triangulation, most of them
are shared by two triangles. The exceptions occur if an edge lies on the exterior boundary, or an internal
hole of the region. So, given any triangle in the triangulation, we can ask, for each of its edges whether there
is another triangle that shares that edge, and if so what the index of that triangle is. It will be convenient
to call this array neighbor, and to assume it has the shape 3 x t_num. We will also order the neighbors of
triangle t so that neighbor(1,t) is the neighbor across the edge {b,c}, (and hence opposite the first node,
a). Similarly, neighbor(2,t) is the neighbor that shares edge {c,a}, and neighbor(3,t) shares {a,b}. It
is of course possible that there is no neighbor that shares a given edge. In that case, we can give that array
entry the special value of -1.

Consider the simple Box3 triangulation shown in the figure. If the nodes of element 9 are listed as {8,
12, 7}, then the 9th row of the neighbor array will be {4,8, 10}. Similarly, if the nodes of element 18 are
listed as {18,14,19}, then the 18th row of the neighbor array will be {23,-1,17}.

If we have a picture of the triangulation, we can see the neighbor values easily. But could we compute
this information, having only the element node array to work with?

Imagine that we needed to know the neighbors of element 18. Triangle 18 has the edges {14,19}, {19,18}
and {18,14}. To find the neighbors of triangle 18, we have only to search the element node array for the
occurrence of these edges. Of course, when looking for a neighbor along the edge {14,19}, we first have to
reverse the order of the nodes, since the edge has the opposite orientation in the neighbor triangle. Then we
have to realize that the nodes 19 and 14 can show up in the element node array in any one of three ways:

{19, 14, 7}
{ 7, 19, 14 }
{14, 7, 19}

So we can look for occurrences of the node 19 anywhere in the element node array, and if we find one, ask
whether the “next” entry is 14, remembering that if 19 occurs in the 3rd column, then the “next” element
is in column 1.

By considering each triangle, and each edge of that triangle, and searching the element node array for
occurrences of the reverse of that edge, we can construct the entire neighbor array.

1.7 Program #3: The Neighbor Triangle Array
Write a program which

e Reads the element node array of a triangulation 7;

e Constructs the triangle neighbor array neighbor;

e Prints the triangle neighbor array.

For input to your program, use the Box3 triangulation.



1.8 Where is a Point Relative to a Delaunay Triangulation?

Now let us see whether we can come up with a faster answer to our question about finding the triangle in
a triangulation that contains a given point. It turns out that we can only promise a faster answer if we
know that our triangulated region is convex, and that the triangulation is a Delaunay triangulation. These
matters are discussed in the lab on Delaunay triangulation; for this discussion, we will assume that these
conditions are met. Note, however, that the convexity condition means, in particular, that the triangulation
is guaranteed not to have any internal holes, or indentations in the outer boundary.

The Delaunay search algorithm can be thought of as “walking” through the triangulation, from one
triangle to a neighboring one, until the correct one is found. We start at a random triangle. Our movement
strategy rests on two key points:

e the barycentric coordinates tell us which direction we should move;
e the neighbor array tells us what triangle lies in each direction.

Let’s make this more clear by imagining that our triangulation is the Box3 example, that the point p is
the centroid of triangle t16, and that as our random starting point, we choose triangle t8.

Our walk begins by asking whether p actually lies in triangle t8. We answer this question by computing
the barycentric coordinates of p relative to t8. It turns out that two of the coordinates are negative,
corresponding to the edges {3,8} and {8,7}. That means that we are on the wrong side of both of those
edges. We may choose to move either north or east. Let’s say we choose to go north. The neighbor array
tells us that we have now moved to triangle t9. Again we compute the barycentric coordinates of p. This
time, only the coordinate corresponding to edge {8,12} is negative, so our only choice is to move east. The
neighbor array tells us we’ve moved to triangle t10. We continue in this way until we reach t8, when the
barycentric coordinates of p are all positive, so that we know we’ve reached our goal.

If we ever try to move in a particular direction, and discover that the neighbor array value is -1, then our
search has terminated, and the point p actually lies outside the triangulation. That is only true because we
are assuming the triangulation is convex.

The walking procedure described here can fail if the triangulation does not have the Delaunay property.
In that case, the walk may end up going in a cycle instead of reaching the goal.

To estimate the efficiency of the algorithm, we can start by supposing that we have t_num triangles, that
a typical triangulation has a “width” and “height” of about yv/t_num, and a random starting triangle might
therefore be on average about Yt=ium

2

Vt_num
2

triangles distant from the corrrect one. Thus, the Delaunay walking

algorithm might take about steps, whereas the naive search will typically search L“T“m triangles.

1.9 Program #4: Where is a Point Relative to a Delaunay Triangulation?

Write a program which
e Reads the element node and node coordinate arrays of a triangulation 7;
e Constructs the triangle neighbor array neighbor;
e Reads a point p.
e Performs the Delaunay search algorithm to find the triangle containing p;
e Prints the number of steps required.

For your triangulation, again use the Box3 example. For your point p, try each of the following: {2,5,1.8},
{3.8,2.9}, {0.0,1.6}, {4.0,0.0}, {5.0,2.5}.



