Sample Exam III

Math 166, Section A2

1. The series $27-18+12-8+\frac{16}{3}-\frac{32}{9} \ldots$ converges.

State a reason (with details) for why this series converges (there are two different reasons you could give).

What value does this series converge to?
2. State the integral test; that is, what is it, when can we use it, and what does it tell us?

Use the integral test to explain why the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge.
3. Explain why the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.

The first three terms of the series add up to $\frac{5}{6}$. Give a bound on how far the exact value of the series is from $\frac{5}{6}$.

Why do we say the alternating harmonic series only converges conditionally?
4. Let us compute the interval of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{4^{n}}$.

Use the Ratio Test to determine r, the radius of convergence of this series.

Does the series converge at the left endpoint, $x=-r$, of the interval of convergence?

At the right endpoint, $x=+r$?

Therefore, what is the interval of convergence for this series?
5. What is the Taylor Polynomial $p_{3}(x)$, of degree 3 , about the point $\mathrm{x}=1$, that approximates $\ln (x)$?

Write the formula for the Taylor remainder, which measures the difference between $p_{3}(x)$ and $\ln (x)$, at any point x.
6. Consider the curve whose parametric form is $x=t^{2}+4 t, y=\sin (2 t)$.

What is a formula for the horizontal velocity, $\frac{d x}{d t}$?

For $\frac{d y}{d t}$?

What is a formula for the geometric slope, $\frac{d y}{d x}$?

At what values of t does this curve have vertical tangent lines?

At what values of t does this curve have horizontal tangent lines?
7. Set up the integral for the arclength, from $t=-1$ to $t=+1$, of the curve whose parametric form is $x=t^{2}, y=2 t$.
8. Consider the curve $r=2+3 \sin (\theta)$.

When does this curve have vertical tangent lines?

When does this curve have horizontal tangent lines?
(Your answers may simply be a condition that θ must satisfy.)
9. What is the area contained within the polar curve $r=1-\sin (\theta)$?

