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Abstract

These notes are based on lectures given in a Short Course on Theo-
retical and Numerical Fluid Mechanics in Vancouver, British Columbia,
Canada, July 27-28, 1996, and at several other places since then. They
provide an introduction to recent developments in the numerical solu-
tion of the Navier-Stokes equations by the finite element method. The
material is presented in eight sections:

1. Introduction: Computational aspects of laminar flows
2. Models of viscous flow
3. Spatial discretization by finite elements
4. Time discretization and linearization
5. Solution of algebraic systems
6. A review of theoretical analysis
7. Error control and mesh adaptation
8. Extension to weakly compressible flows

Theoretical analysis is offered to support the construction of numerical
methods, and often computational examples are used to illustrate the-
oretical results. The variational setting of the finite element Galerkin
method provides the theoretical framework. The goal is to guide the
development of more efficient and accurate numerical tools for com-
puting viscous flows. A number of open theoretical problems will be
formulated, and many references are made to the relevant literature.

∗The author acknowledges the support by the German Research Association (DFG)
through the SFB 359 “Reactive Flow, Diffusion and Transport” at the University of Heidel-
berg, Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany.
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1 Introduction

In the following sections, we will discuss a computational methodology for sim-
ulating viscous incompressible laminar flows. The description of the numerical
algorithms will be accompanied by a heoretical analysis so far as it is relevant
to understanding the performance of the method. In this sense, these notes
are meant as a contribution of Mathematics to “CFD” (Computational Fluid
Dynamics).

Figure 1: Nonstationary flow around “CFD” for Re = 500 , driven by rotation of
the outer circle and visualized by temperature isolines; from Turek [98].

The established model for viscous Newtonian incompressible flow is the the
system of Navier-Stokes equations,

∂tv − ν∆v + v·∇v + ∇p = f, ∇·v = 0, (1)

in some region Ω × (0, T ) with appropriate initial and boundary conditions.
We concentrate on “laminar” flows, i.e., on flows with Reynolds number in the
range 1 ≤ Re ≤ 105 , where Re ∼ v̄l̄/ν . The numerical solution of this system
involves several typical difficulties:

• Complicated flow structure ⇒ fine meshes!

• Re ≫ 1 ⇒ locally refined and anisotropic meshes in boundary layers!

• Dominant nonlinear effects ⇒ stability problems!

• Constraint ∇·v = 0 ⇒ implicit solution!

• Sensitive quantities ⇒ solution-adapted meshes!
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Accurate flow prediction requires the use of large computer power, particularly
for the extension from 2D to 3D, from stationary to nonstationary flows, and
from qualitative results to quantitatively accurate results. The key goals in
the developing tools for computing laminar flows are:

• fast (nonstationary calculations in minutes or hours),

• cheap (simulations on workstations),

• flexible (general purpose solver),

• accurate (adaptive error control).

1.1 Solution method

The method of choice in these notes is the “Finite Element Method” (FEM) for
computing the primitive variables v (velocity) and p (pressure). This special
Galerkin method is based an a variational formulation of the Navier-Stokes
problem in appropriate function spaces, and determines “discrete” approxi-
mations in certain finite dimensional subspaces (“trial spaces”) consisting of
piecewise polynomial functions. By this approach the discretization inherits
most of the rich structure of the continuous problem, which, on the one hand
provides a high computational flexibility and on the other hand facilitates a rig-
orous mathematical error analysis. These are the main aspects which make the
FEM increasingly attractive in CFD. For completeness, we briefly comment
on the essential features of the main competitors of the FEM:

• Finite difference methods (FDM): Approximation of the Navier-
Stokes equations in their “strong” form by finite differences:
+ easy implementation,
− problems along curved boundaries,
− difficult stability and convergence analysis,
− mesh adaptation difficult.

• Finite volume methods (FVM): Approximation of the Navier-Stokes
equations as a system of (cell-wise) conservation equations:
+ based on “physical” conservation properties,
− problems on unstructured meshes,
− difficult stability and convergence analysis,
− only heuristic mesh adaptation.

• Spectral Galerkin methods: Approximation of the Navier-Stokes
equations in their variational form by a Galerkin method with “high-
order” polynomial trial functions:
+ high accuracy,
− treatment of complex domains difficult,
− mesh and order (hp)-adaptation difficult.
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This brief classification must be superficial and is based on personal taste. The
details are the subject of much controversial discussion concerning the pros
and cons of the various methods and their variants. However, this conflict
is partially resolved in many cases, as the differences between the methods,
particularly between FEM and FVM, often disappear on general meshes. In
fact, some of the FVMs can be interpreted as variants of certain “mixed”
FEMs.

1.2 Examples of computable viscous flows

Below, we give some examples of flows which can be computed by the methods
described in these notes. More examples including movies of nonstationary
flows can be seen on our homepage: http://gaia.iwr.uni-heidelberg.de/.
Some of the computer codes are available for research purposes:

• FEATFLOW Code (FORTRAN 77) by S. Turek [96], [97]:
http://gaia.iwr.uni-heidelberg.de/~featflow/.

• deal.II Code (C++) by W. Bangerth and G. Kanschat [5]:
http://gaia.iwr.uni-heidelberg.de/~deal/.

A collection of experimental photographs of such “computable” flows can be
found in Van Dyke’s book “An Album of Fluid Motion” [99]. In the following,
we present some examples of viscous flows which have been computed by the
methodology described in these notes. Most of these results emerged as side
products in the course of developing the numerical solvers and testing them for
standard benchmark problems. All computations were done on normal work
stations.

Example 1. Cavity flow: The first example is stationary and nonstationary
flow in a cavity driven by flow along the upper boundary (“driven cavity”).

Figure 2: Stationary driven cavity flow in 2D for Re = 1, 1000, 9000 (from left to
right); for Re > 10000 the flow becomes nonstationary; from Turek [98].
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Figure 3: Simulation of nonstationary 3D driven cavity flow for Re = 100 ; from
Oswald [66].

Example 2. Vortex shedding: The second example is nonstationary flow
around a circular cylinder (“von Kármán vortex street”)

Figure 4: Von Kármán vortex street; experiment with Re = 105 (left; from Van
Dyke [99]), and 2D computation with Re = 100 (right; from Turek [98]).

Figure 5: 3D simulation of vortex shedding behind a cylinder for Re = 100 , coarse
grid and flow visualized by particle tracing; from Oswald [66].
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Example 3. Leapfrogging of vortex rings: Two successive puffs of fluid
are injected through a hole and develop into vortex rings dancing around each
other. The second ring travels faster in the induced wake of the first and slips
through it. Then the first ring slips through the second, and so on.

Figure 6: Leapfrogging of two vortex rings; experiment for Re ≈ 1600 (left;
from Van Dyke [99]) and 2D computation for Re ≈ 500 (right; from [46]).

1.2.1 Extensions beyond standard Navier-Stokes flow

The numerical methodology described in these notes has primarily been de-
veloped for computing viscous incompressible Newtonian flows. However, ex-
tensions are possible in several directions. These include flows in regions with
moving boundaries, as for example pipe flow driven by rotating propellers, and
flow of non-Newtonian fluids modelled by a simple power-law rule. The exten-
sion to certain low-speed compressible flows will be discussed in more detail
below in Section 8.
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1) Flow regions with moving boundaries

Figure 7: Velocity plot of 2D flow in a box driven by a rotating cross, computed by
a “virtual boundary” technique; from Turek [97].

2) Flow of a non-Newtonian fluid

Figure 8: Computation of the flow of a non-Newtonian fluid around a circular
obstacle in a 2D channel (“power-law” ν = ν(1 + |D(v)|)−1 ): stationary flow in
the Newtonian case (left) and nonstationary flow in the non-Newtonian case (right),
both for the same Reynolds number Re = 20; from Turek [98].

3) Low-Mach-number compressible flow

Figure 9: Computation of compressible flow in a chemical flow reactor: flow con-

figuration and mass fraction of excited H
(ν=1)
2 computed on a locally refined mesh;

from Waguet [103] and [10].
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2 Models of viscous flow

The mathematical model for describing viscous (Newtonian) flows is the system
of Navier–Stokes equations, which are the equations of conservation of mass,
momentum and energy:

∂tρ+ ∇·[ρv] = 0 , (1)

∂t(ρv) + ρv·∇v −∇·[µ∇v + 1
3
µ∇·vI] + ∇ptot = ρf , (2)

∂t(cpρT ) + cpρv·∇T −∇·[λ∇T ] = h . (3)

Here, v is the velocity, ρ the density, ptot the (total) pressure, and T the
temperature of the fluid occupying a two- or three-dimensional region Ω . The
parameters µ > 0 (dynamic viscosity), cp > 0 (heat capacity) and λ > 0
(heat conductivity) characterize the properties of the fluid. The volume force
f and the heat source h are explicitly given. Since we only consider low-
speed flows, the influence of stress and hydrodynamic pressure in the energy
equation can be neglected. In temperature-driven flows, h may implicitly
depend on the temperature and further quantities describing heat release, as
for example by chemical reactions. Such “weakly compressible” flows will be
briefly considered at the end of these notes in Section 8. Here, the fluid is
assumed to be incompressible and the density to be homogeneous, ρ ≡ ρ0 =
const. , so that (1) reduces to the incompressibility constraint

∇·v = 0 . (4)

In this model, we consider as the primal unknowns the velocity v , the pressure
p = ptot , and the temperature T . For most parts of the discussion, the flow
is assumed to be isothermal, so that the energy equation decouples from the
momentum and continuity equations, and the temperature only enters through
the viscosity parameter. The system is closed by imposing appropriate initial
and boundary conditions for the flow variables

v|t=0 = v0, v|Γrigid
= 0 , v|Γin

= vin , (µ∂nv + pn)|Γout
= 0 , (5)

and corresponding ones for the temperature, where Γrigid, Γin, Γout are the
rigid part, the inflow part and the outflow part of the boundary ∂Ω , respec-
tively. The role of the natural outflow boundary condition on Γout will be
explained in more detail below.

In the isothermal case, assuming for simplicity that ρ0 = 1 , the Navier-
Stokes system can be written in short as

∂tv + v·∇v − ν∆v + ∇p = f , ∇·v = 0 , (6)

with the kinematic viscosity parameter ν = µ/ρ0 . In this formulation the
domain Ω may be taken two- or three-dimensional according to the particular
requirements of the simulation. In our examples, we shall mostly refer to the
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two-dimensional case. Through a scaling transformation this problem is made
dimensionless, with the Reynolds Number Re = UL/ν as the characteristic
parameter, where U is the reference velocity (e.g., U ≈ max |vin| ) and L the
characteristic length (e.g., L ≈ diam(Ω) ), of the problem.

As common in the mathematical literature, we assume that U = 1 and
L = 1 and consider ν := 1/Re as a dimensionless parameter characterizing in
some sense the “complexity” of the flow problem. Then, the length of the time
interval over which the solution develops its characteristic features is T ≈ 1/ν ,
and the relevant scale of its spatial structures is δx ≈ √

ν (width of boundary
layers). This has to be kept in mind when the right spatial mesh size h and
the time step k is chosen for a numerical simulation which is supposed to
resolve all structures of the flow; for a more detailed discussion of the issue of
reliable transient flow calculation see [54].

2.1 Variational formulation

The finite element discretization of the Navier-Stokes problem (6) is based on
its variational formulation. To this end, we use the following sub-spaces of the
usual Lebesgue function space L2(Ω) of square-integrable functions on Ω :

L2
0(Ω) =

{
ϕ ∈ L2(Ω) : (v, 1) = 0

}
,

H1(Ω) =
{
v ∈ L2(Ω), ∂iv ∈ L2(Ω), 1 ≤ i ≤ d

}
,

H1
0 (Γ; Ω) =

{
v ∈ H1(Ω), v|Γ = 0

}
, Γ ⊂ ∂Ω,

and the corresponding inner products and norms

(u, v) =

∫

Ω

uv dx , ‖v‖ = (v, v)1/2 ,

‖∇v‖ = (∇v,∇v)1/2 , ‖v‖1 =
(
‖v‖2 + ‖∇v‖2

)1/2
.

These are all spaces of R-valued functions. Spaces of R
d-valued functions

v = (v1, . . . , vn) are denoted by boldface-type, but no distinction is made
in the notation of norms and inner products; thus H1

0(Γ; Ω) = H1
0 (Γ; Ω)d

has norm ‖v‖1 = (
∑d

i=1 ‖vi‖2
1)

1/2 , etc. All the other notation is self-evident:
∂tu = ∂u/∂t, ∂iu = ∂u/∂xi, ∂nv = n·∇v, ∂τ = τ ·∇v etc., where n and τ are
the normal and tangential unit vectors along the boundary ∂Ω .

The pressure p in the Navier-Stokes equations is uniquely (possibly up to
a constant) determined by the velocity field v . This follows from the fact that
every bounded functional F (·) on H1

0(Γ; Ω) which vanishes on the subspace

J1(Γ; Ω) = {v ∈ H1
0(Γ; Ω), ∇·v = 0}

can be expressed in the form F (ϕ) = (p,∇·ϕ) for some p ∈ L2(Ω) . Further,
there holds the stability estimate (“inf-sup” stability)

inf
q∈L2(Ω)

{
sup

φ∈H1
0
(Γ;Ω)

(q,∇·φ)

‖∇φ‖

}
≥ γ0 > 0 , (7)
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where L2(Ω) has to be replaced by L2
0(Ω) in the case Γ = ∂Ω . For proofs

of these facts, one may consult the first parts of the books of Ladyshenskaya
[58], Temam [88] and Girault/Raviart [29]. Finally, we introduce the notation

a(u, v) := ν(∇u,∇v) , n(u, v, w) := (u·∇v, w) , b(p, v) := −(p,∇·v),

and the abbreviations

H := H1
0(Γ; Ω), L := L2(Ω)

(
L := L2

0(Ω) in the case Γ = ∂Ω
)
,

where Γ = Γin∪Γrigid . Then, the variational formulation of the Navier-Stokes
problem (6), reads as follows: Find functions v(·, t) ∈ vin +H and p(·, t) ∈ L ,
such that v|t=0 = v0 , and setting Γ := Γin ∪ Γrigid ,

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, v) = (f, ϕ) ∀ϕ ∈ H , (8)

(∇·v, χ) = 0 ∀χ ∈ L . (9)

It is well known that in two space dimensions the pure Dirichlet problem
(8), (9), with Γout = ∅ , possesses a unique solution on any time interval
[0, T ] , which is also a classical solution if the data of the problem are smooth
enough. For small viscosity, i.e., large Reynolds numbers, this solution may be
unstable. In three dimensions, the existence of a unique solution is known only
for sufficiently small data, e.g., ‖v0‖1 ≈ ν , or on sufficiently short intervals of
time, 0 ≤ t ≤ T , with T ≈ ν .

2.2 Regularity of solution

We collect some results concerning the regularity of the variational solution
of the Navier-Stokes problem which are relevant for the understanding of its
numerical approximation. One obtains quantitative regularity bounds from
the following sequence of differential identities

1
2
dt‖v‖2 + ν‖∇v‖2 = (f, v),

1
2
dt‖∇v‖2 + ν‖∆v‖2 = −(f,∆v) + (v·∇v,∆v),

1
2
dt‖∂tv‖2 + ν‖∇∂tv‖2 = (∂tf, ∂tv) − (∂tv·∇v, ∂tv),

1
2
dt‖∇∂tv‖2 + ν‖∆∂tv‖2 = −(∂tf,∆∂tv) + (∂tv·∇v,∆∂tv) + ... ,

1
2
dt‖∂2

t v‖2 + ν‖∇∂2
t v‖2 = (∂2

t f, ∂
2
t v) − (∂2

t v·∇v, ∂2
t v) − ... ,

...

which are easily derived by standard energy arguments; see [40] and [41]. As-
suming a bound on the Dirichlet norm of v ,

sup
t∈(0,T ]

‖∇v(t)‖ ≤M, (10)

the above estimates together with the usual elliptic regularity results im-
ply that v is smooth on Ω̄ for 0 < t ≤ T , if all the data and ∂Ω are
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smooth. However, for the purposes of numerical analysis one needs regu-
larity estimates which hold uniformly for t → 0 . To get such informa-
tion from the above equations requires starting values for all the quantities
‖v‖, ‖∇v‖, ‖∂tv‖, ‖∇∂tv‖, ‖∂2

t v‖ , etc., at t = 0 . However, there is a problem
already with ‖∇∂tv(0)‖ , as has been demonstrated in [41].

2.2.1 Compatibility conditions at t = 0

To investigate this phenomenon, let us assume that the solution {v, p} is
uniformly smooth as t → 0 . Then, applying the divergence operator to the
Navier-Stokes equations and letting t→ 0 implies:
(i) in Ω :

∇·(∂tv + v·∇v) = ∇·(ν∆v −∇p) → ∇·(v0·∇v0) = −∆p0,

(ii) on ∂Ω :

∂tv + v·∇v = ν∆v −∇p → ∂tg|t=0 + v0·∇v0 = ν∆v0 −∇p0,

where g is the boundary data, v0 the initial velocity and p0 := limt→0 p(t)
the “initial pressure”. Hence, in the limit t = 0 , we obtain an overdetermined
Neumann problem for the initial pressure:

∆p0 = −∇·(v0·∇v0) in Ω, (11)

∇p0
|∂Ω = ν∆v0 − ∂tg|t=0 − v0·∇v0, (12)

including the compatibility condition

∂τp
0
|∂Ω = τ ·(ν∆v0 − ∂tg|t=0 − v0·∇v0), (13)

where τ is the tangent direction along ∂Ω . If this compatibility is violated,
then limt→0{‖∇3v(t)‖ + ‖∇∂tv(t)‖} = ∞ ; see [41]. We emphasize that (13)
together with (11) is a global condition which in general cannot be verified for
given data. Without (13) being satisfied the maximum degree of regularity is
right in the middle of H2 and H3; see [78]. In view of the foregoing discus-
sion, the natural regularity assumption for the nonstationary Navier-Stokes
equations (without additional compatibility condition) is

v0 ∈ J1(Ω) ∩ H2(Ω) ⇒ sup
t∈(0,T ]

{
‖∇2v(t)‖ + ‖∂tv(t)‖

}
<∞. (14)

Example: Flow between two concentric spheres (“Taylor problem”)
Let the inner sphere with radius rin be accelerated from rest v0 = 0 with a
constant acceleration ω , i.e., v|Γin

·(n, τθ, τφ)T = rin cos(θ)(0, 0, ωt)T (in polar
coordinates), while at the outer sphere, we set v|Γout

= 0 . Accordingly, the
Neumann problem for the “initial pressure” takes the form

∆p0 = 0 in Ω, ∂np
0
|∂Ω = 0,
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which implies that p0 ≡ const . However, this conflicts with the compatibility
condition (13) which in this case reads

∂φp
0
|Γin

= −∂t(v0·nφ)t=0 = −rin cos(θ)ω 6= 0 .

In order to describe the “natural” regularity of the solution {v(t), p(t)} , as
t → 0 , and as t → ∞ , in [41] a sequence of time-weighted a priori estimates
has been proven under the assumption (10) using the weight functions τ(t) =
min(t, 1) and eαt , with fixed α > 0 :

τ(t)2n+m−2
{
‖∇m∂nt v(t)‖ + ‖∇m−1∂nt p(t)‖

}
≤ K, (15)

and

e−αt
∫ t

0

eαsτ(s)2n+m−2
{
‖∇m∂nt v(t)‖2 + ‖∇m−1∂nt p(t)‖2

}
dt ≤ K, (16)

for any m ≥ 2, n ≥ 1 .

Open problem 2.1: Devise a way to construct for any given initial data
v0 (e.g., fitted from experimental data) and any ǫ > 0 a smooth initial data
ṽ0 ∈ J1(Γ; Ω) , such that ‖v0 − ṽ0‖1 ≤ ǫ , and the resulting solution of the
Navier-Stokes equations satisfies the compatibility condition (13) at t = 0 .

2.3 Outflow boundary conditions

Numerical simulation of flow problems usually requires the truncation of a
conceptionally unbounded flow region to a bounded computational domain,
thereby introducing artificial boundaries, along which some kind of boundary
conditions are needed. The variational formulation (8), (9) does not contain
an explicit reference to any “outflow boundary condition”. Suppose that the
solution v ∈ vin +H, p ∈ L is sufficiently smooth. Then, integration by parts
on the terms

ν(∇v∇φ) − (p,∇·φ) =

∫

Γout

{ν∂nv − pn}φ do+ (−ν∆v + ∇p, φ)
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yields the already mentioned “natural” condition on the outflow boundary

ν∂nv − pn = 0 on Γout. (17)

This condition has proven to be well suited in modeling (essentially) parallel
flows, see, e.g., [46], Turek [93, 97]. It naturally occurs in the variational
formulation of the problem if one does not prescribe any boundary condition
for the velocity at the outlet suggesting the name “do nothing” boundary
condition.

In the following, we present some experiences in choosing the boundary
conditions implicitly, through the choice of variational formulations of flow
problems used in finite element computations. To fix ideas, let us begin by
considering a common test problem, that of calculating nonstationary flow
past an obstacle (here an inclined ellipse), situated in a rectangular channel.

Figure 10: The effect of the “do nothing” outflow boundary condition shown by
pressure isolines for unsteady flow around an inclined ellipse at Re=500; from [46].

We impose the usual no-slip boundary conditions on the channel walls and
on the surface of the ellipse, while a parabolic “Poiseuille” inflow profile is
prescribed on the upstream boundary. We denote again by Γ that portion of
the boundary on which Dirichlet conditions are imposed. At the downstream
boundary S = Γout , we decide to “do nothing” and leave the solution and
the test space free by choosing H = H1

0(Γ; Ω) and L = L2(Ω) . This results
in the free-outflow condition (17). The results of computations based on (17)
show a truly remarkable “transparency” of the downstream boundary when it
is handled in this way; see Figure 10 where almost no effect of shortening the
computational domain is seen.
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2.3.1 Problems with the “do nothing” outflow condition

Although, the “do nothing” outflow boundary condition seems to yield very
satisfactory results, one should use it with care. For example, if the flow re-
gion contains more than one outlet, like in flows through systems of pipes,
undesirable effects may occur, since the “do nothing” condition contains as
an additional hidden condition that the mean pressure is zero across the out-
flow boundary. In fact integrating (17) over any component S of the out-
flow boundary (a straight segment) and using the incompressibility constraint
∇·v = 0 yields

∫

S

pn do = ν

∫

S

∂nv do = −ν
∫

S

∂tv do = v(s2) − v(s1) = 0 .

Here si denote the end points of S at which v(si) = 0 , due to the imposed
no-slip condition along Γ . Consequently, the mean pressure over S must be
zero: ∫

S

p do = 0 . (18)

To illustrate this, let us consider low Reynolds number flow through a junction
in a system of pipes, again prescribing a Poiseuille inflow upstream. In Figure
11, we show steady streamlines for computations based on the same variational
formulations as above, each with the same inflow, but with varying lengths
of pipe beyond the junction. Obviously, making one leg of the pipe longer
significantly changes the flow pattern. The explanation of this effect is that by
the property (18), in Figure 11 the pressure gradient is greater in the shorter
of the two outflow sections, which explains why there is a greater flow through
that section.

Figure 11: The effect of the “do nothing” outflow boundary condition shown by
streamline plots for flow through a bifurcating channel for Re = 20 ; from [46].

2.3.2 Modification of transport or diffusion model

The foregoing example suggests that one might consider formulating problems
more generally, e.g., in terms of prescribed pressure drops or prescribed fluxes;
we refer to [46] for a thorough development of the corresponding variational
formulations. Both choices of boundary conditions lead to well posed formu-
lations of the problem. However, the situation is less satisfactory than in the
case of pure Dirichlet boundary conditions. Although the variational problem

14



looks well set in this situation, surprisingly there is a problem with its well
posedness. The related Dirichlet problem of the Navier-Stokes equations, sta-
tionary as well as nonstationary, is well known to possess weak solutions (not
necessarily unique or stable) for any Reynolds number. The standard argu-
ment for this result is based upon the “conservation property” (v·∇v, v) = 0
of the nonlinear term, which is obtained by integration by parts and using
∇·v = 0 . In the case of a “free” boundary this relation is replaced by

(v·∇v, v) = −1
2
(n·v, v2)Γ, Γ = ∪iΓi, (19)

which generally does not allow to bound the energy in the system without a
priori knowledge of what is an inflow and what is an outflow boundary. As a
consequence, in [46] the existence of a unique solution could be shown, even
in two space dimensions, only for sufficiently small data. Kracmar/Neustupa
[57] have treated the case of general data by formulating the problem as a
variational inequality including the energy bound as a constraint. This still
leaves the question open whether one can expect existence of solutions for
the original formulation with general data. A positive answer is suggested by
numerical tests which do not show any unexpected instability with the discrete
analogues of the formulation (8), (9) in the case of higher Reynolds numbers.

One may suspect that this theoretical difficulty can be avoided simply by
changing the variational formulation of the problem, i.e., using other varia-
tional representations of the transport or diffusion terms. It has been sug-
gested to replace in the momentum equation (8) the Dirichlet form (∇v,∇φ)
by (D[v], D[φ]) , with D[v] = 1

2
(∂ivj +∂jvi)

d
i,j=1 being the deformation tensor.

This change has no effect in the case of pure Dirichlet boundary conditions
as then the two forms coincide. But in using the “do nothing” approach this
modification leads to the outflow boundary condition

n·D[v] − pn = 0 on Γout,

which may result in a non-physical behavior of the flow. In the case of simple
Poiseuille flow the streamlines are bent outward as shown in Figure 12.

Another possible modification is to enforce the conservation property on
the transport terms. Using the identity ∇(1

2
|v|2) = v·(∇v)T , the transport

term can be written in the form

v·∇v = v·∇v − v·(∇v)T + 1
2
∇|v|2.

This leads to a variational formulation in which (v·∇v, φ) is replaced by

b̃(v, v, φ) := (v·∇v, φ) − (φ·∇v, v), (20)

while the term 1
2
|v|2 is absorbed into the pressure. An alternative form is

b̃(v, v, φ) := 1
2
(v·∇v, φ) − 1

2
(v·∇φ, v), (21)
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which is legitimate because b̃(v, v, φ) = (v·∇v, φ) for v ∈ J1(Ω) . Notice that
in both cases b̃(w, φ, φ) = 0 for any w . The corresponding natural outflow
boundary conditions are, for (20):

ν∂nv − pn = 0, (22)

with the so-called “Bernoulli pressure” p = p+ 1
2
|v|2 , and for (21):

ν∂nv − 1
2
|n·v|2n− pn = 0. (23)

Both modifications again result in a non-physical behavior across the outflow
boundary; streamlines bent inward as shown in Figure 12. Hence, for physical
reasons, it seems to be necessary to stay with the original formulation (8), (9).
For a detailed discussion of the boundary conditions, and for an extensive list
of references, we refer the reader to Gresho [34] and Gresho and Sani [35].

Figure 12: The effect of using the deformation tensor formulation (top) or the
symmetrized transport formulations (middle) together with the “do nothing” outflow
boundary condition compared to the correct Poiseuille flow (bottom); from [46].

Open Problem 2.2: Prove the existence of global smooth solutions (in 2D) for
the original variational Navier-Stokes equations with the “do nothing” outflow
boundary condition for general data.
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3 Spatial discretization by finite elements

In this section, we recall some basics about the spatial discretization of the
incompressible Navier–Stokes equations by the finite element method. The
emphasis will be on those types of finite elements which are used in our codes
for solving two and three dimensional flow problems, stationary as well as
nonstationary. For a general discussion of finite element methods for flow
problems, see to Girault/Raviart [29], Pironneau [68], and Gresho/Sani [35].

3.1 Basics of finite element discretization

We begin by a brief introduction to the basics of finite element discretization of
elliptic problems, e.g., the Poisson equation in a bounded domain Ω ⊂ R

d (d =
2 or 3) with a polyhedral boundary ∂Ω ,

−ν∆u = f in Ω. (1)

We assume homogeneous Dirichlet and Neumann boundary conditions,

u|ΓD
= 0, ∂nu|ΓN

= 0, (2)

along disjoint components ΓD and ΓN of ∂Ω , where ∂Ω = ΓD ∪ ΓN . The
starting point is the variational formulation of this problem in the natural
solution space H := H1

0 (ΓD; Ω) : Find u ∈ H satisfying

a(u, φ) := ν(∇u,∇φ) = (f, φ) ∀φ ∈ H. (3)

To discretize this problem, we introduce decompositions, named Th , of Ω̄
into (closed) cells K (triangles or quadrilaterals in 2D, and tetrahedra or
hexahedra in 3D) such that the usual regularity conditions are satisfied:

• Ω̄ = ∪{K ∈ Th} .

• Any two cells K,K ′ only intersect in common faces, edges or vertices.

• The decomposition Th matches the decomposition ∂Ω = ΓD ∪ ΓN .

In the following, we will also allow decompositions with “hanging nodes” in
order to ease local mesh refinement. To each of the decompositions Th , there
corresponds a mesh-size function h = h(x) which is piecewise constant such
that h|K =: hK . We set hK := diam(K) and denote by ρK the radius of
the ball of maximal size contained in K . We will also use the notation h :=
maxK∈Th

hK . The family of decompositions {Th}h is said to be (uniformly)
“shape regular”, if

chK ≤ ρK ≤ hK , (4)

and (uniformly) “quasi-uniform”, if

max
K∈Th

hK ≤ c min
K∈Th

hK , (5)
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with some constants c independent of h ; see Girault/Raviart [29] or Bren-
ner/Scott [19] for more details of these properties. In the following, we will gen-
erally assume shape-regularity (unless something else is said). Quasi-uniformity
is usually not required. Examples of admissible meshes are shown below.
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Figure 13: Regular finite element meshes (triangular and quadrilateral)

On the decompositions Th , we consider “finite element spaces” Hh ⊂ H
defined by

Hh := {vh ∈ H, vh|K ∈ P (K), K ∈ Th},
where P (K) are certain spaces of elementary functions on the cells K . In
the simplest case, P (K) are polynomial spaces, P (K) = Pr(K) for some
degree r ≥ 1 . On general quadrilateral or hexahedral cells, we have to work
with “parametric” elements, i.e., the local shape functions are constructed by
using transformations ψK : K̂ → K between the “physical” cell K and a
fixed “reference unit-cell” K̂ by vh|K(ψK(·)) ∈ Pr(K̂) . This construction is
necessary in general in order to preserve “conformity” (i.e., global continuity) of
the cell-wise defined functions vh ∈ Hh . For example, the use of bilinear shape
functions φ ∈ span{1, x1, x2, x1x2} on a quadrilateral mesh in 2D employs
likewise bilinear transformations ψK : K̂ → K . We will see more examples of
concrete finite element spaces below.

In a finite element discretization, “consistency” is expressed in terms of
local approximation properties of the shape functions used. For example, in the
case of a second-order approximation using linear or d-linear shape functions,
there holds locally on each cell K :

‖v − Ihv‖K + hK‖∇(v − Ihv)‖K ≤ cIh
2
K‖∇2v‖K , (6)

and on each cell surface ∂K :

‖v − Ihv‖∂K + hK‖∂n(v − Ihv)‖∂K ≤ cIh
3/2
K ‖∇2v‖K, (7)

where Ihv ∈ Hh is the natural “nodal interpolation” of a function v ∈
H ∩ H2(Ω) , i.e., Ihv coincides with v with respect to certain “nodal func-
tionals” (e.g., point values at vertices, mean values on edges or faces, etc.).
The “interpolation constant” is usually of size cI ∼ 0.1−1 , depending on the
shape of the cell K.
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With the foregoing notation the discrete scheme reads as follows: Find
uh ∈ Hh satisfying

a(uh, φh) = (f, φh) ∀φh ∈ Hh. (8)

Combining the two equations (3) and (8) yields the relation

a(u− uh, φh) = 0, φh ∈ Hh, (9)

which means that the error e := u − uh is “orthogonal” to the subspace
Hh with respect to the bilinear form a(·, ·) . This essential feature of the
finite element Galerkin scheme immediately implies the “best approximation”
property

‖∇e‖ = min
φh∈Hh

‖∇(u− φh)‖. (10)

In virtue of the interpolation estimate (6), we obtain the (global) a priori
convergence estimate

‖∇e‖ ≤ cI h‖∇2u‖ ≤ cIcS h ‖f‖, (11)

provided that the solution is sufficiently regular, i.e., u ∈ H2(Ω), satisfying
the a priori bound

‖∇2v‖ ≤ cS‖f‖. (12)

In the above model, this is the case if the polygonal domain Ω is convex.
In case of reduced regularity of u due to reentrant corners, the order in the
estimate is correspondingly reduced. In the case of approximation by higher-
order polynomials, r ≥ 2 , and higher order of regularity of u , the estimate
(11) shows a correspondingly increased power of h. The order of h in the
“energy-error” estimate (11) can be improved by shifting to the L2-norm. This
is done by employing a duality argument (“Aubin-Nitsche trick”); see, e.g.,
Brenner/Scott [19]. Let z ∈ H be the solution of the auxiliary problem

−ν∆z = ‖e‖−1e in Ω, z = 0 on ∂Ω, (13)

satisfying an a priori bound ‖∇2z‖ ≤ cS . Then, there holds

‖e‖ = (e,−ν∆z) = a(e, z) = a(e, z − Ihz) ≤ cIcSh‖∇e‖, (14)

and we conclude the improved a priori L2-error estimate

‖e‖ ≤ c2Ic
2
Sh

2‖f‖ . (15)

In order to convert the problems (8) into a form which is amenable to prac-
tical computation, we introduce the nodal basis {φ1

h, . . . , φ
N
h } , N = dimHh ,

of the space Hh , defined by φih(aj) = δij , i, j = 1, . . . , N , where aj are the
nodal points (e.g., the vertices) of the mesh. Then, setting

uh =

N∑

i=1

xiφ
i
h,
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problem (8) is equivalent to the linear algebraic system

Ax = b , (16)

for the “nodal value” vector x = (xi)
N
i=1 . Here, the “stiffness matrix” A and

the “load vector” b are defined by

A :=
(
a(φih, φ

j
h)

)N
i,j=1

, b :=
(
(f, φih)

)N
i=1

.

In the case of variable coefficients and force the integrals have to be computed
by using integration formulas; in our implementations usually Gaussian formu-
las are used. For the pure diffusion problem the stiffness matrix A is symmet-
ric and positive definite. Its condition number behaves like κ(A) = O(h−2) ,
where the exponent -2 is determined by the order of the differential operator
∆ (it is independent of the spatial dimension and the polynomial degree of
the finite elements used).

Below, we show a sequence of hexahedral 3D meshes used for computing
the “puff-puff flow” mentioned in the Introduction; observe the successively
refined approximation of the curved boundary.

Figure 14: Sequence of successively refined hexahedral meshes for computing the
“puff-puff” flow in 3D.

3.2 Stokes elements

We consider the stationary Navier-Stokes problem as specified in Section 2.
In setting up a finite element model of the Navier-Stokes problem, one starts
from the variational formulation of the problem: Find v ∈ vin+H and p ∈ L ,
such that

a(v, ϕ) + n(v, v, ϕ) + b(p, φ) = (f, ϕ) ∀ φ ∈ H, (17)

b(χ, v) = 0 ∀ χ ∈ L. (18)

The choice of the function spaces H ⊂ H1(Ω)) and L ⊂ L2(Ω) depends on the
specific boundary conditions imposed in the problem to be solved. On a finite
element mesh Th on Ω with cell width h , one defines spaces of “discrete”
trial and test functions,

Hh “⊂”H, Lh ⊂ L.
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The discrete analogues of (19), (20) then read as follows: Find vh ∈ vinh + Hh

and ph ∈ Lh , such that

ah(vh, ϕh) + nh(vh, vh, φh) + bh(ph, φh) = (f, ϕh) ∀ φh ∈ Hh, (19)

bh(χh, vh) = 0 ∀ χh ∈ Lh, (20)

where vinh is a suitable approximation of the inflow data vin. The notation
Hh“⊂”H indicates that in this discretization the spaces Hh may be “noncon-
forming”, i.e., the discrete velocities vh are continuous across the interelement
boundaries and zero along the rigid boundaries only in an approximate sense;
in this case the discrete forms ah(·, ·) , bh(·, ·) , nh(·, ·, ·) and the discrete “en-
ergy norm” ‖∇ · ‖h are defined in the piecewise sense,

ah(φ, ψ) :=
∑

K∈Th

ν(∇φ,∇ψ)K , bh(χ, φ) :=
∑

K∈Th

(χ,∇·φ)K ,

nh(φ, ψ, ξ) :=
∑

K∈Th

(φ·∇ψ, ξ)K , ‖∇φ‖h :=
( ∑

K∈Th

‖∇φ‖2
K

)1/2

.

In order that (19), (20) is a stable approximation to (17), (18), as h→ 0 , it is
crucial that the spaces Hh×Lh satisfy a compatibility condition, the so-called
“inf–sup” or “Babuska-Brezzi” condition,

inf
qh∈Lh

{
sup

wh∈Hh

bh(qh, wh)

‖qh‖ ‖∇wh‖h

}
≥ γ > 0 . (21)

Here, the constant γ is required to be independent of h . This ensures that
the problems (19), (20) possess solutions which are uniquely determined in
Hh×Lh and stable. Further, for the errors ev := v − vh and ep := p − ph ,
there hold a priori estimates of the form

‖∇ev‖h + ‖ep‖ ≤ ch
{
‖∇2v‖ + ‖∇p‖

}
. (22)

A rigorous convergence analysis of spatial discretization of the Navier-Stokes
problem can be found in Girault/Raviart [29] and in [41, 43].

3.2.1 Examples of Stokes elements

Many stable pairs of finite element spaces {Hh, Lh} have been proposed in the
literature (see, e.g., Girault/Raviart [29], Hughes et al. [49] and [77]). Below,
two particularly simple examples of quadrilateral elements will be described
which have satisfactory approximation properties and are applicable in two
as well as in three space dimensions. They can be made robust against mesh
degeneration (large aspect ratios) and they admit the application of efficient
multigrid solvers. We note that, from the point of view of accuracy, in our
context quadrilateral (hexahedral) elements are to be preferred over triangu-
lar (tetrahedral) elements because of their superior approximation properties.
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Both types of elements may be used in the spatial discretization underlying
the discussions in the following sections.

1) The nonconforming “rotated” d-linear Q̃1/P0 Stokes element
The first example is the natural quadrilateral analogue of the well-known tri-
angular nonconforming finite element of Crouzeix/Raviart (see [29]). It was
introduced and analyzed in [77] and its two- as well as three-dimensional ver-
sions have been implemented in state-of-the-art Navier-Stokes codes (see Turek
[93, 96], Schreiber/Turek [83], and Oswald [66]. In two space dimensions, this
nonconforming element uses piecewise ”rotated” bi-linear (reference) shape
functions for the velocities, spanned by {1, x, y, x2 − y2} , and piecewise con-
stant pressures. As nodal values one may take the mean values of the velocity
vector over the element edges (or, alternatively, its point values at the mid-
points of sides) and the mean values of the pressure over the elements. For the
precise definition of this element we introduce the set ∂Th of all (d− 1)-faces
S of the elements K ∈ Th . We set

Q̃1(K) =
{
q ◦ ψ−1

T : q ∈ span{1, x1, x
2
i − x2

i+1, i = 1, ..., d}
}
.

The corresponding finite element spaces are

Hh :=

{
vh ∈ L2(Ω)d : vh|K ∈ Q̃1(K)d, K ∈ Th ,
FS(vh|K) = FS(vh|K ′), S ⊂ ∂K ∩ ∂K ′, FS(vh) = 0, S ⊂ Γ

}
,

Lh :=
{
qh ∈ L : qh|K ∈ P0(K), K ∈ Th

}
,

with the nodal functionals

FS(vh) = |S|−1

∫

S

vh do , FK(ph) = |K|−1

∫

K

ph dx .

d e

dd

d

D
D
D
D
D
D
D

1
|K|

∫
K
phdx

1
|Γ|

∫
Γ
vhds

r

r

r

r

r

r r

�
�

�

�
�

�

�
�

�

1
|K|

∫
K
phdx

1
|Γ|

∫
Γ
vhds

Clearly, the spaces Hh are non-conforming, Hh 6⊂H1(Ω)d . For the pair
{Hh, Lh} the discrete “inf-sup” stability condition (21) is known to be satisfied
on fairly general meshes; see [77] and [13]. For illustration, we recall from [13]
the essential steps of the argument.

Proof of the “inf-sup” stability estimate (21): Using the continuous “inf-sup”
estimate (7), we conclude for an arbitrary ph ∈ Lh that

γ0‖ph‖ ≤ sup
φ∈H

|bh(ph, φ)|
‖∇φ‖ ≤ sup

rhφ∈Hh

|bh(ph, rhφ)|
‖∇rhφ‖

sup
φ∈H

‖∇rhφ‖
‖∇φ‖ . (23)
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where rhφ ∈ Hh is an approximation to φ ∈ H satisfying

bh(χh, φ− rhφ) = 0 ∀χh ∈ Lh , ‖∇rhφ‖ ≤ c∗‖∇φ‖ . (24)

These properties are realized for the Q̃1/P0 Stokes element by the natural
nodal interpolation defined by

∫

S

rhφ do =

∫

S

φ do ∀ S ∈ ∂T.

Then, the first relation in (24) is obvious, and the H1 stability follows from

‖∇rhφ‖2
h =

∑

K∈Th

{
(rhφ, ∂nrhφ)∂K − (rhφ,∆rhφ)K

}

= (∇φ,∇rhφ)h +
∑

K∈Th

{
(rhφ− φ, ∂nrhφ)∂K − (rhφ− φ,∆rhφ)K

}
.

The argument becomes particularly simple for parallelogram meshes. In this
case ∂nrhφ|Γ ≡ const. and ∆rhφ|K ≡ 0 , such that the last sum vanishes. The
general case requires a more involved estimation. Now, the desired “inf-sup”
stability estimate follows with the constant γ = γ0/c∗ .

As discussed in [77], the stability and approximation properties of the
Q̃1/P0 Stokes element depend very sensitively on the degree of deviation of
the cells K from parallelogram shape. Stability and convergence deteriorates
with increasing cell aspect ratios. This defect can be cured by using a “non-
parametric” version of the element where the reference space Q̃1(K) :=

{
q ∈

span{1, ξ, η, ξ2 − η2}
}

is defined for each element K independently with re-
spect to the coordinate system (ξ, η) spanned by the directions connecting
the midpoints of sides of K . This approximation turns out to be robust with
respect to the shape of the elements K , and the convergence estimate (22)
remains true. Below, we will relax this requirement even further by allowing
the elements to be stretched in one or more (in 3D) directions.

Finally, we mention an important feature of the Q̃1/P0 Stokes element (see
[93]): It possesses a “divergence-free” nodal-basis, which allows the elimina-
tion of the pressure from the problem resulting in a positive definite algebraic
system for the velocity unknowns alone. The reduced algebraic system can be
solved by specially adapted multigrid methods; see Turek [93].

2)The conforming d-linear Q1/Q1 Stokes element with pressure stabilization
The second example uses continuous isoparametric d-linear shape functions for
both the velocity and the pressure approximations. The nodal values are just
the function values of the velocity and the pressure at the vertices of the mesh,
making this approximation particularly attractive in three dimensions. With

Q̃1(K) =
{
q ◦ ψ−1

T : q ∈ span{1, xi, xixj , i, j = 1, . . . , d}
}
,
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the corresponding finite element spaces are defined by

Hh =
{
vh ∈ H1

0(Γ; Ω)d : vh|K ∈ Q̃1(K)d, K ∈ Th

}
,

Lh =
{
qh ∈ H1(Ω) : qh|K ∈ Q̃1(K), K ∈ Th

}
,

with the nodal functionals ( a vertex of the mesh Th )

Fa(vh) = vh(a) , Fa(ph) = ph(a) .

t t

tt

D
D
D
D
D
D
D

K

vh(a), ph(a)

r r

r
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r
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�

K

vh(a), ph(a)

This combination of spaces, however, would be unstable, i.e., it would violate
the condition (21), if used together with the variational formulation (19), (20).
In order to get a stable discretization, it was proposed by Hughes et al. [49],
to add certain least squares terms in the continuity equation (20) (pressure
stabilization method),

b(χh, vh) + ch(χh, ph) = gh(vh;χh), (25)

where

ch(χh, ph) =
α

ν

∑

K∈Th

h2
K(∇χh,∇ph)K ,

gh(vh;χh) =
α

ν

∑

K∈Th

h2
K(∇χh, f + ν∆vh − vh·∇vh)K .

The correction terms on the right hand side have the effect that this modi-
fication is fully consistent, since the additional terms cancel out if the exact
solution {v, p} of problem (17), (18) is inserted. On regular meshes, one ob-
tains a stable and consistent approximation of the Navier-Stokes problem (17),
(18), for which a convergence estimate of form (22) holds true. The argument
follows a slightly different track than that used above for the nonconforming
Q̃1/P0 element; see [13].

Proof of the “inf-sup” stability estimate (21): From the continuous stability
estimate (7) we conclude that

γ0‖ph‖ ≤ sup
rhφ∈Hh

|(ph,∇rhφ)|
‖∇rhφ‖

sup
φ∈H

‖∇rhφ‖
‖∇φ‖ + sup

φ∈H

|(∇ph, φ− rhφ)|
‖∇φ‖ , (26)
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where rhφ ∈ Hh is an approximation to φ ∈ H , satisfying

( ∑

K∈Th

h−2
K ‖φ− rhφ‖2

K

)1/2

+ ‖∇rhφ‖ ≤ c∗‖∇φ‖ . (27)

The existence of such an approximation can be shown by employing an aver-
aged nodal interpolation. From this, we obtain

γ‖ph‖ ≤ c∗ sup
φh∈Hh

|(ph,∇φh)|
‖∇φh‖

+ c∗

( ∑

K∈Th

h2
K‖∇ph‖2

K

)1/2

,

which yields the desired stability estimate with the constant γ = γ0/c∗ .

It was shown in Hughes et al. [49], and later on in a series of mathematical
papers (see, e.g., Brezzi/Pikäranta [21], and the literature cited therein) in
the context of a more general analysis of such stabilization methods, that this
kind of discretization is numerically stable and of optimal order convergent for
many relevant pairs of spaces Hh×Lh .

The stabilized Q1/Q1 Stokes element has several important features: With
the same number of degrees of freedom it is more accurate than its triangular
analogue (and also slightly more accurate than its nonconforming analogue
described above). Furthermore, it has a very simple data structure due to the
use of the same type of nodal values for velocities and pressure which allows
for an efficient vectorization of solution processes. Thanks to the stabilization
term in the continuity equation, standard multigrid techniques can be used
for solving the algebraic systems with good efficiency (see the discussion in
Section 5 below).

We note that the triangular analogue of this element is closely related
(indeed almost algebraically equivalent) to the “inf-sup” stable MINI–element
(see Brezzi/Fortin [20]) which is based on the standard Q1/Q1-element and
stability is achieved by augmenting the velocity space by local cubic bubble
functions.

The stabilized Q1/Q1-Stokes element has been implemented in several 2D
and 3D Navier-Stokes codes (see, e.g., Harig [38], Becker [7], and Braack [17]).
However, it was already reported in Harig [38] that the convergence properties
of this element sensitively depend on the parameter α and may deteriorate on
strongly stretched meshes. We will come back to this point below.

3.3 The algebraic problems

The discrete Navier-Stokes problem (19), (20), possibly including pressure sta-
bilization (25), has to be converted into an algebraic system which can be
solved on a computer. To this end, we choose appropriate local “nodal bases”
{φih, i = 1, ..., Nv} of the “velocity space” Hh , and {χih, i = 1, ..., Np} of the
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“pressure space” Lh and expand the unknown solution {vh, ph} in the form

vh = vinh +

Nv∑

i=1

xiφ
i
h , ph =

Np∑

j=1

xiχ
j
h .

We introduce the following matrices:

A =
(
ah(φ

i
h, φ

j
h)

)Nv

i,j=1
, B =

(
bh(χ

i
h, φ

j
h)

)Np,Nv

i,j=1
, C =

(
ch(χ

i
h, χ

j
h)

)Np

i,j=1
,

N(x) =
(
nh(v

in
h +ΣNv

k=1xkφ
k
h, φ

i
h, φ

j
h) + nh(φ

i
h, v

in
h , φ

j
h)

)Nv

i,j=1
,

b =
(
(f, φjh)−a(vinh , φjh)−nh(vinh , vinh , φjh)

)Nv

j
, c(x) =

(
gh(vh;χ

j
h)

)Np

j=1
.

Here, A is the stiffness matrix, B the “gradient matrix” with the associated
“divergence matrix” −BT ; N(·) is the (nonlinear) transport matrix and b the
load vector into which the nonhomogeneous inflow-boundary data have been
incorporated. Further, C is the matrix arising from pressure stabilization and
c the (nonlinear) correction term on the right-hand side. Occasionally, we will
use the abbreviation A(·) := A + N(·) . For later use, we also introduce the
velocity and pressure “mass matrices”:

Mv =
(
(φih, φ

j
h)

)Nv

i,j=1
, Mp =

(
(χih, χ

j
h)

)Np

i,j=1
.

With this notation the variational problem (19), (20) can equivalently be writ-
ten in form of an algebraic system for the vectors x ∈ R

Nv and y ∈ R
Np of

expansion coefficients:

Ax+N(x)x +By = b , (28)

−BTx+ Cy = c(x) . (29)

Notice that for this system has the structure of a saddle-point problem (for
C = 0 ) and is generically nonsymmetric. This poses a series of problems in
solving it by iterative methods. This point will be addressed in more detail in
Section 5, below.

3.4 Anisotropic meshes

In many situations it is necessary to work with (locally) anisotropic meshes,
i.e., in some areas of the computational domain the cells are stretched in order
to better resolve local solution features. Such anisotropies generically occur
when tensor-product meshes are used to resolve boundary layers. In this case
the mesh Th is no longer “quasi-regular” and the discretization may strongly
depend on the deterioration of the cells measured in terms of “cell aspect
ratios”. On such meshes three different phenomena occur:
- The constant cI in the interpolation estimates (6), (7) may blow up.
- The constant γ in the “inf–sup” stability estimate (21) may become small.
- The conditioning of the algebraic system may deteriorate.
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Figure 15: A sequence of locally anisotropic tensor-product meshes with aspect
ratios σh = 10, 100, 1000, for computing the driven-cavity flow.

It is known that for most of the lower-order finite elements (including the ele-
ments considered here) the local interpolation estimates remain valid even on
highly stretched elements (“maximum angle condition” versus “minimum an-
gle condition”). Accordingly, the failure of the considered Stokes elements on
stretched meshes is not so much a problem of consistency but rather one of sta-
bility. Hence, we will discuss the stability in more detail; the approximation as-
pects have been systematically analyzed in Apel/Dobrowolski [2], Apel [3], and
the literature cited therein. The main technical difficulty arises from the dete-
rioration of the “inverse inequality” for finite elements ‖∇φh‖K ≤ ch−1

K ‖φh‖K
on stretched cells. Further, the solution of the resulting algebraic systems,
e.g., by multigrid methods, becomes increasingly difficult. For simplicity, we
concentrate the following discussion on the special case of cartesian tensor-
product cells as shown in the figures above and below; here the “cell aspect
ratio” is defined by σK = hx/hy and the maximum “mesh aspect ratio” by
σh := maxK∈Th

σK . We consider aspect ratios of size σh ≈ 1 − 104 .

Khy

hx

As a model problem, we consider the stationary Stokes equations

−ν∆u + ∇p = f, ∇·u = 0, in Ω, (30)

with homogeneous Dirichlet boundary conditions u|∂Ω = 0 , on a bounded
polygonal domain Ω ∈ R

2 . Using the notation introduced above, the finite
element formulation of this problem reads as follows:

ah(uh, φh) + bh(ph, φh) = (f, v) ∀φh ∈ Hh, (31)

bh(uh, χh) = 0 ∀χh ∈ Lh. (32)
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1. First, we consider the nonconforming Q̃1/P0 Stokes approximation which
uses “rotated” bilinear shape functions for the velocities and piecewise con-
stants for the pressure. Above, we have introduced its “non-parametric” ver-
sion where local cell coordinates {ξK , ηK} are used for defining the local shape
functions on each cell as vh|K ∈ span{1, ξK, ηK , ξ2

K − η2
K} . In this way one ob-

tains a discretization which is robust with respect to deviations of the cell from
parallelogram shape. It has been shown in [12] that this non-parametric ele-
ment can be modified to be also robust with respect to increasing aspect ratio.
This modification employs a scaling of the local coordinate system according
to the cell aspect ratio σK := hx/hy ,

vh|K ∈ span{1, ξK, σKηK , ξ2
K − σ2

Kη
2
K} .

Figure 16: Pressure and velocity norm isolines for a driven-cavity computation with
the standard isotropic Q̃1/P0 element (left) compared to the anisotropically scaled
version (right); from Becker [7].

Furthermore, the “inf-sup” stability estimate (21) is preserved on such
meshes with a constant γ independent of the mesh aspect ratio σh . To
demonstrate that this scaling is actually necessary for the stability of this
element, we show in Figure 16 the results of a “driven cavity” calculation on
meshes with σh = 32 using the standard isotropic approximation compared to
the anisotropically scaled version. The instability caused by the large aspect
ratio exhibits spurious pressure peaks and vortices along the boundary.

2. Next, we consider the stabilized Q1/Q1–Stokes approximation which uses
continuous (isoparametric) bilinear shape functions for both the velocity and
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the pressure. As seen before, this discretization becomes “inf-sup” stable if
the discrete model is augmented by a least-squares term of the form

(∇·uh, χh) + c(ph, χh) = “correction terms”. (33)

On quasi-uniform meshes, we obtain a stable and consistent approximation of
the Stokes problem but this approximation sensitively depends on the choice of
the form c(·, ·) and may deteriorate on strongly stretched meshes. Again, the
approximation property of the Q1/Q1 element is not the problem. The inter-
polation estimates (6) and (7) remain valid also on high-aspect-ratio meshes
(as defined above) with constants independent of σh . However, the proper
design of the stabilization (33) is delicate. We consider the following three
different choices for the stabilizing bilinear form:

c(p, q) =





c1(p, q) = α
∑

K∈Th
|K|(∇p,∇q)K ,

c2(p, q) = α
∑

K∈Th
h2
K(∇p,∇q)K ,

c3(p, q) = α
∑

K∈Th

{
h2
x(∂xp, ∂xq)K + h2

y(∂yp, ∂yq)K
}
.

The form c1(·, ·) is built in analogy to the MINI–element, since condensation
of the bubble functions leads directly to the cell-wise scaling factor |K|. We
see that c1(·, ·) gets smaller with increasing σh , an undesirable effect which
is avoided by c2(·, ·) . Finally, c3(·, ·) distinguishes between the different co-
ordinate directions which requires the use of a local coordinate system in the
definition of the stabilization. By a local “inverse estimate” for bilinear func-
tions on (arbitrary) rectangles we get the stability relation c3(ph, ph) ≤ ‖ph‖2 ,
which appears necessary for the stabilization to achieve uniformity with re-
spect to the mesh aspect ratio. This may be seen by writing the discrete
system (31), (33) in matrix notation

[
A B

−BT Ci

] [
x
y

]
=

[
b
c

]
,

where Ci corresponds to the stabilizing bilinear form ci(·, ·) . The Schur com-
plement of the main diagonal block A is Σ = Ci − BTA−1B . Then, the
stability constant γ in (33) is given by (see [13]):

γ2 = λmin(M
−1Σ) , (34)

where M denotes the mass matrix of the pressure space Lh (piecewise con-
stants in this case). This correspondence can be used in order to experimentally
determine the dependence of the stability constant γ on the various parame-
ters of the discretization, particularly the cell aspect ratio. We may detect γ
by counting the number of cg–iterations (preconditioned by the mass matrix
M ) needed to invert the Schur complement. The convergence rate ρ of the cg-
iteration applied to the preconditioned Schur complement M−1Σ is linked to
the condition number κ = cond(M−1Σ) by the following well-known formula

ρ ≈ 2

(
1 − 1/

√
κ

1 + 1/
√
κ

)
.
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These test calculations use a sequence of anisotropic grids obtained by one-
directional refinements. The results are given in Table 1.

Table 1: Number of cg–iterations; from Becker [7].

σ 2 4 8 16 32 64 128

c1 8 18 39 98 559 ∗ ∗
c2 8 18 39 88 193 ∗ ∗
c3 8 16 29 31 29 27 24

Figure 17: Pressure isolines for a jet flow in a channel calculation with the Q1/Q1

element using isotropic stabilization (top and middle) compared to the anisotropic
stabilization (bottom); from Becker [7].

The interpretation of these observations is as follows: The increase of the
stability constant for c1(·, ·) stems from the fact, that γ ≈ σ−2 → 0 with
increasing aspect ratio, whereas the bad behavior of c2(·, ·) can be explained by
the growth of λmax(Σ) ≈ σ2 due to fact that we only have c2(p, q) ≤ σ‖p‖‖q‖ .
We also see that the anisotropic stabilization by c3(·, ·) leads to an aspect-
ratio-independent behavior. Similar effects are also observed for the accuracy
of the different stabilizations; see Becker [7] and [13].

Open Problem 3.1: Prove the approximation property (27) on general mesh-
es with arbitrary aspect ratio σh. The special case of tensor-product meshes
has been treated in Becker [7] (see also Apel [3].
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3.5 Treatment of dominant transport

In the case of higher Reynolds numbers (e.g., Re > 1000 for the 2-D driven cav-
ity, and Re > 100 for the flow around an cylinder) the finite element models
(19), (20) or (19), (25) may become unstable since they essentially use central-
differences-like discretization of the advective term. This “instability” most
frequently occurs in form of a drastic slow-down or even break-down of the
iteration processes for solving the algebraic problems; in the extreme case the
possibly existing “mathematical” solution contains strongly oscillatory com-
ponents without any physical meaning. In order to avoid these effects some
additional numerical damping is required. The use of simple first-order artifi-
cial viscosity is not advisable since it introduces too much numerical damping.
Below, we describe two approaches used in the context of finite element dis-
cretization: i) an adaptive upwinding, and ii) the streamline diffusion method.
Alternative techniques are the “characteristics Galerkin method” (for nonsta-
tionary flows) and the “discontinuous finite element method” which require
major changes in the discretization and will therefore not be discussed here;
for references see Pironneau [67], Morton [63] and Johnson [51].

3.5.1 Upwinding

In the finite element context “upwinding” can be defined in a quite natu-
ral way; see, e.g., Tobiska/Schieweck [90] and Turek [97], and the literature
cited therein. Here, the upwinding effect is accomplished in the evaluating
of the advection term through shifting integration points into the upwind di-
rection. This modification leads to system matrices which have certain M-
matrix properties and are therefore amenable to efficient and robust solution
techniques. This is widely exploited in the finite element codes described in
Schreiber/Turek [83], Turek [97] and Schieweck [82].

Following [97], we briefly describe the upwind strategy for the noncon-
forming “rotated” bilinear Stokes element. Each quadrilateral K ∈ Th is
divided into eight barycentric fragments Sij, and for each edge Γl and mid
point ml on Γl the “lumping region” Rl is defined by Rl := ∪k∈Λl

Slk , where
Λl = {k,ml and mk belong to the same element K}. The boundary of the
lumping region Rl consists of the edges Γlk := ∂Slk∩∂Skl, i.e., ∂Rl = ∪k∈Λl

Γlk.
In this way we obtain an edge oriented partition of the mesh domain Ωh = ∪lRl.
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A modification of the nonlinear form n(uh, vh, wh) is now defined by

ñh(uh, vh, wh) :=
∑

K,l

(1 − λlk(uh)) (vh(mk) − vh(ml))wh(ml)

∫

Γl

uh·nlk ds ,

where λlk are parameters depending on the local flux direction. Setting

x :=
1

ν

∫

Γlk

uh·nlk ds ,

possible choices are

λlk :=

{
1, for x ≥ 0
0, for x < 0

}
(“simple upwinding”),

λlk :=

{
(1/2 + x)/(1 + x), for x ≥ 0
1/(2 − 2x), for x < 0

}
(“Samarskij upwinding”),

It can be be shown (see Tobiska/Schieweck [90]) that this upwind scheme is of
first order accurate and, what is most important, the main diagonal blocks of
the corresponding system matrix A + Ñ(·) become M-matrices. This is the
key property for its inversion by fast multigrid algorithms.

The described upwind discretization can generically be extended to the
three dimensional case. An analogous construction is possible for the con-
forming Q1/Q1 element with pressure stabilization also in two as well as in
three dimensions; see Harig [38].

3.5.2 Streamline diffusion

The idea of “streamline diffusion” is to introduce artificial diffusion acting only
in the transport direction while maintaining the second-order consistency of
the scheme. This can be achieved in various ways, by augmenting the test
space by direction-oriented terms resulting in a “Petrov-Galerkin method”, or
by adding certain least-squares terms to the discretization. For the (stationary)
Navier-Stokes problem, we propose the following variant written in terms of
pairs {φ, χ} ∈ H×L : Find vh ∈ vinh + Hh and ph ∈ Lh , such that

ah(vh, φh) + nh(vh, vh, φh) + bh(ph,∇·φh) + sh({vh, ph}, {φh, χh})
= (f, φh) + rh({vh, ph}, {φh, χh}) (35)

for all {φh, χh} ∈ H×Lh , where, with some “reference velocity” v̄h ,

sh({vh, ph}, {φh, χh}) =
∑

K∈Th

δK

{
(∇ph + vh·∇vh,∇χh + v̄h·∇φh)K

+(∇·vh,∇·φh)K
}
,

rh({vh, ph}, {φh, χh}) =
∑

K∈Th

δK(f + ν∆vh,∇χh + v̄h·∇φh)K .
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The stabilization parameters δK are chosen according to

δK = min
{h2

K

ν
,
hK
|v̄|K

}
. (36)

This discretization contains several features. The first term in the sum

∑

K∈Th

δK
{
(∇ph,∇χh)K + (vh·∇vh, v̄h·∇φh)K + (∇·vh,∇·φh)K

}

stabilizes the pressure-velocity coupling for the conforming Q1/Q1 Stokes el-
ement, the second term stabilizes the transport operator, and the third term
enhances mass conservation. The other terms introduced in the stabilization
are correction terms which guarantee second-order accuracy for the stabilized
scheme. Theoretical analysis shows that this kind of Galerkin stabilization ac-
tually leads to an improvement over the standard upwinding scheme, namely
an error behavior like O(h3/2) for the finite elements described above; see To-
biska/Verfürth [91], and also Braack [17] where the same kind of stabilization
has been applied for weakly compressible flows with chemical reactions. For
linear convection-diffusion problems the streamline diffusion method is known
to have even O(h2) convergence on fairly general meshes; see [107].

Open Problem 3.2: Derive a strategy for choosing the stabilization parameter
δK in the streamline diffusion method on general meshes with arbitrarily large
aspect ratio σh .

Open Problem 3.3: The streamline diffusion method (like the least-squares
pressure stabilization) leads to a scheme which lacks local mass conservation.
Recently, for convection-diffusion problems an alternative approach has been
proposed which uses a “discontinuous” Galerkin approximation on the trans-
port term and combines (higher-order) upwinding features with local mass con-
servation. The extension of this method to the incompressible Navier-Stokes
equations (and its practical realization) has yet to be done.
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4 Time discretization and linearization

We now consider the nonstationary Navier-Stokes problem: Find v ∈ vin +H
and p ∈ L , such that v(0) = v0 and

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, φ) = (f, ϕ) , ∀ ϕ ∈ H , (1)

b(χ, v) = 0 , ∀ χ ∈ L . (2)

The choice of the function spaces H ⊂ H1(Ω)d and L ⊂ L2(Ω) depends again
on the specific boundary conditions chosen for the problem to be solved; see
the discussion in Section 2.

In the past, explicit time stepping schemes have been commonly used in
nonstationary flow calculations, mainly for simulating the transition to steady
state limits. Because of the severe stability problems inherent to this approach
(for moderately sized Reynolds numbers) the very small time steps required
prohibited the accurate solution of really time dependent flows. In implicit
time stepping one distinguishes traditionally between two different approaches
called the “Method of Lines” and the “Rothe Method”.

4.1 The Rothe Method

In the “Rothe Method”, at first, the time variable is discretized by one of
the common time differencing schemes; for a general account of such schemes
see, e.g., Thomée [89]. For example, the backward Euler scheme leads to a
sequence of Navier-Stokes-type problems of the form:

k−1
n (vn−vn−1, φ) + a(vn, φ) + n(vn, vn, φ) + b(pn, φ) = (fn, φ), (3)

b(χ, vn) = 0 . (4)

for all {φ, χ} ∈ H × L , where kn = tn − tn−1 is the time step. Each of these
problems is then solved by some spatial discretization method as described
in the preceding section. This provides the flexibility to vary the spatial dis-
cretization, i.e. the mesh or the type of trial functions in the finite element
method, during the time stepping process. In the classical Rothe method the
time discretization scheme is kept fixed and only the size of the time step may
change. The question of how to deal with varying spatial discretization within
a time-stepping process while maintaining higher-order accuracy and conser-
vation properties is currently subject of intensive research. It is essential to
do the mesh-transfer by L2 projection which is costly, particularly in 3D if full
remeshing is used in each time step, but is easily manageable if only meshes
from a family of hierarchically ordered meshes are used.

4.2 The Method of Lines

The traditional approach to solving time-dependent problems is the “Method
of Lines”. At first, the spatial variable is discretized, e.g. by a finite element
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method as described in the preceding section leading to a system of ordinary
differential equations of the form:

Mẋ(t) + Ax(t) +N(x(t))x(t) +By(t) = b(t) , (5)

−BTx(t) + Cy(t) = c(t), t > 0 , (6)

with the initial value x(0) = x0 . The mass matrix M , the stiffness matrix
A and the gradient matrix B are as defined above in Section 3. The matrix
C and the right-hand side c stem from the pressure stabilization when using
the conforming Q1/Q1 Stokes element. Further, the (nonlinear) matrix N(·)
is thought to contain also all terms arising through the transport stabilization
by upwinding or streamline diffusion. For abbreviation, we will sometimes use
the notation A(·) := A+N(·) .

For solving this ODE system, one now applies a time differencing scheme.
The most frequently used schemes are the so–called “One-Step-θ Schemes”:

One-step θ-scheme: Step tn−1 → tn (k = time step):

[M + θkAn]xn +Byn = [M − (1−θ)kAn−1]xn−1 + θkbn + (1−θ)kbn−1

−BTxn + Cyn = cn ,

where xn ≈ x(tn) and An := A(xn) . Special cases are the “forward Euler
scheme” for θ = 0 (first-order explicit), the backward Euler scheme for θ = 1
(first-order implicit, strongly A-stable), and the most popular Crank-Nicolson
scheme for θ = 1/2 (second-order implicit, A-stable). These properties can
be seen by applying the method to the scalar model equation ẋ = λx . In this
context it is related to a rational approximation of the exponential function of
the form

Rθ(−λ) =
1 − (θ − 1

2
)λ

1 + θλ
= e−λ + O

(
(θ − 1

2
)|λ|2 + |λ|3

)
, |λ| ≤ 1 .

The most robust implicit Euler scheme ( θ = 1 ) is very dissipative and there-
fore not suitable for computing really nonstationary flow. In contrast, the
Crank-Nicolson scheme has only very little dissipation but occasionally suffers
from unexpected instabilities caused by the possible occurrence of rough per-
turbations in the data which are not damped out due to the only weak stability
properties of this scheme (not strongly A-stable). This defect can in principle
be cured by an adaptive step size selection but this may enforce the use of an
unreasonably small time step, thereby increasing the computational costs. For
a detailed discussion of this issue see [71]. A good time-stepping scheme of the
described type should possess the following properties:

• A-stability (⇒ local convergence): |R(−λ)| ≤ 1

• Global stability (⇒ global convergence):

limReλ→∞|R(−λ)| ≤ 1 −O(k) .

35



• Strong A-stability (⇒ smoothing property):

limReλ→∞|R(−λ)| ≤ 1−δ < 0 .

• Low dissipation (⇒ energy preservation):

|R(−λ)| = 1 −O(|Imλ|), for Reλ→ 0 .

Alternative schemes of higher order are based on the (diagonally) implicit
Runge-Kutta formulas or the backward differencing multi-step formulas, both
being well known from the ODE literature. These schemes, however, have
not yet found wide applications in flow computations, mainly because of their
higher complexity and storage requirements compared with the Crank-Nicolson
scheme. Also less theoretical analysis is available for these methods when ap-
plied to large stiff systems. Some comparison of their stability and approxi-
mation properties is made in [72]; see also [65]. However, there is still another
method which is an attractive alternative to the Crank-Nicolson method, the
so-called “Fractional-Step-θ Scheme” originally proposed by Glowinski [30] and
Bristeau et al. [22].

Fractional-Step-θ-scheme: (three substeps: tn−1 → tn−1+θ → tn−θ → tn)

(1) [M+αθkAn−1+θ]xn−1+θ + θkByn−1+θ = [M−βθkAn−1]xn−1 + θkbn−1,

−BTxn−1+θ + Cyn−1+θ = cn−1+θ,

(2) [M+βθ′kAn−θ]xn−θ + θ′kByn−θ = [M−αθ′kAn−1+θ]xn−1+θ + θ′kbn−θ,

−BTxn−θ + Cyn−θ = cn−θ,

(3) [M+αθkAn]xn + θkByn = [M−βθkAn−θ]xn−θ + θkbn−θh ,

−BTxn + Cyn = cn.

In the ODE context this scheme reduces to a rational approximation of the
exponential function of the form

Rθ(−λ) =
(1 − αθ′λ)(1 − βθλ)2

(1 + αθλ)2(1 + βθ′λ)
= e−λ + O(|λ|3) , |λ| ≤ 1 .

Here θ = 1−
√

2/2 = 0.292893... , θ′ =1−2θ , α ∈ (1/2, 1] , and β = 1−α , in
order to ensure second-order accuracy, and strong A-stability,

limReλ→∞ |Rθ(−λ)| =
β

α
< 1 .

For the special choice α = (1−2θ)/(1−θ) = 0.585786... , there holds αθ = βθ′

which is useful in building the system matrices in the three substeps. This
scheme was first proposed in form of an operator splitting scheme separating
the two complications “nonlinearity” and “incompressibility” within each cy-
cle tn → tn+θ → tn+1 . However, the Fractional-Step-θ scheme has also very
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attractive features as a pure time-stepping method. It is strongly A-stable, for
any choice of α ∈ (1/2, 1] , and therefore possesses the full smoothing property
in the case of rough initial data, in contrast to the Crank–Nicolson scheme (case
α = 1/2). Furthermore, its amplification factor has modulus |R(−λ)| ≈ 1 ,
for λ approaching the imaginary axis (e.g., |R(−0.8i)| = 0.9998... ), which is
desirable in computing oscillatory solutions without damping out the ampli-
tude. Finally, it also possesses very good approximation properties, i.e., one
cycle of length (2θ+θ′)k = k provides the same accuracy as three steps of the
Crank-Nicolson scheme with total step length k/3 ; for more details on this
comparison see [72] and [65].

We mention some theoretical results on the convergence of these schemes.
For the Crank-Nicolson Scheme combined with spatial discretization as de-
scribed in Section 3, an optimal-order convergence estimate

‖vnh − v(·, tn)‖ = O(h2 + k2) (7)

has been given in [44]. This estimate requires some additional stabilization
of the scheme but then holds under realistic assumptions on the data of the
problem. A similar result has been shown by Müller [64] for the Fractional-
Step θ-Scheme. Due to its stronger damping properties (strong A-stability)
this scheme does not require extra stabilization.

4.2.1 Computational tests

Below, we present some results of the computational comparison between the
backward Euler scheme, the Crank-Nicolson scheme and the Fractional-Step-θ
scheme. The flow configuration is shown in Figure 18: flow around an inclined
plate in the cross-section of a channel at Re = 500. The spatial discretization
is by the nonconforming “rotated” bilinear Stokes element described in Section
3 on a uniformly refined mesh with 13, 000 cells.

Figure 18: Configuration of plate-flow test, coarse mesh and streamline plot.

The first test concerns accuracy. Figure 19 shows that the backward Euler
(BE) scheme is not suitable for computing time-periodic flows with acceptable
time-step widths, while the Crank-Nicolson (CN) and the Fractional-Step-θ
(FS) scheme show equally satisfactory results. This similar accuracy is further
confirmed by comparing a more sensitive error quantity (mean pressure) in
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Figure 20. Finally, we look at the stability of the schemes. Figure 21 demon-
strates the lack of robustness of the Crank-Nicolson scheme combined with
linear time-extrapolation in the nonlinearity for larger time steps.

Figure 19: Pressure isolines of the plate-flow test: BE scheme with 3k = 1 (top
left), BE scheme with 3k = 0.1 (top right), CN scheme with 3k = 1 (bottom left),
FS scheme with k = 1 (bottom right); from [65].
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Figure 20: Mean pressure plots for the plate test with fully implicit treatment of
the nonlinearity; left: CN scheme with 3k = 0.33; right: FS scheme with k = 0.33,
both compared to a reference solution (dotted line); from[65].
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Figure 21: Mean pressure plots for the plate test with linear time-extrapolation;
left: CN scheme with 3k = 0.11; right: FS scheme with k = 0.11, both compared to
a reference solution (dotted line); [65].
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4.3 Splitting and projection schemes

As already mentioned, the Fractional-Step-θ scheme was originally introduced
as an operator splitting scheme in order to separate the two main difficulties
in solving problem (1) namely the nonlinearity causing nonsymmetry and the
incompressibility constraint causing indefiniteness. At that time, handling
both complications simultaneously was not feasible. Therefore, the use of
operator splitting seemed the only way to compute nonstationary flows. Using
the notation from above, the splitting scheme reads as follows (suppressing
here the terms stemming from pressure stabilization).

Splitting-Fractional-Step-θ Scheme:

(1) [M + αθkA]xn−1+θ + θkByn−1+θ = [M − βθkA]xn−1 + θkbn−1 −
−θkNn−1xn−1,

BTxn−1+θ = 0 ,

(2) [M + βθ′kAn−θ]xn−θ = [M − αθ′kAn−1+θ]xn−1+θ − θ′kByn−θ + θ′kbn−θ,

.....

(3) [M + αθkA]xn + θkByn = [M − βθkA]xn−θ − θkNn−θxn−θ + θkbn−θ,

BTxn = 0 .

The first and last step solve linear Stokes problems treating the nonlinearity
explicitly, while in the middle step a nonlinear Burgers-type problem (without
incompressibility constraint) is solved. The symmetric form of this scheme
follows the ideas from Strang [87], in order to achieve a second-order splitting
approximation. The results of Müller [64] suggest that the optimal-order con-
vergence estimate (7) remains true also for this splitting scheme. However, a
complete proof under realistic assumptions is still missing.

Open Problem 4.1: Prove that the Splitting-Fractional-Step-θ scheme is
actually second order accurate for all choices of the parameter α ∈ (1

2
, 1] .

In these days, the efficient solution of the nonlinear incompressible Navier-
Stokes equations is standard by the use of new multigrid techniques. Hence,
the splitting of nonlinearity and incompressibility is no longer an important
issue. One of these new approaches uses the Fractional-Step-θ scheme in com-
bination with the idea of a “projection method” due to Chorin [24]; for a
survey see Gresho/Sani [35]. Finally, Turek [95] (see also [97]) has designed
the “Discrete Projection Fractional-Step-θ scheme” as component in his solver
for the nonstationary Navier-Stokes problem.

Next, we address the problem of how to deal with the incompressibility
constraint ∇·v = 0 . The traditional approach is to decouple the continuity
equation from the momentum equation through an iterative process (again
“operator splitting”). There are various schemes of this kind in the litera-
ture referred to, e.g., as “quasi-compressibility method”, “projection method”,
“SIMPLE method”, etc. All these methods are based on the same principle
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idea. The continuity equation ∇·v = 0 is supplemented by certain stabilizing
terms involving the pressure, e.g.,

∇·v + εp = 0, (8)

∇·v − ε∆p = 0, ∂np|∂Ω = 0, (9)

∇·v + ε∂tp = 0, p|t=0 = 0, (10)

∇·v − ε∂t∆p = 0, ∂np|∂Ω = 0, p|t=0 = 0, (11)

where the small parameter ε is usually taken as ε ≈ hα , or ε ≈ kβ , depending
on the purpose of the procedure. For example, (8) corresponds to the classical
“penalty method”, and (9) is the simplest form of the “least squares pres-
sure stabilization” scheme (11) described above, with ε ≈ h2 in both cases.
Further, (10) corresponds to the “quasi-compressibility method”.

These approaches are closely related to the classical “projection method” of
Chorin [24]. Since this method used to be particularly attractive for computing
nonstationary incompressible flow, we will discuss it in a some detail. For
simplicity consider the case of homogeneous Dirichlet boundary conditions,
v|∂Ω = 0 . The projection method reads as follows. For an admissible initial
value v0 , choose a time step k , and solve for n ≥ 1 :

(i) ṽn ∈ H (implicit “Burgers step”):

k−1(ṽn − vn−1) − ν∆ṽn + ṽn·∇ṽn = fn. (12)

(ii) vn = P ṽn ∈ J0(Ω) (“Projection step”):

∇·vn = 0, n·vn|∂Ω = 0. (13)

Here, the function space J0(Ω) is obtained through the completion of the
space {φ ∈ D(Ω),∇·φ ≡ 0} of solenoidal test functions with respect to the
norm of L2(Ω) . This time stepping scheme can be combined with any spatial
discretization method, e.g. the finite element methods described in Section 3.
The projection step (ii) can equivalently be expressed in the form

(ii’) vn = ṽn + k∇p̃n, (14)

with some “pressure” p̃n ∈ H1(Ω) , which is determined by the properties

(ii”) ∆p̃n = k−1∇·ṽn, ∂np̃
n
|∂Ω = 0. (15)

This amounts to a Poisson equation for p̃n with zero Neumann boundary
conditions. It is this non-physical boundary condition, ∂np̃

n
|∂Ω = 0 , which

has caused a lot of controversial discussion about the value of the projection
method. Nevertheless, the method has proven to work well for representing the
velocity field in many flow problems of physical interest (see, e.g. Gresho [32]
and Gresho/Chan [33]). It is very economical as it requires in each time step
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only the solution of a (nonlinear) advection-diffusion system for vn (of Burgers
equation type) and a scalar Neumann problem for p̃n . Still, it was argued that
the pressure p̃n were a mere fictitious quantity without any physical relevance.
It remained the question: How can such a method work at all? A challenging
problem for mathematical analysis!

The first convergence results for the projection method was already given
by Chorin, but concerned only cases with absent rigid boundaries (all-space
or spatially periodic problems). Later on, qualitative convergence was shown
even for the pressure, but in a measure theoretical sense, too weak for practical
purposes. Only recently, stronger results on the error behavior of this method
have been obtained (see, e.g., Shen [84, 85] as well as [73], and the literature
cited therein). The best known error estimate is

‖vn − v(tn)‖Ω + ‖p̃n − p(tn)‖Ω′ = O(k), (16)

where Ω′ ⊂⊂ Ω is a subdomain with positive distance to the boundary ∂Ω .
This shows that the quantities p̃n are indeed reasonable approximations to
the pressure p(tn) , and finally confirms that Chorin’s original method is a
first-order time stepping scheme for the incompressible Navier-Stokes problem.
The key to this result is the re-interpretation of the projection method in the
context of the “pressure stabilization methods”. To this end, one inserts the
quantity vn−1 = ṽn−1−k∇p̃n−1 into the momentum equation, obtaining

k−1(ṽn − ṽn−1) − ν∆ṽn + (ṽn·∇)ṽn + ∇p̃n−1 = fn, ṽn|∂Ω = 0, (17)

∇·ṽn − k∆p̃n = 0, ∂np̃
n
|∂Ω = 0. (18)

This looks like an approximation of the Navier-Stokes equations involving a
first-order (in time) “pressure stabilization” term, i.e., the projection method
can be viewed as a pressure stabilization method with a global stabilization
parameter ε = k , and an explicit treatment of the pressure term. Moreover, it
appears that the pressure error is actually confined to a small boundary strip
of width δ ≈

√
νk and decays exponentially into the interior of Ω . In fact, it

was conjectured that, setting d(x) = dist(x, ∂Ω) ,

|p̃n(x) − p(x, tn)| ≤ c exp

(
−αd(x)√

νk

)√
k +O(k). (19)

This conjecture is supported by numerical experiments for the pressure stabi-
lization method applied to the stationary Stokes problem and by some model
situation analysis in E/Liu [25]. The analysis of this boundary layer phe-
nomenon requires the study of the singularly perturbed Neumann problem

(
ν−1∇·∆−1

D ∇− ǫ∆N

)
q = ǫ∆p, in Ω, ∂nq|∂Ω = ∂np|∂Ω, (20)

where ∆D denotes the Laplacian operator corresponding to Dirichlet bound-
ary conditions. Clearly, ∇·∆−1

D ∇ is a zero-order operator mapping L2(Ω)
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into L2(Ω) . For this problem, one would like to know a decay estimate of the
form

‖q‖Ωδ
≤ c exp

(
−α δ√

ǫ

)
‖∇p‖ + cνǫ ‖∆p‖, (21)

for interior subdomains Ωδ := {x ∈ Ω, dist(x, ∂Ω) > δ} , from which a point-
wise result like (19) could be inferred. Such an estimate could be proven in
[73] only for the case that the “global” operator ∇·∆−1

D ∇ is replaced by the
“local” identity operator. In the general case the corresponding result is still
an open problem.

Open Problem 4.2: Prove an analogue of the a priori decay estimate (21)
for the non-local operator ∇·∆−1

D ∇ .

The occurrence of the pressure boundary layer is demonstrated in Figure 22
for a simple model problem on the unit square with known polynomial solution.
It is even possible to recover the optimal-order accuracy of the pressure, O(h2) ,
at the boundary by postprocessing, e.g. by linear or quadratic extrapolation
of pressure values from the interior of the domain; see Figure 23 and Blum [15]
for more details on this matter.

Figure 22: Sequence of pressure-error isolines obtained by the Chorin scheme with
k = 2.5·10−2, 6.25·10−3, 1.56·10−3 (model problem with ν = 1 on the square); from
Prohl [69].

Figure 23: Pressure error plots for a polynomial Stokes solution before (left) and
after (right) correction by extrapolation to the boundary; from Blum [15].
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An important step towards the solution of the “boundary layer problem”
has been made in Prohl [69, 70] by introducing the “Chorin-Uzawa scheme”,
which reads as follows:

(i) Implicit “Burgers step”:

k−1(ṽn − vn−1) − ∆ṽn + ṽn·∇ṽn + ∇(p̃n−1 − pn−1) = fn, ṽn|∂Ω = 0.

(ii) Pressure Poisson problem:

∆p̃n = k−1∇·ṽn, ∂np̃
n
|∂Ω = 0.

(iii) Pressure and velocity update:

vn = ṽn − k∇p̃n, pn = pn−1 − α∇·ṽn, α < 1.

The reference to the name “Uzawa” is due to the fact that this scheme par-
tially resembles the structure of the well-known Uzawa algorithm for solving
stationary saddle-point problems; see Girault/Raviart [29]. It corresponds to
a quasi-compressibility method using the regularization

∇·ṽn + α−1k∂tp
n = 0. (22)

This splitting scheme does not introduce a singular perturbation in the pres-
sure equation and is therefore supposed to be free of any spatial boundary
layer. However, it suffers from a “boundary layer” at time t = 0 in case of
natural initial data not satisfying unrealistic global compatibility conditions;
recall Section 2 for a discussion of such conditions. The conjectured suppres-
sion of the spatial pressure boundary layer by the Chorin-Uzawa scheme is
confirmed by computational tests; see the example presented in Figure 24.
A supporting analysis has been given in Prohl [70] for a modification of the
Chorin-Uzawa method to a “multi-component scheme” which allows for the
convergence estimate

‖pn − p(tn)‖ ≤ ck, tn ≥ 1. (23)

Figures 24 show pressure error plots obtained for a given polynomial solution
on the unit-square with viscosity ν = 1 ; the time step is k = 1/100 and the
spatial discretization uses theQ1/Q1 Stokes element with pressure stabilization
on a uniform mesh with mesh-size h = 1/64 .

Figure 24: Pressure error plots for a polynomial solution produced by the standard
Chorin scheme (left) and the Chorin-Uzawa scheme (right); from Prohl [69, 70].
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The projection approach can be extended to formally higher order projec-
tion methods. The most popular example is Van Kan’s Method [100]: For
admissible starting values v0 and p0 compute, for n ≥ 1 and some α ≥ 1

2
:

(i) ṽn ∈ H (second order implicit Burgers step), satisfying

k−1(ṽn − vn−1) − 1
2
ν∆(ṽn + vn−1) + ṽn·∇ṽn + ∇pn−1 = fn−1/2;

(ii) pn ∈ H1(Ω) : vn = ṽn − αk∇(pn − pn−1) .

A careful examination of this scheme shows that it can also be interpreted as
a certain pressure stabilization method using a stabilization of the form

∇·v − αk2∂t∆p = 0, in Ω, ∂np|∂Ω = 0, (24)

i.e., this method may be viewed as an (implicit) quasi-compressibility method
of the form (11) with ε ≈ k2 ; see [74] and Shen [86].

The projection method may be combined with any of the spatial discretiza-
tions described in Section 3. It should be remarked that the simple first-order
Chorin scheme is not suitable for computing stationary limits since it has
not the from of a fixed-point iteration. In contrast to that, the second-order
scheme of Van Kan is designed as a defect-correction iteration and may there-
fore lead to convergence towards steady state solutions. However, in this case
it requires extra pressure stabilization when used together with the conform-
ing Q1/Q1 Stokes element; in fact the stabilizing effect of the projection step
disappears as αk2∂t∆p→ 0 .

Open Problem 4.3: The efficient use of projection methods requires an au-
tomatic time-step-size control which should monitor deviation from the fully
coupled solution. Design such a method for high-order schemes.
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5 Solution of the algebraic systems

In this section, we describe solution algorithms for the finite-dimensional prob-
lems arising from the discretization presented in the previous sections. These
problems form huge and highly nonlinear algebraic systems with a character-
istic structure which is exploited by the algorithms. The solution procedure
consists of several nested loops. Usually the outermost loop is an implicit
time-iteration. In each time step, the arising nonlinear system is solved by a
quasi-Newton or defect-correction iteration. The discretization by finite ele-
ments leads to a sparse structure in the system matrices which is exploited by
the iterative solution method. Even in the case of the Laplace operator (which
is always a part of the system), the inversion by a direct solver or a simple
iterative scheme like the “conjugate gradient” (CG) method is prohibitive due
to the bad conditioning of the matrix with decreasing mesh size. Therefore,
the use of multigrid methods is mandatory, either directly as solvers or as
preconditioners for a robust iterative schemes like the “generalized minimal
residual” (GMRES) algorithm. Since the systems to be solved are in general
non-symmetric and indefinite, the construction of “good” multigrid algorithms
requires special care.

5.1 Linearization

The time stepping schemes described above require in each time step the so-
lution of nonlinear systems of the form

[σM + νA +N(v)]v +Bp = g , (1)

−BT v + ǫCp = c , (2)

where σ = (θk)−1 and (on a quasi-uniform mesh) ǫ ∼ h2 . The operators
involved correspond to differential operators as follows:

M ∼ id., A ∼ −diag(∆D), N(v) ∼ v·∇,
B ∼ ∇, −BT ∼ ÷, C ∼ −∆N ,

where ∆D and ∆N denote the Laplacian operator combined with (homoge-
neous) Dirichlet or Neumann boundary conditions, respectively. The right-
hand sides g and c contain information from the preceding time level. Here
and below, the same notation is used for the (discrete) velocity v and pressure
p and the corresponding nodal vectors. The following iteration schemes are
formulated on the continuous level without incorporating stabilization, i.e., we
set ǫ = 0 and c = 0 .

a) Newton method:
Starting from some initial values v0, p0 ∈ H×L (for example, taken from the
preceding time level), one iterates:

1. Defect: dl = g −
(
σM + νA+N(vl)

)
vl − Bpl.
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2. Correction: [σM + νA+N ′(vl)]wl +Bql = dl, BTwl = 0.

3. Update: vl+1 = vl + λlw
l, pl+1 = pl + λlq

l (λl damping factor).

This iteration has been observed to converge very fast, provided that it con-
verges at all. The problem is its lack of robustness particularly in the case of
larger Reynolds numbers. This is due to the structure of the operator to be
inverted in each iteration step:

N ′(v)w = v·∇w + w·∇v.

It contains a reaction term w·∇v which effects the main diagonal of the system
matrix in an uncontrolled manner and may cause divergence of the iteration.
This problem may be avoided by simply dropping the reaction term in the
Jacobian which results in the following fixed-point defect correction iteration.

b) Fixed-point defect correction:
Starting from some initial values v0, p0 ∈ H × L (taken again from the pre-
ceding time level), one iterates:

1. Defect: dl = g −
(
σM + νA+N(vl)

)
vl − Bpl.

2. Correction: [σM + νA+N(vl)]wl +Bql = dl, BTwl = 0.

3. Update: vl+1 = vl + λlw
l, pl+1 = pl + λlq

l (λl damping factor).

In this scheme the preconditioning operator Ã′(vl) = vl·∇ only contains
a transport term which can be stabilized by any of the methods described
above: upwinding, streamline diffusion, etc. Normally, within the time step-
ping scheme, only a few (usually 3-5) steps of the defect correction iteration
are necessary for reducing the initial residual down to the level of the dis-
cretization error. This is our method of choice used in the codes mentioned in
the Introduction.

c) Nonlinear multigrid iteration:
The multigrid method can be applied directly to the nonlinear system; see
Hackbusch [36]. This may lead to faster convergence but its optimization is
difficult and depends very much on the particular problem. Because of this
lack of robustness, we do not advocate “nonlinear” multigrid for solving the
Navier-Stokes equations.

d) Nonlinear least-squares cg method:
The (nonlinear) least squares cg-method for solving systems like (1) has been
proposed by Glowinski/Periaux [31]. Starting from an initial guess x0, a se-
quence of approximate solutions (xl)l≥0 is obtained by minimizing the least
squares functional

‖∇w‖2 → min! (3)
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where w is determined by {v, p} through the equation

[σM + νA]w − Bq = “defect” of {v, p}, BTw = 0. (4)

It can be seen that each nonlinear cg-step actually requires only the solution of
three linear Stokes problems which can be efficiently done by linear multigrid
techniques. This method is very robust as it is based on the minimization of
a positive functional, but the speed of convergence drastically slows down for
larger Reynolds numbers. For example, the 3-D driven cavity problem can be
solved by the stationary version of the least squares cg method up to about
Re = 2000; for further details, see [38].

5.2 Solution of the linearized problems

The problem to be solved has the form
[

S B
−BT ǫC

] [
v
p

]
=

[
g
c

]
, A =

[
S B

−BT ǫC

]
, (5)

where, with some initial guess v̄ ,

S = σM + νA +N(v̄).

The difficulty with this system is that the matrix A is neither symmetric nor
definite. It is usually too large for the application of direct solvers (like the
LU decomposition by Gaussian elimination) and also the traditional iterative
methods (like SOR iteration or Krylov space schemes) do not work sufficiently
well. This suggests the use of multigrid methods which are particularly suited
on very fine meshes. However, the construction of efficient multigrid algorithms
for solving the indefinite system (5) is not at all straightforward. Therefore,
as a simpler alternative the Schur complement approach has become popular
which will be described in the following subsection.

5.2.1 Schur-complement iteration

In the system matrix A the main block S is regular and usually robust to be
inverted. Hence, the velocity unknowns may be eliminated from the system
by inverting S which leads to:

[BTS−1B + ǫC]p = BTS−1g + c , v = S−1(g −Bp). (6)

The “Schur-complement” matrix Σ = BTS−1B + ǫC is regular. Neglecting
the influence of the nonlinear term N(v̄) , its condition number behaves like

cond(Σ) = O(h−2) for νk ≪ h2, cond(Σ) = O(1) for νk ≫ h2.

This suggests the use of iterative methods for its inversion, e.g., Krylov space
methods like the GMRES or the bi-cg-stab method. In the essentially non-
stationary case, νk ≥ h2 , only a few iteration steps suffice. In nonstationary
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computations where νk ≪ h2 , preconditioning by an approximation of the
Neumann-type operator BTM−1B is necessary. In each iteration step the op-
erator S−1 has to be evaluated which amounts to solving a linear transport-
diffusion problem. In the case of the nonconforming Q̃1/P0 Stokes elements
combined with upwind stabilization of advection S becomes an M-matrix.
This facilitates the iterative inversion of Σ , particularly by multigrid meth-
ods. The non-exact inversion of Σ makes the step q → Σ̃−1q a preconditioning
step within the iteration for inverting Σ . Hence, the number of inner iteration
steps should be kept fixed during the whole solution process. Another strategy
for compensating for the error in the evaluation of S−1 is to embed the outer
iteration (6) into a defect correction process; see Bank, et al., [6]. The conver-
gence usually deteriorates for increasing Reynolds number, because of loss of
“symmetry”, and for decreasing time step k , because of the bad conditioning
of the operator BTB ∼ ∆ . For larger Reynolds number the convergence of
the Schur complement iteration becomes slow and special preconditioning is
necessary. The construction of effective preconditioners is not easy since the
operator Σ is not available as an explicit matrix. Another stability problem
occurs on meshes containing cells with large aspect ratio. Because of this lack
of robustness, the Schur complement method has less potential than the direct
multigrid approach which will be described below.

Open Problem 5.1: Derive a formula for the dependence of the conditioning
of the Schur complement operator Σ = BTS−1B+ǫC on the Reynolds number
and on the mesh aspect ratio σh .

5.3 Linear multigrid solution

The main idea underlying a multigrid method is the fast reduction of high-
frequency error components by “cheap” relaxation (“smoothing”) on the fine
meshes and the reduction of the remaining low-frequency error components by
defect correction on coarser meshes (“coarse-grid correction”); see Hackbusch
[36] and Wesseling [104], for an introduction to multigrid methods.

5.3.1 Multigrid as a preconditioner

Let A be the finite element system matrix of the linearized equation (5) or an
appropriate approximation. While the theory of multigrid is well developed
for scalar elliptic equations, the situation is less clear for complicated systems
as considered in this paper. From mathematical analysis, we know that the
use of the multigrid method as a preconditioner in an outer iteration (e.g., a
Krylov space method such as GMRES) requires less restrictive assumptions
than using the multigrid method directly as a solver. In the first case, de-
noting by M the action of a multigrid step, it is sufficient to have an upper
bound for the condition of the product MA , whereas in the second case,
the eigenvalues of the iteration matrix B = I − MA have to be uniformly
bounded away from one. Therefore, we choose the first option to construct
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a robust iteration scheme for the system (5). As basic solver, one may use
the “generalized minimal residual method” (GMRES) for the preconditioned
matrix MA . Here, the multigrid operator M can be interpreted as a certain
approximate inverse M ≈ A−1 . It is not necessary to calculate this matrix
explicitly; it is sufficient to evaluate the matrix-vector product Mξ , i.e., to
apply the multigrid iteration for a fixed right-hand side.

5.3.2 Multigrid as a solver

The multigrid iteration makes use of the hierarchy of finite element spaces

V0 ⊂ V1 ⊂ . . . ⊂ VL ,

obtained, for example, in the course of a systematic mesh refinement process;
strategies for an automatic adaptive mesh refinement will be discussed below
in Section 7. The connection between these spaces is given by “prolongation
operators” P l

l−1 : Vl−1 → Vl and “restriction operators” Rl−1
l : Vl → Vl−1 . In

the finite element context, these operators are given naturally as

P l
l−1 injection, Rl−1

l L2 Projection.

The main ingredients of a multigrid scheme are the smoothing operators
Sl on each grid level 0 ≤ l ≤ L (l=0 corresponding to the coarse initial mesh
and l = L to the finest mesh). The explicit form of these operators will be
described below. The multigrid iteration

Mξ = M(l, z0, ξ), (7)

on level l with initial guess z0 and with m1 pre- and m2 post-smoothing
steps is recursively defined as follows:

Multigrid Algorithm M(l, z0, ξ) for l≥0 :
For l= 0, the multigrid algorithm is given by an exact solver M(l, z0, ξ) :=
A−1

0 ξ . For l>0 , the following recursive iteration is performed:

1. Pre-smoothing m1 times: z1 := Sm1

l z0.

2. Residual on level l: rl := ξ −Akz1.

3. Restriction to level l−1 : rl−1 := Rlrl.

4. Coarse grid correction starting with q0 = 0: q := M(l−1, q0, rl−1) .

5. Prolongation to level l : z2 := z1 + Pl−1q.

6. Post-smoothing m2 times: M(l, z0, ξ) := Sm2

l z2.
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If the multigrid recursion is applied γ-times on each mesh-level, one speaks
of a V -cycle for γ = 1 and of a W -cycle for γ = 2 . If the multigrid iteration
is used only as a preconditioner for a robust outer iteration scheme, usually
the V -cycle suffices. If multigrid is used as the primary solver, particularly in
the case of nonsymmetric problems, the W -cycle is more robust and therefore
to be preferred. In this case, the F -cycle as indicated in the figure below
is a compromise between V - and W -cycle. The multigrid cycle with γ > 2
becomes too expensive and is not used.

4v
3v

v2

v1

v0

Figure 25: Scheme of the multigrid V-cycle (left) and the F-cycle (right)

The design of a multigrid algorithm for solving the system (5) requires
special care. In particular, the choice of the smoother is a delicate matter
since the standard fixed-point iterations do not work for the indefinite matrix
A . This problem can be tackled in various ways.

(1) Damped Jacobi smoother: In the case ǫ > 0 , the matrix A is weakly defi-
nite which makes it possible to apply even standard methods like the damped
Jacobi iteration. However, the resulting algorithm is not very robust and pa-
rameter tuning requires care; see [38] for an application to 3-dimensional model
problems. For larger Reynolds number the method slows down and multigrid
convergence may get lost.

(2) Block-Gauss-Seidel smoother: A simple and successful smoother for the
matrix A can be obtained by a cell-wise blocking of the physical variables
within a global Gauss-Seidel iteration. This was originally proposed by Vanka
[101] for a finite difference discretization of the Navier-Stokes problem. We
briefly discuss its analogue for the nonconforming “rotated” Q̃1/P0 Stokes
element. The velocity and pressure unknowns corresponding to a cell K or
a patch of cells are grouped together. Indicating the corresponding element
system matrices by index “loc”, these blocks of local velocity and pressure
unknowns are simultaneously updated according to

Slocv
t+1
loc +Blocp

t+1
loc = “known”, BT

locv
t+1
loc = “known”,

where Sloc = σMloc+νAloc+Nloc(v̄h) . This iteration sweeps over all cell-blocks.
The local Stokes problems have the dimension dloc = 9 (in 2D) or dloc = 19
(in 3D), respectively. The corresponding matrices (in 2D) are described in the
following figure.
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×

×

×× : node for v
© : node for p

Aloc =




Sloc,1 O Bloc,1

O Sloc,2 Bloc,2

−BT
loc,1 −BT

loc,2 0



 .

For cost reduction, the main diagonal blocks Sloc,i may be “lumped”, Sloc,i ≈
Dloc,i . Furthermore, for increasing robustness, the iteration is damped, vt+1

h =
vth + ω(ṽt+1

h − vth) with ω ≈ 0.9 . The good performance of this smoother for
the Q̃1/P0-element has been demonstrated in Schreiber/Turek [83], Schieweck
[82], and Turek [97], and for the Q1/Q1-element in Becker [7]. We illustrate
the performance of the multigrid algorithm described above for the Q̃1/P0-
element by results obtained for solving the driven-cavity problem on grids as
shown below.

Figure 26: Driven cavity mesh (left) and computed results: pressure isolines (mid-
dle), velocity plot (right).

Table 2: Multigrid convergence rates (2 pre- and 1 post-smoothing step by the
“Vanka smoother”) and number of outer fixed-point iterations on uniformly refined
meshes.

#cells 1600 6400 25600 #iter
Re = 1 0.081 0.096 0.121 4
Re = 100 0.098 0.099 0.130 6
Re = 1000 0.227 0.245 0.168 9
Re = 5000 0.285 0.368 0.370 18

We note that a similar block-iteration can also be used in the context of a
incomplete block-LU-decomposition for generating a multigrid smoother; for a
detailed discussion of this approach see Braack [17].

From the common multigrid theory for elliptic equations we know that
point iterations loose the smoothing property for large mesh-aspect ratios σh.
The remedy is the use of a smoother which becomes a direct solver in the limit
σh → ∞ . Consequently, since our smoother acts like a point–Gauss–Seidel
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iteration on the velocity unknowns, we expect problems in the case of strongly
stretched grids. Our strategy to overcome this difficulty is as follows: Since
we expect the cell aspect ratio σK to be large only in a small part of the
computational domain, we should use an adaptive smoother. This means that
we will combine the point smoother with a more robust version just where we
need it, for instance on elements with large σK . In this approach the nodes
are grouped in the direction of the anisotropic mesh refinement and iterated
implicitly leading to a process which may be termed “stringwise” block-Gauss-
Seidel method.

Let us finally mention a critical problem especially in the use of non–
uniform grids. The use of iterative solvers makes it necessary to define a
stopping criterion. To this end, we need to measure the residual in the right
norm. Clearly, the common weighting by the number of unknowns is not ap-
propriate on non–uniform grids. For an approach towards a solution of this
problem based on the Galerkin orthogonality inherent to the multigrid process,
we refer to [11] and Becker [8].

(3) Discrete projection smoother: Finally, we present an approach to con-
structing multigrid solvers for the indefinite system (5) which uses the idea
of operator splitting as introduced above in Section 4 on time-discretization
schemes; see Turek [95, 97]. This method is particularly efficient in the nonsta-
tionary case when σ = 1/k balances ν/h2 . In the following, we consider the
linearized problem arising within a time-stepping scheme as described above
in combination with spatial discretization by a Stokes element which does not
need pressure stabilization. This problem has the form

Svn +Bpn = gn, BTvn = 0, (8)

with the (momentum) matrix S = σM+νA+N(v̄n) . The right-hand side gn

and the approximation v̄n are given from the preceding time level. Elimination
of the velocity unknown yields again the Schur complement formulation

BTS−1Bpn = BTS−1gn, vn = S−1(gn − Bpn). (9)

We have already mentioned that the solution of this problem by Krylov space
methods with evaluation of S−1 by multigrid iteration becomes increasingly
inefficient for small time step k , larger Reynolds number, and on strongly
anisotropic meshes. This problem can be overcome by using instead a simple
Richardson iteration for the Schur complement equation (9) with a precondi-
tioner of the form BTC−1B . Popular choices for the preconditioning operator
C are:

• C−1 = I (corresponds to the SIMPLE algorithm).

• C−1 = M̄−1 (lumped mass preconditioning).

• C−1 = M̄−1 + α−1BTB (Turek’s preconditioner)
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The resulting iteration is termed “discrete projection method” (see Turek [95]):

pn,l+1 = pn,l − (BTC−1B)−1
(
BTS−1Bpn,l − BTS−1gn

)
. (10)

After L iteration steps, on sets pn := pn,L and computes the corresponding
velocity component by solving:

Svn = gn − Bpn + α−1(αI − Sc−1)B(pn,L − pn,L−1),

with some relaxation parameter α ∈ (0, 1) . This construction of vn ensures
that the resulting velocity is in the discrete sense divergence-free, BT vn =
0 , and suggests the name “projection method” for the whole scheme. The
discrete projection method is then used as a smoother within an outer multigrid
iteration.

In the special case L = 1 , this scheme corresponds to a discrete version
of the classical projection methods of Chorin (for the choice pn,0 := 0 ) and of
Van Kan (for the choice pn,0 := pn−1 , see Gresho [32]. This operator-splitting
time-stepping scheme has the form:

1. Sṽn = gn − kBpn−1 (Burgers step),

2. BTM̄−1Bqn = k−1BT ṽn (Pressure Poisson equation),

3. vn = ṽn − kM̄−1Bqn (Velocity update),

4. pn = pn−1 + αqn (Pressure update).

All these schemes are variants of the “segregated” solution approach containing
the schemes of SIMPLE-type and other pressure correction schemes as special
cases; for a survey see [97] and [98].

The multigrid method with smoothing by the discrete projection iteration
(10) has proven to be a very efficient solution method for the fully coupled
problem (8); it is robust for all relevant Reynolds number (laminar flows) and
time steps. The whole solution process is based on efficient and robust “inner”
multigrid solvers for the subproblems “Burgers equation” and “pressure Pois-
son equation”. The concrete implementation of this algorithm (as described in
Turek [97]) requires about 1 KByte memory per mesh cell and shows almost
meshsize-independent convergence behavior. As the result, 3D simulations
with more than 107 unknowns requiring about 1 GByte of memory can be
done on modern workstations.

Open Problem 5.2: Derive a good preconditioner (smoother) for the Schur
complement iteration (10) in the transport-dominant case.
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6 A review of theoretical analysis

In this section, we give an account of the available theoretical analysis for
the discretization described in the previous sections. We concentrate on the
practical impact of these theoretical results; the main topics are:

• Problem of regularity at “t = 0”.

• Problem of global convergence up to “t = ∞”.

• Problem of realistic error constants.

We will identify some critical shortcomings of the available theory which lead
to challenging questions for further analysis.

We assume that the stationary or nonstationary Navier-Stokes equations
are discretized by the finite element method as specified in Section 3 combined
with one of the time-stepping schemes described in Section 4.

(I) For the spatial discretization, we recall the following two representative
examples of (quadrilateral) Stokes elements:

a) the nonconforming “rotated” d-linear Q̃1/P0 element;
b) the conforming d-linear Q1/Q1 element with pressure stabilization.
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These discretizations are of second order expressed in terms of local approxi-
mation properties of the finite element functions used:

inf
φh∈Hh

‖v − φh‖ ≤ c h2‖∇2φ‖, φ ∈ H ∩H2(Ω).

(II) For the time discretization, we think of the Crank-Nicolson scheme or the
Fractional-Step-θ scheme which are both of second order in terms of local trun-
cation error, e.g., for the Crank-Nicolson scheme applied to the homogeneous
heat equation, there holds

‖k−1(vn−vn−1) + 1
2
(Anvn + An−1vn−1)‖ ≤ c k2 max

[tn−1,tn]
‖∂2

t v‖−1 .

In view of these local approximation properties and the stability of the
schemes, we expect a global a priori estimate for the errors env := u(·, tn)− unh
and enp := p(·, tn) − pnh of the form

max
0<tn≤T

{
‖env‖ + ‖enp‖−1

}
≤ C(ν, T, data){h2 + k2}, (1)
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with an “error constant” C(ν, T, data) depending on the viscosity parameter
ν , the time-interval length T > 0 , and assumed bounds M for the data of
the problem, e.g.,

M := ‖∇2v0‖ + sup
[0,T ]

{
‖f‖ + ‖∂tf‖

}
<∞.

If additionally the domain Ω is sufficiently regular (say, convex or with C2-
boundary), it is guaranteed that the solution {v, p} satisfies at least the a
priori estimate

sup
(0,T ]

{
‖∇2v‖ + ‖∂tv‖ + ‖∇p‖

}
<∞. (2)

Clearly, the size of the error constant C(ν, T, data) is of crucial importance
for the practical value of the error estimate; we will come to this point in more
detail, below. At first, we have to consider the question of whether an error
estimate of the form (1) can be expected to hold at all. In general, the answer
is “no”, unless certain additional conditions are satisfied. This leads us to the
following discussion of the “smoothing property”.

6.1 The problem of regularity at “t = 0”

The second-order convergence of the time-stepping scheme expressed in the
estimate (1) requires an a priori bound of the form sup(0,T ] ‖∂2

t v‖ < ∞ . We
have seen in Section 2 that there is a principle problem with assuming this
degree of regularity in general. Even for arbitrarily smooth data the solution
of the Navier-Stokes problem may suffer from

lim
t→0

{
‖∇3v(t)‖ + ‖∇∂tv(t)‖

}
= ∞, (3)

unless certain non-local (and non-verifiable) compatibility conditions are sat-
isfied for the initial data. We recall from Section 2 the natural regularity as-
sumption for the (nonstationary) Navier-Stokes equations (without additional
compatibility condition):

v0 ∈ J1(Ω) ∩H2(Ω) ⇒ sup
t∈(0,T ]

{
‖∇2v(t)‖ + ‖∂tv(t)‖

}
<∞. (4)

Accordingly, the best possible error estimate for the velocity which can be
obtained under these “realistic” assumptions is

sup
tn∈(0,T ]

‖env‖ = O{h2 + k}. (5)

This estimate is only of first order in time, in contrast to the postulated second-
order error estimate (1). As a result of the foregoing discussion we obtain the
following:
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Conclusion: For any discretization of the nonstationary Navier-Stokes equa-
tions which requires more than the natural regularity inherent to the problem,
meaningful higher-order error estimates must be of “smoothing type”.

We call an error estimate of type (1) a “smoothing error estimate” if it is of
the form

sup
tn∈(0,T ]

{
tn‖env‖ + t3/2n ‖enp‖−1

}
≤ C(ν, T, data){h2 + k2}. (6)

This estimate reflects the well-known “smoothing behavior” of the exact solu-
tion {v, p} as t→ 0 in the (realistic) situation (4):

sup
t∈(0,T ]

{
tr/2−1‖∇rv(t)‖ + tr−1‖∂rt v(t)‖

}
≤ c

{
‖∇2v0‖ + data

}
. (7)

Smoothing error estimates of the form (6) have been established earlier for
standard parabolic problems like the heat equation in the case of rough initial
data; see, e.g., Thomée [89], as well as [62] and [71]. Corresponding results
for the Navier-Stokes equation have been given in [43] for higher-order spatial
semi-discretization and in [44] for the Crank-Nicolson time-stepping scheme. It
turns out that due to the nonlinearity of the problem, the maximal achievable
orders of smoothing error estimates under assumption (4) is O(h6) for the
spatial discretization and accordingly O(k3) for the time stepping (provided
that the scheme is strongly A-stable). This particularly implies the result
(6) stated above. The existence of a natural order-barrier for the smoothing
property of finite element Galerkin schemes applied to nonlinear problems has
been established by Johnson, et al. [53]. We adapt the following example from
[53] for the situation of H2-regular initial data as relevant for the case of the
nonlinear Navier-Stokes equations.

Example: Example of limited smoothing property
For x ∈ (−π, π) and t > 0 , we consider the system of equations

∂tu− ∂2
xu = 4 min{v2, 1}, u(x, 0) = u0(x) := 0,

∂tv − ∂2
xv = 0, v(x, 0) = v0(x) := m−r cos(mx),

with periodic boundary conditions. For any fixed m ∈ N and r ∈ N ∪ {0} ,
the exact solution is

u(x, t) = m−2r−2
(
1 − e2m

2t
)(

1 + e2m
2t cos(2mx)

)
,

v(x, t) = m−re−m
2t cos(mx) .

For spatial semi-discretization of this problem, let the Galerkin method be
used with the trial spaces

Sm := span
{
1, cos(x), sin(x), ..., cos((m− 1)x), sin((m− 1)x)

}
,
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and let Pm denote the L2 projection onto Sm . Since Pmv
0 = 0 , taking as

usual Pmu
0 and Pmv

0 as initial values for the Galerkin approximation results
in the Galerkin solutions vm(t) = 0 and um(t) = 0 . Consequently, for fixed
t > 0 , there holds

‖(um − u)(t)‖ = ‖u(t)‖ ∼
√

2πm−2r−2 =
√

2‖v0‖rh2r+2,

if we set h := m−1 . This demonstrates that, for v0 ∈ H2(−π, π) , i.e., for
r = 2 , the best achievable order of approximation for t > 0 is indeed O(h6) .

There is another remarkable aspect of the estimate (6) which concerns the
Crank-Nicolson scheme. This scheme, due to its absent damping properties
(not strongly A-stable), possesses only a reduced smoothing property. In conse-
quence, even in the case of the linear heat equation, for initial data v0 ∈ L2(Ω)
only qualitative convergence ‖env‖ → 0 (h, k → 0) can be guaranteed at fixed
tn = t > 0 . For even stronger initial irregularity (e.g., v0 = δx a Dirac
measure) divergence ‖en‖ → ∞ (h, k → 0) occurs. However, the optimal
smoothing behavior is recovered if one keeps the relation k ∼ h2 . This unde-
sirable step-size restriction can be avoided simply by starting the computation
with a few (two or three) backward Euler steps; for examples and an analysis,
see [61], [71], and the literature cited therein. Surprisingly, such a modification
is not necessary for more regular initial data (half way up to the maximum
regularity), v0 ∈ H1

0 (Ω) ∩ H2(Ω) . In this case the Crank-Nicolson scheme
admits an optimal-order smoothing error estimate of the form

‖env‖ ≤ C
(
ν, T, ‖∇2v0‖, data

){
h2 + t−1

n k2
}
, tn ∈ (0, T ]. (8)

For the heat equation this is easily seen by a standard spectral argument; see
Chen/Thomée [23] and [71]. The extension of the smoothing error estimate (8)
to the nonlinear (nonsymmetric and nonautonomous) Navier-Stokes equations
is one of the main results in [44].

Finally, we mention some further results on smoothing error estimates rel-
evant for the Navier-Stokes equations together with some open problems:

• Second-order projection schemes, particularly the Van Kan scheme, have
been analyzed by Prohl [69, 70] and optimal-order smoothing error esti-
mates have been established.

• The second-order smoothing property of the Fractional-Step-θ scheme
has been proven by Müller [64].

Open Problem 6.1: The construction of compatible initial data from experi-
mental data has already been formulated as a problem. If this is not possible, it
would be interesting to estimate the time length over which the error pollution
effect of incompatible initial data persists.

Open Problem 6.2: Establish the optimal smoothing property of any higher-
order (q ≥ 3) time discretization schemes for the Navier-Stokes equations.

57



6.2 The problem of convergence up to “t = ∞”

The error constants in the a priori error estimates (1) usually grow exponen-
tially in time,

C(ν, T, data) ∼ KeκT ,

unless the data of the problem is very small, actually of size ν2 , such that
nonlinear perturbation terms can be absorbed into the linear main part. This
exponential growth is unavoidable in general, due to the use of Gronwall’s
inequality in the proof. In fact, the solution to be computed may be exponen-
tially unstable, so that a better error behavior cannot be expected. To improve
on this situation, one has to make additional assumptions on the stability of
the solution. Instead of requiring the data of the problem to be unrealistically
small, the solution {v, p} itself is supposed to be stable. This assumption
may not be verifiable theoretically; nevertheless it may be justified in many
situations in view of experimental evidence. A discussion of various types of
stability concepts for nonstationary solutions of the Navier-Stokes equations
in view of numerical approximation can be found in [42, 45].

Exponential Stability: A solenoidal solution v is called (conditionally) “expo-
nentially stable”, if for each sufficiently small initial perturbation w0 ∈ J1(Ω) ,
‖w0‖ < δ , at any time t0 ≥ 0 , the solution ṽ(t) of the perturbed problem

∂tṽ − ν∆ṽ + ṽ·∇ṽ + ∇q = 0, t ≥ t0,

starting from ṽ(t0) = v(t0) + w0 , satisfies

‖(v − ṽ)(t)‖ ≤ Ae−α(t−t0)‖w0‖, t ≥ t0, (9)

with certain constants A > 0 and α > 0 . In this assumption it is essential
that the decay of the perturbation is proportional to the size of the initial
perturbation ‖w0‖ . For global strong solutions this concept of exponential
“L2-stability” is equivalent to corresponding stability concepts expressed in
terms of stronger norms, e.g. the H1 norm; see [45]. It has been proved
in a series of papers [42, 43, 44] that exponentially stable solutions can be
approximated uniformly in time, i.e.,

sup
tn≥1

‖vnh − v(·, tn)‖ ≤ C{h2 + k2}. (10)

In this estimate the error constant C = C(A, α) depends on the stability
parameters of the solution. The proof uses a continuation argument. We
sketch its essential steps for semi-discretization in time by the backward Euler
scheme.
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Proof of the global error estimate (10):
(i) We recall the local bound for the error en = v(tn) − vnk ,

‖en‖ ≤ E(tn)k, tn ≥ 0, (11)

involving the exponentially growing error constant E(t) := Keκt . By conti-
nuity, it can be assumed that this error estimate holds with the same constant
for all solutions neighboring the true solution v . The proof of this statement
is technical and uses the particular properties of the discretization scheme
considered. Further, let T = Nk be a fixed time length such that with the
stability parameters of the solution v , there holds

Ae−αT ≤ 1
2
. (12)

tm + T
v(t)

~v(t) vk

t
K?k 12K?kE(T )k

vmk = ~v(tm)
vk

tm
Figure 27: Scheme of induction proof (following [42])

(ii) Suppose now that the desired error estimate is already known to hold on
some time interval (0, tm] , tm ≥ T , with error constant K∗ := 2E(T ) . Let
ṽ(t) be the solution of the perturbed problem

∂tṽ − ν∆ṽ + ṽ·∇ṽ + ∇p̃ = 0, t ≥ tm,

starting at tm with initial value ṽ(tm) = vmk . In virtue of the assumed expo-
nential stability of the solution, there holds

‖(v − ṽ)(t)‖ ≤ Ae−α(t−tm)‖em‖ , t > tm,

for sufficiently small k guaranteeing ‖em‖ < δ . Then, stepping forward by
time length T , we obtain

‖em+n‖ ≤ ‖(v − ṽ)(tm + T )‖ + ‖ṽ(tm + T ) − vm+n
k ‖.
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Here, the first term is bounded by K∗k , in view of (11) and the induction
assumption (12), while the second one can be controlled by E(T )k , using the
local error estimate (11) for ṽ − vk . Hence, it follows that

‖em+n‖ ≤ K∗k.

The assertion then follows by induction with respect to multiples of T .

The argument presented for the global error estimate (10) appears simple
and general; however, in concrete situations involving simultaneous discretiza-
tion in space and time there are several technical difficulties. The initial value
for the perturbed solution ṽ(tn) in the induction step may not be admissi-
ble (i.e., not exactly divergence-free or even nonconforming). Further, the use
of the local error bound (11) for the perturbed error ṽ − vh requires control
on higher-order regularity of the corresponding initial value ṽ(tn) . These and
some other complications can be overcome as shown in [42, 43, 44], for different
types of spatial as well as time discretization.

6.3 The problem of realistic error constants

In the preceding sections, we have discussed the derivation of qualitative a pri-
ori error estimates, local as well as global in time. Now, we turn to the more
quantitative aspect of the size of error constants relating to the question of
practical relevance of the a priori results. To this end, let us briefly summarize
the results of a priori error analysis presented so far:

a) In the stationary case, we can guarantee convergence behavior like

‖ev‖ ≤ Chp

provided that the solution v is sufficiently smooth and locally unique (i.e., the
linearization of the nonlinear Navier-Stokes operator at v is regular). Then,
the error constant C(ν, v) depends on bounds on the regularity of v as well
as its “stability”, on the viscosity ν , and of course on the characteristics of
the discretization.

b) In the nonstationary case, we can guarantee convergence behavior like

‖env‖ ≤ C{hp + kq} 0 ≤ tn ≤ T,

provided again that the solution v is sufficiently smooth. The error constant
C(ν, T, v) depends on bounds on the regularity of v , on the viscosity ν , and
additionally on the length of the time interval T .

A question naturally arises: How large is C ? In “normal” situations as, for
example, for the Poisson problem or the heat equation, the error constant may
be shown to be of moderate size C ∼ 1− 104 , depending on the situation and
the care spent in the estimation. The qualitative conclusion from the estimates
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may then be that the the error bound is reduced by a factor of 2−min{p,q} if the
mesh size is halved in space and time. The (not unrealistic) hope is that this
carries over to the true discretization error. Unfortunately, the Navier-Stokes
equations do not at all a “normal” problem; it is of mixed elliptic-hyperbolic
or parabolic-hyperbolic type with degenerating ellipticity. This has decisive
consequences for the size of the error constants C .

Normalizing the flow configuration as usual to characteristic length L = 1
and velocity U = 1 , the Reynolds number for common cases is Re = ν−1 ≈
1− 105 , which relates to “laminar” flow, and the characteristic time length is
T ∼ 1/ν . This means that it takes the time T ≈ ν−1 for the flow to reach
a characteristic limit behavior, e.g. stationary or time periodic. The question
can now be made more precise: How do the error constants C depend on Re ?
This dependence has several sources:

• the explicit occurrence of ν in the differential operator,

• the dependence of the solution’s regularity on ν (boundary layers),

• the dependence on the length of the time interval T ∼ 1/ν ,

• the dependence of the solution’s stability on ν .

Let us discuss the mechanisms of these dependencies separately.

(i) Structure of the differential operator:
The standard procedure in the stationary case is to absorb the lower-order
terms into the linear main part −ν∆v which leads to the dependence

C ∼ ν−1.

In the nonstationary case the lower-order terms are absorbed into the term
∂tv by the use of Gronwall’s inequality resulting in

C ∼ eKT/ν , K ∼ sup(0,T ]‖∇v‖ ∼ ν−1/2.

This dependence on ν can be formally removed by using streamline-diffusion
damping for the transport term, but it leaves the T -dependence.

(ii) Regularity of solution:
For small ν boundary layers of width δ ∼ √

ν occur. This implies that

supΩ|∇v| ∼ ν−1/2, C ∼ ‖∇pv‖ ∼ ν−α(d,p).

This problem can be solved by proper mesh refinement in the boundary layer.

(iii) Length of the time interval:
It was demonstrated above that the local “worst case” error constant

C ∼ eKT/ν
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becomes independent of the time interval-length T ,

C ∼ eKT∗/ν ,

if the solution can be assumed to be exponentially stable. Here, T∗ is suffi-
ciently large but fixed. However, tracing constants in the proof, we see that
T∗ ∼ ν−1 rendering this formally global error bound practically meaningless
for small ν .

(iv) Stability of the solution:
The argument for proving error estimates for nonlinear problems rely on as-
sumptions on the stability of certain linearized tangent operators. The result-
ing error constants can in general not be assumed to behave better than

C ∼ eKT/ν .

This exponential dependence seems unavoidable unless something different is
shown in particular situations. The observability of laminar flows even for
higher Reynolds numbers indicates that these flows may possess better stability
properties than expressed by the “worst case” scenario addressed above. An
analogous conclusion may be true even for turbulent flows with respect to
certain averaged quantities.

Conclusion: In general, one has to admit that the error constants depend
exponentially on ν−1 , unless something different is proven. Realizing that
even in the range of laminar flows, 20 ≤ Re ≤ 104 ,

e20 ≈ 5·108, e100 ≈ 1043, e1000 ≈ ∞,

the practical meaning of available a priori error estimates seems rather ques-
tionable!

The above observation seems to indicate that there is a conceptual crisis in
the theoretical support of CFD as far as it concerns the computational solu-
tion of the Navier-Stokes equations. This is contrasted by the abundant body
of research papers reporting successful computations of viscous flows and the
good agreement of the obtained results with experimental data. Hence, we
reformulate the question: Is there any theoretical support that certain flows
(i.e., solutions of the Navier-Stokes equations) can actually be computed nu-
merically. If the answer were “no”, everybody should be worried. We again
emphasize that the presence of an asymptotic error estimate of the form

‖v − vh‖ ≤ C{hp + kq}

cannot be taken as justification for the meaningful performance of a numerical
scheme, unless the error constant C is shown to be of moderate size at least for
certain model situations of practical interest. Reliable flow simulation requires
computable error bounds in terms of the approximate solution; the elements
of such an a posteriori error analysis will be described in Section 7 below.
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In proving useful error estimates, we have to deal with the question of
proper concepts for describing the stability of solutions relevant for numerical
approximation. Qualitatively, all stability concepts may be equivalent but
this strongly depends on the viscosity parameter ν . The choice of the wrong
norm may lead to unfavorable dependence on ν , like O(ν−2) rather than the
generic behavior O(ν−1) . Actually, the fundamental question whether there
are practically interesting situations in which the solution of the Navier-Stokes
equations are stable, with stability constant cS ∼ ν−1 seems open. Results in
this direction appear necessary for a rigorous error analysis of discretization
schemes. However, until now, practically meaningful a priori error bounds are
not even available for such basic situations as Couette flow (constant sheer
flow) and Poiseuille flow (constant pipe flow); we will address this question in
more detail in the following section.

6.4 Towards a “quantitative” a priori error analysis

The following discussion is of conceptual nature. In order to abstract from the
nonessential technicalities of finite element discretization, we consider the ide-
alized situation of an “exactly” divergence-free approximation, using subspaces
Vh ⊂ V := J1(Ω) . Accordingly, the discretization delivers only approxima-
tions vh ∈ Vh to the velocity v ∈ V . The associated pressures ph are then
to be determined by post-processing. Further, we restrict us to the very basic
case of homogeneous Dirichlet boundary conditions v|∂Ω = 0 .

6.4.1 The stationary case

We begin with the stationary Navier-Stokes problem

−ν∆v + v·∇v + ∇p = f, ∇·v = 0, in Ω, v|∂Ω = 0. (13)

Using again the notation

a(v, ψ) = ν(∇v,∇ψ), n(v, v, ψ) = (v·∇v, ψ),

the “pressure-free” variational formulation seeks v ∈ V , such that

A(v;φ) := a(v, φ) + n(v, v, φ) = (f, φ) ∀φ ∈ V. (14)

The corresponding finite element discretization seeks vh ∈ Vh , such that

A(vh;φh) = (f, φh) ∀φh ∈ Vh. (15)

All error analysis of this discretization is based upon the (nonlinear) Galerkin
orthogonality:

A(v;φh) − A(vh;φh) = 0, φh ∈ Vh. (16)

In the following, we denote the error by e := v − vh .
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a) The “small data case”, ‖∇v‖ ∼ ν :
The Fréchet derivative taken at v of the semi-linear Form A(·; ·) is given by

L(v;φ, ψ) = a(φ, ψ) + n(v, φ, ψ) + n(φ, v, ψ).

Under the “small data” assumption, this bilinear form is coercive on V with
“stability constant” cS = cS(ν) ∼ ν−1 :

‖∇φ‖ ≤ cSL(v;φ, φ).

Linearization and Galerkin orthogonality then leads to the relation

‖∇e‖ ≤ cSL(v, e, e) = cS
{
n(e, e, e) + A(v; v − φh) − A(vh; v − φh)

}
,

with an arbitrary approximation φh ∈ Vh to v . From this we infer that, for
sufficiently small h ,

‖∇e‖ ≤ cSCh, (17)

with an error constant C = C(‖∇2v‖, data) .

b) The general case of an “isolated” solution:
Now, the solution v is assumed to be stable in the sense that

‖∇φ‖ ≤ cS sup
ψ∈V

L(v, φ, ψ)

‖∇ψ‖ , (18)

with some “stability constant” cS = cS(ν, v) . Again, by linearization and
Galerkin orthogonality, it follows that

‖∇e‖ ≤ cSCh. (19)

Further, assuming stability of the Fréchet derivative in the form

‖φ‖ ≤ cS sup
ψ∈V∩H2(Ω)

L(v, φ, ψ)

‖∇2ψ‖ , (20)

one may apply the usual duality argument to obtain the L2-error bound

‖e‖ ≤ cSCh
2. (21)

These results rely on the assumption of stability of the problem expressed
in terms of the stability constant cS ; see [56]. In order to use the resulting
estimates, on has to determine these constants either analytically, which may
rarely be possible, or computationally by solving dual problems. Numerical
experiments for the driven-cavity problem reported by Boman [16] show a
dependence like cS(ν) ∼ ν−1 in the (“laminar”) range 1 ≤ Re ≤ 103 . This
investigation should be extended to other elementary flows in order to see
whether linear growth cS ∼ Re is generic for laminar flow. The answer is not
clear yet, as indicated by the following simple example.
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An example of “bad” stability (from Tobiska/Verfürth [91]): For the worst-case
scenario, we quote the one-dimensional Burgers equation

−νvxx + vvx = 0, x ∈ (−1, 1), v(−1) = 1, v(1) = −1.

The exact solution is v(x) = −2αννtanh(ανx) , where αν is the unique positive
solution of 2νανtanh(αν) = 1 . Linearization at this solution results in the
boundary value problem

−νzxx + vzx + zvx = f x ∈ (−1, 1), z(−1) = z(1) = 0,

which has the solution

z(x) = −ν−1eU(x)/ν

∫ x

−1

e−U(t)/ν

(∫ t

0

f(s) ds+ c

)
dt,

where U is a primitive of v and the constant c is determined by imposing
the boundary condition z(1) = 0 . We ask for the best possible bound in the
stability estimate

ν‖z‖H1 ≤ C(ν)‖f‖H−1 .

For the particular choice f(x) = cosh(ανx) , there holds

z(x) =
cosh3(αν) − cosh3(ανx)

3α2
ννcosh2(ανx)

.

Since
‖z‖∞ ≤

√
2‖z‖1, ‖f‖−1 ≤ 2

√
2‖f‖∞,

it follows that, for ν ≤ 1 ,

‖z‖∞ ≥ cνe1/ν‖f‖∞,

and consequently, C(ν) ∼ e1/ν . This seems to indicate that Burgers equation
is not numerically solvable which, however, contradicts practical evidence. The
explanation may be that for the performance of discretization stability is es-
sential in other more local measures then those considered above.

Open Problem 6.3: Explain the success of discretization methods in comput-
ing solutions to the Burgers equation despite its bad conditioning with respect
to the “energy norm”.

6.4.2 The nonstationary case

We now turn to the nonstationary Navier-Stokes problem posed on a time
interval I = [0, T ] ,

∂tv − ν∆v + v·∇v + ∇p = f in Ω × I, v|∂Ω = 0, v|t=0 = v0. (22)
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The corresponding (pressure-free) space-time variational formulation uses the
function space V(I) := H1(I;V) and the space-time forms

(φ, ψ)I =

∫

I

(φ, ψ) dt, aI(φ, ψ) =

∫

I

a(φ, ψ) dt,

nI(v, φ, ψ) =

∫

I

n(v, φ, ψ) dt.

Then, a solution v ∈ V(I) is sought satisfying

A(v;φ) = F (φ) ∀φ ∈ V(I), (23)

where F (φ) := (f, φ)I + (v0, φ(0)) and

A(v;φ) := (φ, ψ)I + aI(φ, ψ) + nI(v, φ, ψ) + (v0, φ(0)).

Here, the initial condition v(0) = v0 is incorporated weakly.
In the following conceptual discussion, we restrict ourselves to the semi-

discretization in time leaving the spatial variable “continuous”. The discretiza-
tion is by the “discontinuous” Galerkin method of degree r = 0 (“dG(0)
method”) which is a variant of the backward Euler scheme. The time interval
I = [0, T ] is decomposed like 0 = t0 < t1 < ... < tM+1 = T , and we set

Im = [tm−1, tm), k(t) ≡ k|Im = tm − tm−1.

For piecewise continuous functions on this decomposition, we write

vm± = lim
s→0+

v(tm ± s), [v]m = vm+ − vm− .

Accordingly, we define the discrete semi-linear form

Ak(v;φ) :=
M∑

m=0

{
(∂tv, φ)m + am(v, φ) + nm(v, v, φ)

}

+

M∑

m=1

([v]m, φm+) + (v0
+, φ

0
+),

and the time-discrete Spaces

Vk(I) = {vk ∈ L2(I;V), v|Im ∈ P0(Im), m = 1, ...,M}.

The time-discrete approximation then seeks a vk ∈ Vk(I), such that

Ak(vk;φk) = F (φk) ∀φk ∈ Vk(I). (24)

We note that this formulation contains the initial condition v(0) = v0 in the
weak sense. The essential feature of the dG(r) schemes are their Galerkin
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orthogonality property. Using the fact that the continuous solution v also
satisfies the discrete equation (24), we have

Ak(v;φk) − Ak(vk;φk) = 0, φk ∈ V(I). (25)

In order to estimate the error e := v−vk , we may employ a “parabolic” duality
argument. The adjoint of the Fréchet derivative of the governing semi-linear
form taken at the solution v is given by

L∗(v;φ, z) = (φ,−∂tz)I + aI(φ, z) + nI(v, φ, z) + nI(φ, v, z) − (φ(T ), z(T )).

Then, we introduce the “dual solution” z ∈ V(I) as solution of the space-time
“dual problem”

L∗(v;φ, z) = (e(T ), φ(T )) ∀φ ∈ V(I). (26)

Taking now φ = e in (26), we obtain the error representation

‖e(T )‖ = L∗(v; e, z)

= (e,−∂tz)I + aI(e, z) + nI(v, e, z) + nI(e, v, z).

Using the Galerkin orthogonality (25) and interpolation estimates on each
subinterval Im , we conclude the estimate

‖e(T )‖ =
M∑

m=0

{
(f, z − zk)m − ([v]m, zm+ − zmk,+)

}

≤ cS
{

max
I

‖[v]m‖ + max
I

‖kf‖
}
,

with the “stability constant” cS = cS(ν, T, v) given by

| log(kM)|−1/2
{
‖z‖I + | log(kM)|−1/2

∫ T−kM

0

‖∂tz‖ dt
}
≤ cS‖z(T )‖. (27)

The result is the “final time” a priori error estimate

‖e(T )‖ ≤ cLkcS max
I

‖k∂tv‖, (28)

where Lk := maxI
(
1 + log(k)

)1/2
.

Conclusion: The foregoing discussion shows that proving a priori error es-
timates for numerical approximations is closely connected with the study of
stability properties of linearizations of the Navier-Stokes equations, i.e. with
hydrodynamic stability; for more details see [55]. The goal is to derive a
priori estimates of the type (18), (20) and (27) with quantified constants
cS = cS(ν, T, data) . The dependence of these constants on the Reynolds num-
ber may be linear in “good” cases or may deteriorate to exponential in “bad”
cases. Such exponentially unstable flows are not computable over relevant in-
tervals of time. The same question will also be crucial for the derivation of a
posteriori error estimates discussed in Section 7, below.
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6.5 The problem of stability constants (A critical review of hydro-
dynamic stability theory)

Most of the traditional stability theory for fluid flow is of qualitative nature
being based on eigenvalue criteria through a linearized stability argument.
The theoretical results are in good agreement with experiments concerning
the critical Reynolds number at which the first bifurcation occurs; well-studied
examples are the Bénard problem and the Taylor-Couette problems. But they
do not fit with experiments for the other fundamental case of parallel flow.
There are several paradoxes observed:

• Poiseuille flow (between two parallel plates) is predicted to turn turbulent
at Re ∼ 5772 through 2d Tollmien-Schlichting waves, while experiments
show instability with essential 3d features somewhere in the range Re ∼
1000 − 10000 depending on the experimental setup.

• Couette flow (parallel shear flow) is supposed to be stable for all Re > 0 ,
but experiments show instability for Re ∼ 300 − 1500 .

This failure of theory was blamed on the deficiency of linearized stability theory
being valid only for small perturbations. However, linearized stability theory is
okay, but was only wrongly interpreted. In dynamic systems governed by non-
normal matrices, one has to look at the size of the total amplification factors for
the initial perturbation and not only at the sign of the eigenvalue’s real parts. It
is observed that, for example in Poiseuille flow there occurs amplification by a
factor of 104 for Re ≥ 549 . Some of the relevant references on this subject are
Landahl [59] and Trefethen et al. [92], to mention only a few. More references
can be found in [54, 55] where this new concept in hydrodynamic stability
theory is discussed in view of numerical approximation. In fact, the question
of quantitative hydrodynamic instability and that of numerical computability
of laminar flows are closely related. In transition to turbulence one seeks to
establish lower bounds on the growth of perturbations in order to understand
how a laminar flow may develop into a turbulent flow. In error control in CFD
for laminar flows one seeks upper bounds of the growth of perturbations related
to discretizations of the Navier-Stokes equations.

We want to illustrate the phenomenon of error amplification by two simple
examples taken from [55].

a) An ODE model:
At first, we consider the simple ODE system

ẇ1 + νw1 + w2 = 0, (29)

ẇ2 + νw2 = 0. (30)

Here, νwi stand for the diffusion terms and w2 in the first equation for the
coupling in the transport term of the linearized perturbation equation of the
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Navier-Stokes equations. The corresponding coefficient matrix

A =

(
ν 1
0 ν

)

is non-normal; the only eigenvalue λ = ν has algebraic multiplicity two. This
is just the situation described above. For this linear system the solution cor-
responding to the initial values w(0) = w0 is given by

w1(t) = e−νtw0
1 − te−νtw0

2, w2(t) = e−νtw0
2.

We see the exponential decay of the second component and the linear growth
over the interval [0, ν−1] to size w1(ν

−1) = ν−1e−1w0
2 of the first component

before the exponential decay sets in. The component w2 acts like a catalyst in
the first equation. Although exponentially decaying it first causes w1 to grow;
the later exponential decay is irrelevant when by the growth to size ν−1w0

1 the
linearization is no longer valid.

b) A simple flow model:
Next, we consider a very simple configuration: the flow in an infinite pipe
Ω = R×ω extending in the x1-axis with cross section ω in the (x2, x3)-plane.
The flow is driven by a volume force f = (f1(x2, x3, t), 0, 0)T (gravitation) in
x1-direction. The solution is supposed to have the form (like x1-independent
Poiseuille flow):

v = (v1(x2, x3, t), 0, 0)T , p = p(x, t).

Then the Navier-Stokes equations take the form

∂tv1 − ν∆v1 + ∂1p = f1 in ω , v1|∂ω = 0 .

The corresponding linearized perturbation equation is

∂tw1 − ν∆w1 + v1∂1w1 + ∂2v1w2 + ∂3v1w3 + ∂1q = 0 ,

∂tw2 − ν∆w2 + v1∂1w2 + ∂2q = 0 ,

∂tw3 − ν∆w3 + v1∂1w3 + ∂3q = 0 ,

with the incompressibility condition ∂2w2 + ∂3w3 = 0, and the initial and
boundary conditions w|t=0 = w0 and w|∂ω = 0 . Even this simple problem is
still too complex for an explicit solution. Therefore, we simplify it further by
assuming that the perturbed solution {w, q} is also independent of x1 . This
corresponds to looking at a fluid in a long vertical tube under gravity or in a
long rotating tube with varying speed of rotation. Under this assumption the
perturbation equation reduces to

∂tw1 − ν∆w1 + ∂2v1w2 + ∂3v1w3 = 0 ,

∂tw2 − ν∆w2 + +∂2q = 0 ,

∂tw3 − ν∆w3 + +∂3q = 0 .
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In this system the equations for the components w̄ := {w2, w3} together with
the constraint ∂2w2 +∂3w3 = 0 form a two-dimensional Stokes problem which
can be solved independently of the first equation. Hence, we are in a similar
situation as in the above ODE example. For the Stokes subsystem we have
the standard a priori estimate

‖w̄(t)‖ ≤ e−κνt‖w̄0‖, t ≥ 0,

with κ = diam(ω) . The first equation does not contain the pressure. Using
the result for w̄ we obtain for the first component w1 the bound

‖w1(t)‖ ≤ ce−κνt
{
t‖w0

1‖ + ‖w̄0‖
}
, t ≥ 0. (31)

Hence, we see that for this model problem, one can show that the error constant
in the a priori error estimate (1) grows at most linearly with the Reynolds
number:

C(ν, T, data) ∼ max{T,Re}.
It is an open question whether this linear dependence on Re is generic for a
larger class of flow problems. Numerical experiments for the lid-driven cavity
flow show such a dependence.

Open Problem 6.4: Prove a posteriori stability estimates like (31) for more
practical problems (e.g. Poiseuille flow) possibly with respect to different norms.
Is there any indication that linear growth in time of perturbations may be
generic to the Navier-Stokes equations?
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7 Error control and mesh adaptation

This section is devoted to concepts of error estimation and mesh optimization.
The goal is to develop techniques for reliable estimation of the discretization
error in quantities of physical interest as well as economical mesh adaptation.
The use of a finite element Galerkin discretization provides the appropriate
framework for a mathematically rigorous error analysis. On the basis of com-
putable a posteriori error bounds the mesh is locally refined within a feed-back
process yielding economical mesh-size distributions for prescribed error toler-
ance or maximum number of cells. On the resulting sequence of refined meshes
the discrete problems are solved by multi-level techniques.

The general concept of residual-based error control for finite element meth-
ods is described in the survey article by Eriksson/Estep/Hansbo/Johnson [26];
this technique has then been further developed for various situations in [12, 14].
The application to incompressible flows is extensively discussed in Becker
[7, 9]. Extensions to compressible flow including chemical reactions are given
in Braack [17]; see also [18]. A survey of applications of this approach to a
variety of other problems can be found in [75].

7.1 Principles of error estimation

The discretization error in a cell K splits into two components, the locally
produced error (truncation error) and the transported error (pollution error)

etotK = elocK + etransK . (1)

The effect of the cell residual ρK on the local error eK ′ , at another cell K ′ , is
governed by the Green function of the continuous problem. This is the general
philosophy underlying our approach to error control.

Figure 28: Scheme of error propagation

(I) A priori error analysis: The classical a priori error estimation aims at
estimating the error to be expected in a computation which is still to be done.
These bounds are expressed in terms of powers of a mesh size h and involve
constants which depend on the (unknown) exact solution. In this way, only
asymptotic (as h → 0) information about the error behavior is provided but
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no quantitatively useful error bound. In particular, no criterion for local mesh
adaptation is obtained.

(II) A posteriori error analysis: The a posteriori error analysis generates
error estimates in the course of the computation. Accordingly, these bounds
are in terms of computable local residuals of the approximate solution and do
not require information about the exact solution. However, a posteriori error
analysis usually does not provide a priori information about the convergence
of the discretization process as h→ 0.

We illustrate the basic principles underlying error estimation by considering
perturbations of linear algebraic systems. Let A, Ã ∈ R

n×n, b, b̃ ∈ R
n be given

and solve
Ax = b , Ãx̃ = b̃ (perturbed problem). (2)

For estimating the error e := x− x̃, there are several approaches. The a priori
method uses the “truncation error” τ := Ãx− b̃ = Ã(x− x̃),

e = Ã−1τ ⇒ ‖e‖ ≤ c̃S‖τ‖, (3)

with the “discrete” stability constant c̃S := ‖Ã−1‖. The a posteriori method
uses the “residual” ρ := b−Ax̃ = A(x− x̃),

e = A−1ρ ⇒ ‖e‖ ≤ cS‖ρ‖, (4)

with the “continuous” stability constant cS := ‖A−1‖. Alternatively, we may
use the solution z of the “dual problem” A∗z = ‖e‖−1e , to obtain

‖e‖ = (e, A∗z) = (b− Ax̃, z) = (ρ, z) ≤ ‖ρ‖ ‖z‖ ≤ c∗S‖ρ‖, (5)

with the “dual” stability constant c∗S := ‖A∗−1‖. Of course, this approach does
not yield a new result in estimating the error in the l2-norm. But it shows the
way to bound other error quantities as for example single components |ei|.

An analogous argument can also be applied in the case of nonlinear equa-
tions. Let F, F̃ : R

n → R
n be (differentiable) vector functions and solve

F (x) = b , F̃ (x̃) = b̃ (perturbed problem). (6)

Then, the residual ρ := b− F (x̃) satisfies

ρ = F (x) − F (x̃) =

(∫ 1

0

F ′(x̃+ se) ds

)
e =: L(x, x̃)e, (7)

with the Jacobian F ′ . The term in parentheses defines a linear operator
L(x, x̃) : R

n → R
n which depends on the (unknown) solution x. It follows that

‖e‖ ≤ cS‖ρ‖, with the (nonlinear) stability constant cS := ‖L(x, x̃)−1‖. Below,
we will use this duality technique for generating a posteriori error estimates in
Galerkin finite element methods for differential equations.
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7.1.1 A diffusion model problem

For illustrating our concept, we start with the (scalar) model diffusion problem

−∆u = f in Ω, u = 0 on ∂Ω, (8)

posed on a polygonal domain Ω ⊂ R
2. In its variational formulation one seeks

u ∈ V := H1
0 (Ω) satisfying

(∇u,∇φ) = (f, φ) ∀φ ∈ V. (9)

We consider a finite element approximation using piecewise (isoparametric)
bilinear shape functions (see Section 3). The corresponding finite element
spaces Vh ⊂ V are defined on decompositions Th of Ω̄ into quadrilaterals
(“cells”) K of width hK := diam(K). We write again h := maxK∈T hK for
the maximal global mesh width. Simultaneously, the notation h = h(x) is
used for the continuously distributed mesh-size function defined by h|K = hK .
For ease of mesh refinement and coarsening we allow “hanging nodes”, but at
most one per edge. The shape of the corresponding modified basis function is
shown in Figure 29.

φl1 φl+1
1

φl+1
2

φl+1
1 = φl1 − 1

4
φl+1

2

x

4

Figure 29: Q1 nodal basis function on a patch of cells with a hanging node

The discrete problem determines uh ∈ Vh by

(∇uh,∇φh) = (f, φh) ∀φh ∈ Vh. (10)

We recall the “Galerkin orthogonality” of the error e := u− uh ,

(∇e,∇φh) = 0, φh ∈ Vh. (11)
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We seek to derive a posteriori error estimates. Let J(·) be an arbitrary “error
functional” defined on V and z ∈ V the solution of the corresponding dual
problem

(∇φ,∇z) = J(φ) ∀φ ∈ V. (12)

Setting φ = e in (12) results in the error representation

J(e) = (∇e,∇z) = (∇e,∇(z − Ihz))

=
∑

K∈T

{
(−∆u+ ∆uh, z − Ihz)K − (∂nuh, z − Ihz)∂K

}
(13)

=
∑

K∈T

{
(f + ∆uh, z − Ihz)K − 1

2
(n·[∇uh], z − Ihz)∂K

}
,

where [∇uh] is the jump of ∇uh across the interelement boundary. In the
second equation, we have used galerkin orthogonality. This gives us the a
posteriori error estimate

|J(e)| ≤ η(uh) :=
∑

K∈Th

h4
K

{
ρK(uh)ωK(z) + ρ∂K(uh)ω∂K(z)

}
, (14)

with the cell residuals

ρK(uh) := h−1
K ‖f + ∆uh‖K , ρ∂K(uh) := h

−3/2
K ‖n·[∇uh]‖∂K ,

and the weights

ωK(z) := h−3
K ‖z − Ihz‖K , ω∂K(z) := 1

2
h
−5/2
K ‖z − Ihz‖∂K .

These quantities are normalized, such that they can be expected to approach
certain mesh–independent limits as h→ 0 . The interpretation of the relation
(14) is that the weights ωK(z) describe the dependence of J(e) on variations
of the cell residuals ρK(uh) ,

∂J(e)

∂ρK
≈ h4

KωK(z) ≈ h4
KmaxK |∇2z|.

We remark that in a finite difference discretization of the model problem (8)
the corresponding “influence factors” behave like ωK(z) ≈ h2

K maxK |z|.
In practice the weights ωK(z) have to be determined computationally. Let

zh ∈ Vh be the finite element approximation of z ,

(∇φh,∇zh) = J(φh) ∀φh ∈ Vh. (15)

We can estimate

ωK(z) ≤ cIh
−1
K ‖∇2z‖K ≈ cI max

K
|∇2

hzh|, (16)
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where ∇2
hzh is a suitable difference quotient approximating ∇2z. The inter-

polation constant is usually in the range cI ≈ 0.1 − 1 and can be determined
by calibration. Alternatively, we may construct from zh ∈ Vh a patchwise
biquadratic interpolation I

(2)
h zh and replace z − Ihz in the weight ωK(z) by

I
(2)
h zh−zh . This gives an approximation to ωK(z) which is free of interpolation

constants.
One may try to further improve the quality of the error estimate by solv-

ing local defect equations, either Dirichlet problems (à la Babuska/Miller) or
Neumann problems (à la Bank/Weiser); see Backes [4]. References for these
approaches are Verfürth [102] and Ainsworth/Oden [1]. Comparison with sim-
pler mesh adaptation techniques, e.g. refinement criteria based on difference
quotients of the computed solution, local gradient recovery “ZZ technique” (à
la Zienkiewicz/Zhu [106]), or other local “ad hoc” criteria have been reported
in Braack [17] and in [75].

By the same type of argument, one can also derive the traditional global
error estimates in the energy and the L2 norm.

(i) Energy-norm error bound: Using the functional

J(φ) := ‖∇e‖−1(∇e,∇φ)

in the dual problem, we obtain the estimate

‖∇e‖ ≤
∑

K∈T

h4
K ρK(uh)ωK(z) ≤ cI

∑

K∈T

h2
K ρK(uh) ‖∇z‖K̃ ,

where K̃ is the union of all cells neighboring K. In view of the a priori bound
‖∇z‖ ≤ cS = 1 , this implies the a posteriori error estimate

‖∇e‖ ≤ ηE(uh) := cI

( ∑

K∈T

h4
K ρK(uh)

2
)1/2

. (17)

(ii) L2-norm error bounds: Using the functional

J(φ) := ‖e‖−1(e, φ)

in the dual problem, we obtain the estimate

‖e‖ ≤
∑

K∈T

h4
K ρK(uh)ωK(z) ≤ cI

∑

K∈T

h3
K ρK(uh) ‖∇2z‖K .

In view of the a priori bound ‖∇2z‖ ≤ cS (cS = 1 if Ω is convex), this implies
the a posteriori error bound

‖e‖ ≤ ηL2(uh) := cIcS

( ∑

K∈T

h6
K ρK(uh)

2
)1/2

. (18)
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7.1.2 A transport model problem

As a simple model, we consider the scalar transport equation

β·∇u = f , (19)

on a domain Ω ⊂ R
2 with inflow boundary condition u = g along the “inflow

boundary” ∂Ω− = {x ∈ ∂Ω, n·β < 0} . Accordingly, ∂Ω+ = ∂Ω \ ∂Ω− is
the “outflow boundary”. The transport vector β is assumed as constant for
simplicity; therefore, the natural solution space is

V := {v ∈ L2(Ω), β·∇v ∈ L2(Ω)}.

This problem is discretized using the Galerkin finite element method with
streamline diffusion stabilization as described above. On quadrilateral meshes
Th , we define again subspaces Vh = {v ∈ H1(Ω), v|K ∈ Q̃1(K), K ∈ Th} ,

where Q̃1 is the space of “isoparametric” bilinear functions on cell K. The
discrete solution uh ∈ Vh is defined by

(β·∇uh − f, φ+ δβ·∇φ) + (n·β(g − uh), φ)∂Ω−
= 0 ∀φ ∈ Vh, (20)

where the stabilization parameter is determined locally by δK = hK . In
this formulation the inflow boundary condition is imposed in the weak sense.
This facilitates the use of a duality argument in generating a posteriori error
estimates. Let J(·) be a given functional with respect to which the error
e = u − uh is to be controlled. Following our general approach, we consider
the corresponding dual problem

(β·∇φ, z + δβ·∇z) − (n·βφ, z)∂Ω−
= J(φ) ∀φ ∈ V, (21)

which is a transport problem with transport in the negative β-direction. We
note that the stabilized bilinear form Ah(·, ·) is used in the duality argument,
in order to achieve an optimal treatment of the stabilization terms; for a de-
tailed discussion of this point see [75] and [47]. The error representation reads

J(e) = (β·∇e, z − zh + δβ·∇(z − zh)) − (n·βe, z − zh)∂Ω−
,

for arbitrary zh ∈ Vh. This results in the a posteriori error estimate

|J(e)| ≤ η(uh) := cI
∑

K∈T

h4
K

{
ρK(uh)ωK(z) + ρ∂K(uh)ω∂K(z)

}
, (22)

with the cell residuals

ρK(uh) := h−1
K ‖f − β·∇uh‖K , ρ∂K(uh) := h

−3/2
K ‖n·β(uh − g)‖∂K∩∂Ω−

,

and cell weights (setting ξ := z − zh )

ωK(z) := h−3
K

{
‖ξ‖K + δK‖β·∇ξ‖K

}
, ω∂K(z) := h

−5/2
K ‖ξ‖∂K∩∂Ω−

.
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We note that this a posteriori error bound explicitly contains the mesh size hK
and the stabilization parameter δK as well. This gives us the possibility to si-
multaneously adapt both parameters, which may be particularly advantageous
in capturing sharp layers in the solution.

We want to illustrate the features of the error estimate (22) by a simple
thought experiment. Let Ω = (0, 1)×(0, 1) and f = 0 . We take the functional

J(u) := (1, n·βu)∂Ω+
.

The corresponding dual solution is z ≡ 1 , so that J(e) = 0. This implies

(1, n·βuh)∂Ω+
= (1, n·βu)∂Ω+

= −(1, n·βg)∂Ω−
.

recovering the well-known global conservation property of the scheme.

7.1.3 Evaluation of the error estimates

To evaluate the error estimates (14) or (22), one may solve the corresponding
perturbed dual problem numerically by the same method as used in computing
uh, yielding an approximation zh ∈ Vh to the exact dual solution z. However,
the use of the same meshes for computing primal and dual solution is by no
means obligatory. In fact, in the case of dominant transport it may be advisable
to compute the dual solution on a different mesh; see [47] for examples. Then,
the weights ωK can be determined numerically in different ways:

1. We may take zh = Ihz ∈ Vh as the nodal interpolation of z and use the
local interpolation properties of finite elements to obtain

ωK = h−3
K ‖z − Ihz‖K ≤ cIh

−1
K ‖∇2z‖K ,

with an interpolation constant cI ≈ 0.1− 1 . Here, ∇2z is the tensor of
second derivatives of z . Then, approximation by second-order difference
quotients of the computed discrete dual solution zh ∈ Vh yields

ωK ≈ cI |∇2
hzh(xK)| , (23)

xK being the center point of K.

2. Computation of a discrete dual solution zh′ ∈ Vh′ in a richer space
Vh′ ⊃ Vh (e.g., on a finer mesh or by higher-order elements) and setting

ωK ≈ h−3
K ‖zh′ − Ihzh′‖K , (24)

where Ihzh′ ∈ Vh denotes the generic nodal interpolation.

3. Interpolation of the discrete dual solution zh ∈ Vh by higher order poly-
nomials on certain cell-patches, e.g., biquadratic interpolation I

(2)
h zh :

ωK ≈ h−3
K ‖I(2)

h zh − zh‖K . (25)
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Analogous approximations can be used for the weights ω∂K . Option (2) is
quite expensive and rarely used. Since we normally do not want to spend
more time in evaluating the error estimate than for solving the primal problem,
we recommend option (1) or (3). Notice that option (3) does not involve
an interpolation constant which needs to be specified. The computational
results reported in [14] indicate that the use of biquadratic interpolation on
patches of four quadrilaterals is more accurate than using the finite difference
approximation (23).

7.2 Strategies for mesh adaptation

We use the notation introduced above: u is the solution of the variational
problem posed on a 2-dimensional domain Ω, uh is its piecewise linear (or
bilinear) finite element approximation. Further, e = u−uh is the discretization
error and J(·) a linear error functional for measuring e. We suppose that there
is an a posteriori error estimate of the form

|J(e)| ≤ η :=
∑

K∈Th

h4
K ρK(uh)ωK(z), (26)

with the cell residuals ρK(uh) and weights ωK(z) . Accordingly, we define the
local “error indicators”

ηK := h4
K ρK(uh)ωK(z).

The mesh design strategies are oriented towards a prescribed tolerance TOL
for the error quantity J(e) and the number of mesh cells N which measures
the complexity of the computational model. Usually the admissible complexity
is constrained by some maximum value Nmax.

There are various strategies for organizing a mesh adaptation process on
the basis of the a posteriori error estimate (26).

• Error balancing strategy: Cycle through the mesh and equilibrate the
local error indicators,

ηK ≈ TOL

N
⇒ η ≈ TOL. (27)

This process requires iteration with respect to the number of cells N .

• Fixed fraction strategy: Order cells according to the size of ηK and
refine a certain percentage (say 30%) of cells with largest ηK (or those
which make up 30% of the estimate value η ) and coarsen those cells
with smallest ηK . By this strategy, we may achieve a prescribed rate of
increase of N (or keep it constant as may be desirable in nonstationary
computations).
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• Mesh optimization strategy: Use the representation

η :=
∑

K∈Th

h4
K ρK(uh)ωK(z) ≈

∫

Ω

h(x)2A(x) dx (28)

for generating a formula for an optimal mesh-size distribution hopt(x).

We want to discuss the strategy for deriving an optimal mesh-size distribution
in more detail. As a side-product, we will also obtain the justification of the
error equilibration strategy. Let Nmax and TOL be prescribed. We assume
that for TOL→ 0, the cell residuals and the weights approach certain limits,

ρK(uh) ≈ h
−3/2
K ‖n·[∇uh]‖∂K → ρ(xK) ≈ |D2u(xK)|,

ωK(z) ≈ h
−5/2
K ‖z − Ihz‖∂K → ω(xK) ≈ |D2z(xK)|.

These properties can be proven on uniformly refined meshes by exploiting
super-convergence effects, but still need theoretical justification on locally re-
fined meshes. This suggests to assume that

η ≈ η̃ :=

∫

Ω

h(x)2A(x) dx, N =
∑

K∈Th

h2
Kh

−2
K ≈

∫

Ω

h(x)−2 dx, (29)

with the weighting function A(x) = ρ(x)ω(x). Now, let us consider the mesh
optimization problem

η → min!, N ≤ Nmax.

Applying the usual Lagrange approach yields the necessary optimality condi-
tions

d

dt

[∫

Ω

(h+ tφ)2Adx+ (λ+ tµ)
(
(h+ tµ)−2 dx−Nmax

)]

t=0

= 0,

for any variations φ and µ . From this, we infer that

2h(x)A(x) − 2λh(x)−3 = 0,

∫

Ω

h(x)−2 dx−Nmax = 0.

Hence, we obtain

h(x) =
(
λ−1A(x)

)−1/4 ⇒ η̃ = h4A ≡ λ−1,

and

λ−1/2

∫

Ω

A(x)1/2 dx = Nmax, W :=

∫

Ω

A(x)1/2 dx.

This gives us a formula for the “optimal” mesh-size distribution:

λ =
( W

Nmax

)2

⇒ hopt(x) =
( W

Nmax

)1/2

A(x)−1/4. (30)
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In an analogous way, we can also treat the adjoint optimization problem N →
min!, η ≤ TOL . We note that even for a rather “singular” error functional
J(·) the quantity W is bounded, e.g.,

J(e) = ∇e(0) ⇒ A(x) ≈ |x|−3 ⇒ W =

∫

Ω

|x|−3/2 dx <∞.

Open Problem 7.1: Make the “mesh optimization strategy” rigorous, i.e.,
prove the proposed convergence of cell weights and residuals under (local) mesh
refinement. This could be accomplished by proving that for piecewise linear or
d-linear approximation, there holds

limh→0{max
Ω̄

|∇2
huh|} ≤ c(u),

where ∇2
huh is a suitable second-order difference quotient.

7.2.1 Computational tests

(I) The diffusion model problem: We begin with the model diffusion problem
(8) posed on the rectangular domain Ω = (−1, 1) × (−1, 3) with slit at (0, 0).
In the presence of a reentrant corner, here a slit, with angle ω = 2π, the
solution involves a “corner singularity”. It can be written in the form u =
ψr1/2 + ũ , with r being the distance to the corner point and ũ ∈ H2(Ω).
We want to illustrate how the singularity introduced by the weights interacts
with the pollution effect caused by the slit singularity. Let the goal be the
accurate computation of the a derivative value J(u) = ∂1u(P ) at the point
P = (0.75, 2.25). In this case the dual solution z behaves like

|∇2z(x)| ≈ d(x)−3 + r(x)−3/2,

where d(x) and r(x) are the distance functions with respect to the points P
and (0, 0) , respectively. Notice that in this case, the dual solution does not
exist in the sense of H1

0(Ω) , such that for practical use, we have to regularize
the functional J(u) = ∂1u(P ) appropriately. It follows that

|∂1e(P )| ≈ cI
∑

K∈Th

h4
KρK(uh)

{
d−3
K + r

−3/2
K

}
. (31)

Equilibrating the local error indicators yields

ηK ≈ h4
K

d3
K

≈ TOL

N
⇒ h2

K ≈ d
3/2
K

(TOL
N

)1/2

,

and, consequently,

N =
∑

K∈Th

h2
Kh

−2
K =

( N

TOL

)1/2 ∑

K∈Th

h2
Kd

−3/2
K ≈

( N

TOL

)1/2

.
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This implies that Nopt ≈ TOL−1 which is better than what could be achieved
on a uniformly refined mesh. In fact, the global energy-error estimate leads
to a mesh efficiency like J(e) ∼ N−1/2, i.e., Nopt ≈ TOL−2. This predicted
asymptotic behavior is well confirmed by the results of our computational test
shown in Figures 30 and 31 (for more details, we refer to [14]).

Figure 30: Refined meshes with about 5, 000 cells for computing ∂1u(P ) using the
weighted error estimate ηweight (middle) and the energy error estimate ηE (right);
from Backes [4].
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Figure 31: Test results on the slit domain obtained by the weighted error estimator
ηweight: comparison with the true error (left) and comparison of efficiency with that
of the energy error estimator ηE (right); from Backes [4].

(II) The transport model problem: Next, we consider the model problem (19)
on the unit square Ω = (0, 1)×(0, 1) ⊂ R

2 with the right-hand side f ≡ 0,
the (constant) transport coefficient β = (1, 0.5)T , and the inflow data

g(x, 0) = 0, g(0, y) = 1 .
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The quantity to be computed is part of the outflow as indicated in Figure 32:

J(u) :=

∫

Γ

β·nu ds .

The mesh refinement is organized according to the “fixed fraction strategy”
described above. In Table 3, we show results for this test computation. The
corresponding meshes and the primal as well as the dual solution are presented
in Figure 32. Notice that there is no mesh refinement enforced along the upper
line of discontinuity of the dual solution since here the residual of the primal
solution is almost zero.

������*
β

Γ

Figure 32: Configuration and grids of the test computation for the model transport
problem (19): primal solution (left) and dual solution (right) on an adaptively refined
mesh.

Table 3: Convergence results of the test computation for the model transport prob-
lem (19).

Level N J(e) η η/J(e)
0 256 2.01e-2 2.38e-2 1.18
1 310 1.82e-2 1.96e-2 1.08
2 634 1.09e-2 1.21e-2 1.11
3 964 7.02e-3 8.23e-3 1.17
4 1315 6.25e-3 7.88e-3 1.26
5 1540 5.37e-3 6.94e-3 1.29
6 2050 4.21e-3 5.37e-3 1.27
7 2128 4.11e-3 5.21e-3 1.27

7.3 A general paradigm for a posteriori error estimation

The approach to residual–based error estimation described above for the linear
model problem can be extended to general nonlinear systems. We outline
the underlying concept in an abstract setting following the general paradigm
introduced by Johnson, et al. [26].
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Let V be a Hilbert space with inner product (·, ·) and corresponding norm
‖ · ‖ , A(·; ·) a continuous semi-linear form and F (·) a linear form defined on
V . We seek a solution u ∈ V to the abstract variational problem

A(u;φ) = F (φ) ∀φ ∈ V. (32)

This problem is approximated by a Galerkin method using a sequence of finite
dimensional subspaces Vh ⊂ V parameterized by a discretization parameter
h. The discrete problems seek uh ∈ Vh satisfying

A(uh;φh) = F (φh) ∀φh ∈ Vh. (33)

The key feature of this approximation is the “Galerkin orthogonality” which
in this nonlinear case reads as

A(u;φh) − A(uh;φh) = 0, φh ∈ Vh. (34)

By elementary calculus, there holds

A(u;φ) − A(uh;φ) =

∫ 1

0

A′(su+ (1 − s)uh; e, φ) ds,

with A′(v; ·, ·) denoting the tangent form of A(·; ·) at some v ∈ V . This leads
us to introduce the bilinear form

L(u, uh;φ, ψ) :=

∫ 1

0

A′(su+ (1 − s)uh;φ, ψ) ds ,

which depends on the solutions u as well as uh . Then, denoting the error by
e = u− uh, there holds

L(u, uh; e, φh) =

∫ 1

0

A′(su+ (1 − s)uh; e, φh) ds

= A(u;φh) − A(uh;φh) = 0 , φh ∈ Vh.

Suppose that the quantity J(u) has to be computed, where J(·) is a linear
functional defined on V . For representing the error J(e) , we use the solution
z ∈ V of the dual problem

L(u, uh;φ, z) = J(φ) ∀φ ∈ V. (35)

Assuming that this problem is solvable and using the Galerkin orthogonality
(34), we obtain the error representation

J(e) = L(u, uh; e, z − zh) = F (z − zh) − A(uh; z − zh), (36)

with any approximation zh∈Vh. Since the bilinear form L(u, uh; ·, ·) contains
the unknown solution u in its coefficient, the evaluation of (36) requires ap-
proximation. The simplest way is to replace u by uh , yielding a perturbed
dual problem

L(uh, uh;φ, z̃) = J(φ) ∀φ ∈ V. (37)
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We remark that the bilinear form L(uh, uh; ·, ·) used in (37) is identical to the
tangent form A′(uh; ·, ·) . Controlling the effect of this perturbation on the
accuracy of the resulting error estimate may be a delicate task and depends
strongly on the particular problem under consideration. Our own experience
with several different types of problems (including the Navier-Stokes equations)
indicates that this problem is less critical as long as the continuous solution
is stable. The crucial problem is the numerical computation of the perturbed
dual solution z̃ by solving a discretized dual problem

L(uh, uh;φ, z̃h) = J(φ) ∀φ ∈ Vh. (38)

This then results in a practically useful error estimate J(e) ≈ η̃(uh).

Open Problem 7.2: Analyze the effect of the error introduced by the lin-
earization steps (37) and (38) on the quality of the a posteriori error bound
and design a reliable strategy for controlling this error.

7.3.1 The nested solution approach

For solving the nonlinear problem (32) by the adaptive Galerkin finite element
method (33), we employ the following iterative scheme. Starting from a coarse
initial mesh T0 , a hierarchy of refined meshes Ti, i ≥ 1 , and corresponding
finite element spaces Vi is generated by a nested solution process.

(0) Initialization i = 0 : Start on coarse mesh T0 with

v
(0)
0 ∈ V0.

(1) Defect correction iteration: For i ≥ 1, start with

v
(0)
i = vi−1 ∈ Vi.

(2) Iteration step: Evaluate the defect

(d
(j)
i , φ) := F (φ) −A(v

(j)
i ;φ), φ ∈ Vi.

Choose a suitable approximation Ã′(v
(j)
i ; ·, ·) to the derivative A′(v

(j)
i ; ·, ·)

(with good stability and solubility properties) and solve the correction equation

δv
(j)
i ∈ Vi : Ã′(v

(j)
i ; δv

(j)
i , φ) = (d

(j)
i , φ) ∀φ ∈ Vi.

For this, Krylov-space or multigrid iterations are employed using the hierarchy
of already constructed meshes {Ti, ...,T0}. Then, update v

(j+1)
i = v

(j)
i +λiδv

(j)
i

(λi ∈ (0, 1] a relaxation parameter), set j = j + 1 and go back to (2). This
process is repeated until a limit vi ∈ Vi, is reached with a certain required
accuracy.

(3) Error estimation: Solve the (linearized) discrete dual problem

zi ∈ Vi : A′(vi;φ, zi) = J(φ) ∀φ ∈ Vi,
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and evaluate the a posteriori error estimate

|J(ei)| ≈ η̃(vi).

For controlling the reliability of this bound, i.e. the accuracy in the determina-
tion of the dual solution z , one may check whether ‖zi − zi−1‖ is sufficiently
small; if this is not the case, additional global mesh refinement is advisable. If
η̃(vi) ≤ TOL or Ni ≥ Nmax , then stop. Otherwise cell-wise mesh adaptation
yields the new mesh Ti+1. Then, set i = i+ 1 and go back to (1).

This nested solution process is employed in the application presented below.
Notice that the derivation of the a posteriori error estimate (3) involves only
the solution of linearized problems. Hence, the whole error estimation may
amount only to a relatively small fraction of the total cost for the solution
process.

7.4 Application to the Navier-Stokes equations

The results in this section are collected from Becker [7, 9]; see also [12]. We
consider the stationary Navier-Stokes equations

−ν∆v + v·∇v + ∇p = 0, ∇·v = 0 , (39)

in a bounded domain Ω ⊂ R
2, with boundary conditions as described in

Section 2,
v|Γrigid

= 0, v|Γin
= vin, ν∂nv − pn|Γout

= 0.

As an example, we consider the flow around the cross section of a cylinder in
a channel shown in Figure 33. This is part of a set of benchmark problems
discussed in Schäfer/Turek [81].

Figure 33: Configuration of the benchmark “flow around a cylinder”
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Quantities of physical interest are, for example,

pressure drop: J∆p(v, p) = p(afront) − p(aback),

drag coefficient: Jdrag(v, p) =
2

Ū2D

∫

S

n·σ(v, p)ex ds,

lift coefficient: Jlift(v, p) =
2

Ū2D

∫

S

n·σ(v, p)ey ds,

where S is the surface of the cylinder, D its diameter, ex and ey the cartesian
unit vectors, Ū the reference velocity, and σ(v, p) = 1

2
ν(∇v + ∇vT ) + pI the

stress force acting on S. In our example, the Reynolds number is Re =
Ū2D/ν = 20 , such that the flow is stationary. For evaluating the drag and
lift coefficients, one may use another representation obtained by the Stokes
formula, e.g., for the drag:

Jdrag :=
2

Ū2D

∫

S

n·σ(v, p)ex ds =
2

Ū2D

∫

Ω

{σ(v, p)∇ēx + ∇σ(v, p)·ēx} dx,

where ēx is an extension of ex to the interior of Ω with support along S ;
see Giles, et al. [28] and Becker [9]. This representation in terms of a domain
integral is more robust and accurate than the original one involving a contour
integral.

The discretization is by the finite element Galerkin method using the con-
forming Q1/Q1 Stokes element described in Section 3 with least-squares pres-
sure stabilization and streamline diffusion stabilization for the transport. In
order to incorporate this scheme in the abstract framework described above, we
rewrite it in a more compact form. To this end, we introduce the Hilbert-spaces
V := H×L of pairs u := {v, p} and their discrete analogues Vh := Hh×Lh of
pairs uh := {vh, ph} . Accordingly the Navier-Stokes equations can be written
in vector form as follows:

Lu :=

[
−ν∆v + v·∇v + ∇p

∇·v

]
=

[
f
0

]
.

Further, for u := {v, p} and φ = {ψ, χ} , we define the semi-linear form

A(u;φ) := ν(∇v,∇ψ) + (v·∇v, ψ) − (p,∇·ψ) + (∇·v, χ),

and the linear functional F (φ) := (f, ψ) . Then, the stationary version of
the variational formulation (8) is written in the following compact form: Find
u ∈ V + (vinh , 0)T , such that

A(u;φ) = F (φ) ∀φ ∈ V. (40)

Using the weighted L2-bilinear form

(v, w)h :=
∑

K∈Th

δK(∇v,∇w)K,
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the stabilized finite element approximation reads as follows: Find uh ∈ Vh +
(vin, 0)T such that

A(uh;φh) + (Luh, Sφh)h = (F, φh) + (F, Sφh)h ∀φh ∈ Vh , (41)

where the stabilization operator S is defined by

Sφ :=

[
ν∆ψ + v·∇ψ + ∇χ

0

]
,

with the parameter δ specified by (36). This formulation contains the pressure
and transport stabilization as described in Section 3.

The question is now how to construct a mesh as economical as possible on
which the quantities J∆p(v, p) , Jdrag(v, p) and Jlift(v, p) can be computed to
the required accuracy, say, of 1% . The a priori design of such a mesh is a
difficult task as will be demonstrated by the results of numerical tests below;
Table 34 shows a collection of possible a priori meshes.

Figure 34: Examples of meshes designed for the benchmark problem “flow around
a cylinder”; the first three meshes on the left, “Grid 1”, “Grid 2”, and “Grid 3”, are
coarse initial meshes which are to be uniformly refined.

Now, we will discuss the use of a posteriori techniques for constructing
economical meshes. We denote the discretization error for the pressure by
ep := p−ph and that for the velocity by ev := v−vh . By standard arguments
relying on the coerciveness properties of the Fréchet derivative of the operator
L , one derives the following energy-norm a posteriori error estimate

‖∇ev‖ + ‖ep‖ ≤ cIcS

( ∑

K∈Th

{
(h2

K + δK)‖R(uh))‖2
K + (42)

+‖∇·vh‖2
K + νhK‖n·[∇vh]‖2

∂K

}
+ ...

)1/2

,
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with the residual R(uh) := ν∆vh − vh·∇vh − ∇ph . In this estimate the “...”
stand for additional terms representing the errors in approximating the inflow
data and the curved boundary S ; they can be expected to be small compared
to the other residual terms and are usually neglected. In this estimate the
interpolation constant cI can be determined and is of moderate size cI ∼
0.2 . The most critical point is the stability constant cS which is completely
unknown. It is related to the constant in the coerciveness estimate of the
tangent form A′(v; ·, ·) of A(·; ·) taken at the solution v ,

‖∇w‖ + ‖q‖ ≤ cS sup
φ∈V

{
A′(v; z, φ)

‖∇ψ‖ + ‖χ‖

}
,

where z = {w, q} and φ = {ψ, χ} . In order to use this error bound for
mesh-size control, we have set it to cS = 1 .

The error estimate (42) is not appropriate for controlling the error in lo-
cal quantities like drag and lift since it measures the residual uniformly over
the whole computational domain. One way of introducing more a priori in-
formation into the mesh refinement process based on (42) is to start from an
initial mesh which is already refined towards the contour S . Alternatively,
one may also use (on heuristic grounds) additional weighting factors which
enforce stronger mesh refinement in the neighborhood of S . The resulting
global error indicator reads as follows:

‖∇ev‖ + ‖ep‖ ≤ cIcS

( ∑

K∈Th

σK

{
(h2

K + δK)‖R(uh))‖2
K (43)

+‖∇·vh‖2
K + νhK‖n·[∇vh]‖2

∂K

}
+ ...

)1/2

,

where the weights σK are chosen large along S .
Correctly weighted a posteriori error estimates can be obtained following

the general line of argument described above. The approximate dual problem
seeks z := {w, q} ∈ V satisfying

A′(uh;ϕ, z) + (L′(uh)
∗ϕ, Sz)δ = J(ϕ) ∀ϕ ∈ V , (44)

where A′(uh; ·, ·) and L′(uh)
∗ are the tangent form and adjoint tangent op-

erator of A(·; ·) and L(·) , respectively. The resulting weighted a posteriori
estimate for the error e := u− uh becomes

|J(e)| ≤
∑

K∈Th

{
ρK ωK + ρ∂K ω∂K + ρdivK ωdivK + ...

}
, (45)

with the local residual terms and weights defined by

ρK = ‖R(uh)‖K , ωK = ‖w − wh‖K + δK‖vh·∇(w − wh) + ∇(q − qh)‖K ,
ρ∂K = 1

2
ν‖n·[∇vh]‖∂K , ω∂K = ‖w − wh‖∂K ,

ρdivK = ‖∇·vh‖K , ωdivK = ‖q − qh‖K .
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The dots “...” stand again for additional terms measuring the errors in ap-
proximating the inflow and the curved cylinder boundary. For more details on
this aspect, we refer to [14] and Becker [9]. The bounds for the dual solution
z = {w, q} are obtained computationally by replacing the unknown solution
u in the convection term by its approximation uh and solving the resulting
linearized problem on the same mesh. From this approximate dual solution
z̃h , patchwise biquadratic interpolations are taken to approximate z in eval-
uating the weights ω

(i)
K , I

(2)
h z̃h − zh ≈ z − zh. This avoids the occurrence of

interpolation constants.

Table 4 shows the corresponding results for the pressure drop computed on
four different types of meshes:

(i) Hierarchically refined meshes starting from coarse meshes of type “Grid 1”
and “Grid 2” as shown in Figure 34.

(ii) Adapted meshes using the global energy-norm error estimate (42) with
enforced refinement along the contour S ; see Figure 43.

(iii) Adapted meshes using the weighted error estimate (45) for the pressure
drop; see Figure 42.

These results demonstrate clearly the superiority of the weighted error estimate
(45) in computing local quantities. It produces an error of less than 1% already
after 6 refinement cycles on a mesh with less than 1400 unknowns while the
other algorithms use more than 21000 unknowns to achieve the same accuracy
(the corresponding values are printed in boldface). Corresponding sequences of
meshes generated by the weighted energy error estimate (42) and the energy-
error estimate (43) are seen in Figures 35 and 36.

Table 5 contains some results of the computation of drag and lift coefficients
using the corresponding weighted error estimates. The effectivity index is
defined by Ieff := η(uh)/|J(e)| . Finally, Figure 37 shows plots of the dual
solutions occurring in the computation of pressure drop, drag and lift.
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Table 4: Results of the pressure drop computation (ref. value ∆p = 0.11752016... );
a) upper row: on uniformly refined meshes of type Grid1 and Grid2, b) lower row:
on adaptively refined meshes starting from a coarse mesh Grid1; from Becker [7].

Uniform Refinement, Grid1

L N ∆p

1 2268 0.109389

2 8664 0.110513

3 33840 0.113617

4 133728 0.115488

5 531648 0.116486

Uniform Refinement, Grid2

L N ∆p

1 1296 0.106318

2 4896 0.112428

3 19008 0.115484

4 74880 0.116651

5 297216 0.117098

Adaptive Refinement, Grid1

L N ∆p

2 1362 0.105990

4 5334 0.113978

6 21546 0.116915

8 86259 0.117379

10 330930 0.117530

Weighted Adaptive Refinement

L N ∆p

4 650 0.115967

6 1358 0.116732

9 2858 0.117441

11 5510 0.117514

12 8810 0.117527

Figure 35: A sequence of refined meshes generated by the (heuristically) weighted
global energy estimate; from Becker [7].

Figure 36: A sequence of refined meshes generated by the weighted error estimate
for the pressure drop; from Becker [7].
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Table 5: Results of the cylinder flow computations of drag and lift (ref. values
cdrag = 5.579535... and clift = 0.0106189... ) on adaptively refined meshes starting
from a coarse mesh of type Grid1; from Becker [9].

Computation of drag

L N cdrag ηdrag Ieff
3 251 5.780186 2.0e−1 0.5

4 587 5.637737 5.8e−2 0.6

5 1331 5.568844 1.0e−2 1.6

6 3953 5.576580 2.5e−3 2.0

7 8852 5.578224 8.7e−4 2.5

8 16880 5.578451 6.5e−4 1.6

9 34472 5.578883 2.1e−4 2.0

Computation of lift

L N clift ηlift Ieff
3 296 0.007680 2.9e−3 5.0

4 764 0.009249 1.4e−3 5.0

5 1622 0.009916 7.3e−4 5.0

6 4466 0.010144 5.0e−4 2.5

7 8624 0.010267 3.8e−5 2.0

8 18093 0.010457 1.9e−5 2.0

9 34010 0.010524 1.2e−4 1.6

Figure 37: Velocity plots of the dual solution for pressure drop (top), drag (middle),
and lift (bottom); from Becker [9].

7.5 The nonstationary case

The extension of the approach to mesh adaptivity described above to the non-
stationary Navier-Stokes equations is presently under development.

(I) The traditional method for a posteriori time-step selection is based on the
concept of controlling the local “truncation error” but neglecting the global
error accumulation. In its simplest form this strategy uses the condition

1
3
cSk

2
n(U

n
k/2 − Un

k ) ≈ TOL, (46)

where Un
k and Un

k/2 are the solutions computed from the preceding approx-

imation Un−1 at tn−1 by a second-order scheme (e.g. the Crank-Nicolson
scheme) with time-step sizes k and k/2 , respectively. For a more detailed
description of techniques of this type, we refer to Turek [97].
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(II) The extension of the residual-based error control described above to non-
stationary problems is based on a time discretization which has also the fea-
tures of a Galerkin method. These are for example the so–called “continuous”
or “discontinuous” Galerkin methods of polynomial degree r ≥ 0 (“cG(r)” or
“dG(r)” methods). The lowest-order examples are the dG(0) method which (in
the autonomous case) is equivalent to the backward Euler scheme, the dG(1)
method which is similar to an implicit Runge-Kutta scheme of third order, and
the cG(1) method which can be interpreted as a variant of the Crank-Nicolson
scheme. In particular, the dG(1) method is attractive for solving the nonsta-
tionary Navier-Stokes problem because of its superior accuracy (compared to
the dG(0) method).

The result of error estimation using a duality argument is an a posteriori
error estimate of the form (see [55] and Hartmann [39])

‖Un
k − u(·, tn)‖ ≈

n∑

m=1

{
k3
mωm‖dtUm

k ‖ + ...
}

(47)

where dtU
m
k = k−1

m (Um
k −Um−1

k ) are the time-difference quotients of the com-
puted solution and ωm are weighting factors obtained by solving a “backward
in time” space-time dual problem. The dots “...” refer to residual terms of
the spatial discretization. The main problem with this approach is its huge
computational work; in a nonlinear problem the “forward” solution {Um

k }nm=0

enters the linearized dual problem as coefficient and needs therefore to be
stored over the whole time interval. Moreover, in this way error control can
be achieved only at single times tn or for the time-averaged error. Controlling
the error uniformly in time requires (theoretically) to solve a dual problem at
each discrete time level resulting in prohibitively high cost. The economical
realization of this concept for computing nonstationary flows involving global
error control is still an open problem.

Open Problem 7.3: Devise a strategy for adapting the stabilization parame-
ters δK simultaneously with the mesh size hK on the basis of the a posteriori
error estimate (45).

Open Problem 7.4: Derive an a posteriori error estimate of the form (45)
for the full space-time discretization of the Navier-Stokes equations and device
a strategy for simultaneous adaptation of mesh sizes hK and time steps kn .
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8 Extension to weakly compressible flows

In this last section, we discuss the extension of the computational methodology
described above to certain compressible flows. The flows of interest are those
in which density changes are induced by temperature gradients resulting for
example from heat release by chemical reactions. Such “weakly” compress-
ible flows are characterized by low-Mach-number speed and hydrodynamically
incompressible behavior. Here, the dominant problem is that of stiff velocity-
pressure coupling while shocks or large pressure gradients do not develop. We
recall the system of conservation equations for mass, momentum and energy,
in the case of a stationary flow:

∇·[ρv] = 0 , (1)

ρv·∇v −∇·[µ∇v + 1
3
µ∇·vI] + ∇ptot = ρf , (2)

cpρv·∇T −∇·[λ∇T ] = h . (3)

Here, again v is the velocity, ρ the density, ptot the (total) pressure and T
the temperature of the fluid occupying a two- or three-dimensional region Ω .
The dynamic viscosity µ > 0 , the heat capacity cp > 0 , the heat conductivity
λ , the external volume force f and the heat source h are given. Since we only
consider low-speed flows, the influence of stress and hydrodynamic pressure in
the energy equation can be neglected. In general, f as well as h implicitly
depend on the temperature T and on further quantities describing the release
of heat for example through chemical reactions. Here, we will simply consider
the heat source h as given. The coupling between pressure and density is
assumed as that of a perfect gas,

ptot = RρT, (4)

where R is the gas constant. As mentioned above, we consider hydrodynam-
ically incompressible flows. Accordingly, the pressure is split into two parts,

ptot(x, t) = p̄(t) + phyd(x, t),

namely the spatial mean value

p̄ := |Ω|−1

∫

Ω

ptot(x, t) dx,

and the “hydrodynamic pressure” phyd(x, t) . In a weakly compressible flow,
the pressure variation due to hydrodynamic mechanisms is assumed to be small
compared to the mean value of the total pressure,

|phyd| ≪ |p̄|,
which is determined by thermodynamic effects. Accordingly, we call Pth(t) =
p̄(t) the “thermodynamic pressure”. In the “low-Mach-number approxima-
tion” the hydrodynamic pressure occurs in the momentum equation

ρv·∇v −∇·[µ∇v + 1
3
µ∇·vI] + ∇phyd = ρf, (5)
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while the pressure-density coupling in the equation of state (4) is expressed in
terms of the “thermodynamic pressure”

ρ =
Pth
RT

. (6)

In many applications, this set of equations has to be supplemented by further
conservation equations for species concentrations and complicated nonlinear
source terms representing the chemical reactions. Here, we restrict ourselves
to the simple case of low-Mach-number flow, where temperature variations
are induced by outer source terms. The thermodynamic pressure Pth(t) is
supposed to be determined by a priori considerations; for more details, see
Braack [17] and also [18].

Open Problem 8.1: Estimate the error caused by neglecting stress and hy-
drodynamic pressure in the energy equation. Prove corresponding error bounds
for the low-Mach-number approximation in terms of the Mach number.

Since in the above approximation the density occurs as a secondary vari-
able determined by the temperature through the equation of state, it appears
natural to use the pressure p := phyd together with the velocity v and the
temperature T as primal variables in the computational model. We use the
equation of state to rewrite the continuity equation as an equation for velocity
and temperature:

∇·v − T−1v·∇T = 0 . (7)

Furthermore, introducing the modified pressure p := phyd − 1
3
µ∇·v , the mo-

mentum equation can be written as

ρv·∇v −∇·[µ∇v] + ∇p = ρf , (8)

while the energy equation keeps the form

cpρv·∇T −∇·[λ∇T ] = h . (9)

The temperature-dependent functions µ = µ(T ) and cp = cp(T ) are usually
given in terms of polynomial fits from data bases. The density ρ is expressed
by the algebraic relation (6) in terms of the temperature. The system is closed
by imposing appropriate boundary conditions,

v|Γrigid
= 0, v|Γin

= vin, µ∂nv + pn|Γout
= 0, T|∂Ω = T̂ , (10)

where again Γrigid, Γin, Γout are the rigid part, the inflow part and the outflow
part of the boundary ∂Ω , respectively. For questions of well-posedness of this
type of problem, we refer to the relevant literature, e.g., Feistauer [27] and
Lions [60].

The starting point for a finite element discretization of problem (7), (8), (9),
and (6) is again its variational formulation. To formulate this, we introduce
the natural function spaces as already used above,

L ⊂ L2(Ω), H ⊂ H1(Ω)d, R ⊂ H1(Ω).
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for the pressure p ∈ L , the velocity v ∈ H , and the temperature T ∈ R . For
a compact notation, we set V := L×H×R . Prescribed Dirichlet data v̂ and
T̂ can be included by seeking the weak solutions in appropriate sub-manifolds,

p ∈ L, v ∈ v̂ + H, T ∈ T̂ +R .

Then, the triple u := {p, v, T} is determined by the variational equations

(∇·v, χ) − (T−1v·∇T, χ) = 0, ∀χ ∈ L, (11)

(ρv·∇v, ψ) + (µ∇v,∇ψ) − (p,∇·ψ) = (ρf, ψ) ∀ψ ∈ H, (12)

(ρcpv·∇T, π) + (λ∇T,∇π) = (h, π) ∀π ∈ R. (13)

In the following analysis, we consider for simplicity only the case of pure Dirich-
let boundary conditions. In this case the pressure is determined only modulo
constants and the corresponding solution space is L = L2

0(Ω) .
Now, the finite element discretization replaces the (infinite dimensional)

function spaces L , H , and R by finite dimensional discrete spaces denoted by
Lh, Hh , and Rh. Here, we think of finite element spaces based for example on
conforming Q1 approximation for all physical quantities. The corresponding
discrete solutions ph ∈ Lh , vh ∈ v̂h + Hh , and Th ∈ T̂h + Rh are determined
through the system

(∇·vh, χh) − (T−1
h vh·∇Th, χh) = 0, ∀χh ∈ Lh, (14)

(ρvh·∇vh, ψh) + (µ∇vh,∇ψh) − (ph,∇·ψh) = (ρf, ψh) ∀ψh ∈ Hh, (15)

(ρcpvh·∇Th, πh) + (λ∇Th,∇πh) = (h, πh) ∀πh ∈ Rh, (16)

with coefficients µ = µ(Th) and cp = cp(Th) . The compact formulation of the
system (14)-(16) makes use of the semi-linear form

A(u;φ) := (∇·v, χ) − (T−1v·∇T, χ) + (ρv·∇v, ψ) + (µ∇v,∇ψ)

−(p,∇·ψ) + (ρcpv·∇T, π) + (λ∇T,∇π),

and the linear form
F (φ) = (ρf, ψ) + (h, π),

defined for triples u = {p, v, T}, φ = {χ, ψ, π} ∈ V . With this notation, the
problem reads as follows: Find u ∈ û+ V , such that

A(u;φ) = F (φ) ∀φ ∈ V. (17)

where û represents Dirichlet boundary data for all components. The corre-
sponding discrete problem reads: Find uh ∈ ûh + Vh, such that

A(uh;φh) = F (φh) ∀φh ∈ Vh. (18)

In general this system is unstable and needs stabilization with respect to the
stiff velocity-pressure coupling as well as the transport terms.
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8.1 Least-squares stabilization

The stabilization is introduced into the system (18) by using pressure stabi-
lization and streamline diffusion as discussed above in the context of the in-
compressible Navier-Stokes equations. The corresponding stabilization terms
are listed below:

• Pressure stabilization:

sph(uh, χh) =
∑

K∈Th

αK(v̄h·∇vh −∇·[µ∇vh] + ∇ph,∇χh)K ,

rph(uh, χh) =
∑

K∈Th

αK(ρf,∇χh)K .

• Streamline diffusion for the velocities:

svh(uh, ψh) =
∑

K∈Th

δK(ρv̄h·∇vh −∇·[µ∇vh] + ∇ph, ρv̄h·∇ψh)K ,

rvh(uh, ψh) =
∑

K∈Th

δK(ρf, ρv̄h·∇ψh)K .

• Streamline diffusion for the temperature:

sTh (uh, πh, χh) =
∑

K∈Th

γK(ρcpv̄h·∇Th −∇·[λ∇Th], ρcpv̄h·∇πh)K ,

rTh (uh, πh, χh) =
∑

K∈Th

γK(h, ρcpv̄h·∇πh)K .

Here, v̄h is a suitable approximation to the current velocity field vh , taken
for example from a preceding iteration step. We denote the sum over these
h-dependent stabilization terms by sh(·, ·) and rh(·) , respectively,

sh(uh, φ) := sph(uh, χ) + svh(uh, ψ) + sTh (uh, π),

rh(uh, φ) := rph(uh, χ) + rvh(uh, ψ) + rTh (uh, π).

Then, with Ah(·; ·) := A(·; ·) + sh(·, ·) and Fh(·) := F (·) + rh(·) , the discrete
equations can be written in compact form

Ah(uh;φ) = Fh(φh) ∀φ ∈ Vh. (19)

In order to ensure symmetry for the resulting stabilized system, αK should
be taken equal to δK . The stability and consistence of this formulation can
be analyzed by similar techniques as used in the case of the incompressible
Navier-Stokes equations; see Braack [17]. One obtains the following condition
for the parameters δK :

δK =

[
µ

h2
K

+
|ρv̄h|∞
hK

]−1

, γK =

[
λ

h2
K

+
|ρcpv̄h|∞
hK

]−1

. (20)
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Open Problem 8.2: Derive a formula for the stabilization parameters δK
and γK which leads to a robust scheme on general meshes with large aspect
ratio σh .

8.2 Computational approach

For solving the model for weakly compressible flow introduced above, we want
to use the methodology discussed for incompressible flows.

(i) Explicit defect correction coupling:
The simplest way to use an “incompressible solver” for computing weakly com-
pressible flows is by a defect correction iteration. The step {pl−1

h , vl−1
h , T l−1

h } →
{plh, vlh, T lh} of this scheme proceeds as follows:

1. The nonlinear coefficients (density, transport vectors, etc.) are frozen at
{pl−1

h , vl−1
h , T l−1

h } . Corresponding corrections {δplh, δvlh, δT lh} ∈ Vh are deter-
mined by solving the linearized system:

(∇·δvlh, χh) = (dl−1
p , χh), ∀χh ∈ Lh,

(ρvl−1
h ·∇δvlh, φh) + (µ∇δvlh,∇φh) − (δplh,∇·φh) = (dl−1

v , φh) ∀φh ∈ Hh,

(ρcpv
l−1
h ·∇δT lh, πh) + (λ∇δT lh,∇πh) = (dl−1

t , πh) ∀πh ∈ Rh,

where dl−1
p , dl−1

v , and dl−1
T are the defects of the iteration {pl−1

h , vl−1
h , T l−1

h } .
For the sake of robustness, the pressure and transport stabilization described
above has also to be applied to this problem.

2. The new solution vector is obtained by

plh = pi−1
h + κlδp

l
h, vlh = vi−1

h + κlδv
l
h, T lh = T i−1

h + κlδT
l
h,

with some relaxation parameter κl ∈ (0, 1] , and the density is updated ac-
cording to ρlh = Pth/(RT

l
h) .

3. The iteration is continued until some stopping criterion is satisfied.

In each step of this iteration a linearized Navier-Stokes problem supplemented
by a heat transfer equation is to be solved. This may be accomplished by using
the methods described above for the incompressible Navier-Stokes equations.
Hence, the “incompressible solver” is used for preconditioning the defect cor-
rection iteration for solving the full system (18). However, this simple defect
correction process may converge very slowly in the case of large temperature
gradients (e.g., caused by strong heat release in chemical reactions). This lack
of robustness can be cured by making the iteration more implicit.

(ii) Semi-implicit defect correction coupling:
In order to achieve better control on the variation of temperature, one may
use the following more implicit iteration:
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1. The nonlinear coefficients (density, transport vectors, etc.) are frozen at
{pl−1

h , vl−1
h , T l−1

h } . Corresponding corrections {δplh, δvlh, δT lh} ∈ Vh are then
determined by solving the linearized system:

(∇·δvlh, χh) + ((T l−1
h )−1vl−1

h ·∇δT lh, χ) = (dl−1
p , χh) ∀χh ∈ Lh,

(ρvl−1
h ·∇δvlh, φh) + (µ∇δvlh,∇φh) − (δplh,∇·φh) = (dl−1

v , φh) ∀φh ∈ Hh,

(ρcpv
l−1
h ·∇δT lh, πh) + (λ∇δT lh,∇πh) = (dl−1

t , πh) ∀πh ∈ Rh,

where dl−1
p , dl−1

v , and dl−1
T are the defects of the iteration {pl−1

h , vl−1
h , T l−1

h } .
Again, the pressure and transport stabilization described above has to be ap-
plied.

2. The new solution vector is obtained by

plh = pi−1
h + κlδp

l
h, vlh = vi−1

h + κlδv
l
h, T lh = T i−1

h + κlδT
l
h,

with some relaxation parameter κl ∈ (0, 1] , and the density is updated ac-
cording to ρlh = Pth/(RT

l
h) .

3. The iteration is continued until some stopping criterion is satisfied.

This solution method has been used in Braack [17] for the simulation of low-
Mach-number combustion processes; see also [10] and [18].

8.3 The algebraic system

In each substep of the defect correction iterations described above, we have to
solve linear problems for the coefficients xj = {x(p)

j , x
(v)
j , x

(T )
j } including the

components for pressure, velocity and temperature in the basis representations

ph =
N∑

j=1

x
(p)
j ψj , vh =

N∑

j=1

x
(v)
j ψj , Th =

N∑

j=1

x
(T )
j ψj .

The system sub-matrices corresponding to the different components are ob-
tained from the coupled system by taking first test functions of the form
φh = {ψh, 0, 0}:

Ah(uh; {ψh, 0, 0}) = (∇·vh, ψh) − (T̄−1
h v̄h·∇Th, ψh)

+
∑

K∈Th

δK(ρv̄h·∇vh −∇·(µ∇vh) + ∇ph,∇ψh)K .

Analogously, taking the test functions φh = {0, ψh, 0}, we obtain the equation
for the velocity components,

Ah(uh; {0, ψh, 0}) = (ρv̄h·∇vh, ψh) + (µ∇vh,∇ψh) − (ph,∇·ψh) +∑

K∈Th

δK(ρv̄h·∇vh −∇·(µ∇vh) + ∇ph, ρv̄h·∇ψh)K ,
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and by taking the test functions φh = (0, 0, πh) the equation for the tempera-
ture component,

Ah(uh; {0, 0, ψh}) = (ρcpv̄h·∇Th, ψh) + (λ∇Th,∇ψh) +∑

K∈Th

γK(ρcpv̄h·∇Th −∇·[λ∇Th], ρcpv̄h·∇ψh) .

Ordering the unknowns in a physically block-wise sense, i.e., marching through
the set of nodal points and attaching to each node the corresponding submatrix
containing the unknowns of all physical quantities, we obtain “nodal matrices”
Aij of the form

Aij =



Bpp Bpv BpT

Bvp Bvv BvT

BTp BTv BTT


 ,

where the indices p, v, T indicate the corresponding contributions. Looking
at the equations, we see that almost all physical components are coupled with
each other; only the pressure does not appear in the temperature equation,
i.e., BTp = 0 . Several of the other couplings are of minor importance and

may be neglected in building an approximating nodal matrix Ãij to Aij .
One could think of a complete decoupling of the flow variables {p, v} from
the temperature T (or other state variables describing for example chemical
reactions) resulting in an approximation of the form

Ãij =



Bpp Bpv 0
Bvp Bvv 0
0 0 BTT


 .

However, such a simplification is not appropriate in computing processes in
which the temperature has a significant influence on the flow field and vice
versa. For example, in combustion problems, density variations are mainly
caused by changes of the temperature. A detailed discussion of this issue can
be found in Braack [17] and in [18].
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8.4 An example of chemically reactive flow

We close this section by presenting some results from Braack [17] on computa-
tions for low-Mach-number flows with chemical reactions. The configuration
considered is the model of a methane burner with a complicated geometry
and using a sophisticated reaction mechanism. A stoichiometric mixture of
methane CH4 and air O2/N2 flows from the bottom of the burner through
a sample of slots of uniform width 2mm and three different heights (varying
from 14mm to 11mm). The columns have a uniform width of 1.5mm . The
inflow velocity is uniformly 0.2m/s . The Reynolds number in this model is
about Re = 90. The geometry is shown in Figure 38.

burnt gas

unburnt gas

flamefront

uniform inflow of CH4 / O2 / N2

1,5     2,0 mm
14 mm

13 mm

11 mm

Figure 38: Geometry of a methane burner; from Braack [17].

Due to the heating of the slots, the flow accelerates up to approximately
1m/s. Since this is higher than the flame velocity of a stoichiometric methane
flame the flame front is located above the slots. For lower inflow velocities,
the flame moves downstream into the slots and extinguishes as a result of the
heat loss by the cold walls.

If the solution is assumed to be spatially periodic, it is sufficient to restrict
the computational domain Ω to only three slots, as shown in Figure 39. The
boundaries at the left and right hand of Ω are symmetry boundary conditions.
The walls of the slots are described by Dirichlet conditions for the temperature
and Neumann conditions for the species. The calculation on the coarsest mesh
(with 1344 cells) uses a time-stepping procedure to provide a physically correct
starting value. Then, on the finer meshes the stationary fixed-point defect
correction iteration converges. In order to obtain ignition, the temperature for
the initial solution is set to 2000K at the points above the slots. The reaction
mechanism is that of Smooke [80] with 15 species and 84 elementary reactions
(42 bidirectional), supplemented by two further species, N and NO , and 4
additional reactions to describe their formation.
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The solution is obtained on an adaptively refined mesh with refinement
criterion based on the linear functional

J(u) = |Ω|−1

∫

Ω

T dx ,

in order to capture the temperature distribution accurately. The finest mesh
is shown in Figure 39; we see local mesh refinement at the flame front and
below the slots where the velocity field changes. The mesh is automatically
adapted and no hand-fitting on the basis of a priori knowledge of the solution
is necessary to find the appropriate balance of the mesh-size distribution. The
CPU time required for such a simulation with about 5,000 cells (≈ 100,000
unknowns) is approximately 6 hours on a Pentium II (233 Mhz) when the
initial guess on the coarse grid with approximately 1300 cells is given.

The computed pressure and the main velocity component are shown in
Figure 39. Due to the strong heat release the flow accelerates by a factor of
10 at the outflow of the slots. At the walls of the slots, Dirichlet conditions for
the temperature are imposed, varying linearly from 298K at the bottom up to
393K , 453K and 513K for the three different walls. This leads to a higher
outflow velocity at the longer slot compared to the shorter ones. Therefore,
the lift-off of the flame is substantially higher at the longer slot, leading to the
common Bunsen cone formed by two neighboring longer slots.

Figure 39: Results of the methane burner simulation: velocity and temperature
profiles (left and middle), finest mesh with 5, 000 cells (right); from Braack [17].
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gleichung, Diploma Thesis, Institute of Applied Mathematics, University of
Heidelberg.

104



[40] J. G. Heywood (1980), The Navier-Stokes equations: On the existence, regu-
larity and decay of solutions, Indiana Univ. Math. J., 29, pp. 639-681.

[41] J. G. Heywood and R. Rannacher (1982), Finite element approximation of
the nonstationary Navier-Stokes Problem. I. Regularity of solutions and second
order error estimates for spatial discretization, SIAM J. Numer. Anal., 19, pp.
275-311.

[42] J. G. Heywood and R. Rannacher (1986), Finite element approximation of
the nonstationary Navier-Stokes Problem. II. Stability of solutions and error
estimates uniform in time, SIAM J. Numer. Anal., 23, pp. 750-777.

[43] J. G. Heywood and R. Rannacher (1988), Finite element approximation of
the nonstationary Navier-Stokes Problem. III. Smoothing property and higher
order error estimates for spatial discretization, SIAM J. Numer. Anal., 25, pp.
489-512.

[44] J. G. Heywood and R. Rannacher (1990), Finite element approximation of the
nonstationary Navier-Stokes Problem. IV. Error analysis for second-order time
discretization, SIAM J. Numer. Anal., 27, pp. 353-384.

[45] J. G. Heywood and R. Rannacher (1986), An analysis of stability concepts for
the Navier-Stokes equations, J. Reine Angew. Math., 372, pp. 1–33.

[46] J. G. Heywood, R. Rannacher, and S. Turek (1992), Artificial boundaries and
flux and pressure conditions for the incompressible Navier-Stokes equations,
Int. J. Numer. Math. Fluids, 22, pp. 325–352.

[47] P. Houston, R. Rannacher, and E. Süli (1999), A posteriori error analysis
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Parallelrechnern, Doctor Thesis, Institute of Applied Mathematics, University
of Heidelberg.

[67] O. Pironneau (1982), On the transport-diffusion algorithm and its applications
to the Navier-Stokes equations, Numer. Math., 38, pp. 309–332.

[68] O. Pironneau (1983), Finite Element Methods for Fluids, John Wiley, Chich-
ester.

[69] A. Prohl (1995), Projektions- und Quasi-Kompressibilitätsmethoden zur Lösung
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