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Outline of Graph Partitioning Lecture

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW,  nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs
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Definition of Graph Partitioning

• Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices),
• WN = node weights

• E = edges
• WE = edge weights

• Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j 
sends WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different 

pairs Nj  and Nk is minimized

• Ex: balance the work load, while minimizing communication
• Special case of N = N1 U N2:   Graph Bisection
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Definition of Graph Partitioning

• Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices),
• WN = node weights

• E = edges
• WE = edge weights

• Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j 
sends WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different 

pairs Nj  and Nk is minimized (shown in black)

• Ex: balance the work load, while minimizing communication
• Special case of N = N1 U N2:   Graph Bisection
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Some Applications
• Telephone network design

• Original application, algorithm due to Kernighan

• Load Balancing while Minimizing Communication
• Sparse Matrix times Vector Multiplication (SpMV)

• Solving PDEs
• N = {1,…,n},     (j,k) in E if  A(j,k) nonzero, 
• WN(j) = #nonzeros in row j,   WE(j,k) = 1

• VLSI Layout
• N = {units on chip},  E = {wires}, WE(j,k) = wire length

• Sparse Gaussian Elimination
• Used to reorder rows and columns to increase parallelism, and to 

decrease “fill-in”

• Data mining and clustering
• Physical Mapping of DNA
• Image Segmentation
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Sparse Matrix Vector Multiplication y = y +A*x

… declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local
y_local = y_local + A_local * x_local
for all procs P that need part of x_local

send(needed part of x_local, P)
for all procs P owning needed part of x_remote

receive(x_remote, P)
y_local = y_local + A_remote(P)*x_remote
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Cost of Graph Partitioning

• Many possible partitionings           
                                  to search

• Just to divide in 2 parts there are: 

      n choose n/2 = n!/((n/2)!)2 ~ 

      (2/(nπ))1/2  * 2n  possibilities

• Choosing optimal partitioning is NP-complete
• (NP-complete = we can prove it is a hard as other well-known 

hard problems in a class Nondeterministic Polynomial time)

• Only known exact algorithms have cost = exponential(n)

• We need good heuristics
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Outline of Graph Partitioning 
Lectures

• Review definition of Graph Partitioning problem

• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space
• Partitioning without Nodal Coordinates

• Ex: In model of WWW,  nodes are web pages
• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing
• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs
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First Heuristic: Repeated Graph Bisection

• To partition N into 2k parts
• bisect graph recursively k times

• Henceforth discuss mostly graph bisection
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Edge Separators vs. Vertex Separators

• Edge Separator: Es (subset of E) separates G if removing Es from E 
leaves two ~equal-sized, disconnected components of N: N1 and N2 

• Vertex Separator: Ns (subset of N) separates G if removing Ns and 
all incident edges leaves two ~equal-sized, disconnected 
components of N: N1 and N2

• Making an Ns from an Es: pick one endpoint of each edge in Es

• |Ns| ≤  |Es| 

• Making an Es from an Ns: pick all edges incident on Ns

• |Es| ≤  d * |Ns| where d is the maximum degree of the graph 

• We will find Edge or Vertex Separators, as convenient

G = (N, E), Nodes N and Edges E
Es = green edges or blue edges
Ns = red vertices
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Overview of Bisection Heuristics

• Partitioning with Nodal Coordinates
• Each node has x,y,z coordinates  partition space

• Partitioning without Nodal Coordinates
• E.g., Sparse matrix of Web documents

• A(j,k) = # times keyword j appears in URL k

• Multilevel acceleration   (BIG IDEA)
• Approximate problem by “coarse graph,” do so recursively
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Nodal Coordinates: How Well Can We Do?

• A planar graph can be drawn in plane without edge 
crossings

• Ex: m x m grid of m2 nodes: ∃ vertex separator Ns with    

|Ns| = m = |N|1/2   (see earlier slide for m=5 )

• Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ Ns such 
that 

• N = N1 U Ns U N2 is a partition,

• |N1| <= 2/3 |N|  and  |N2| <= 2/3 |N|

• |Ns| <= (8 * |N|)1/2

• Theorem motivates intuition of following algorithms
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Nodal Coordinates: Inertial Partitioning

• For a graph in 2D, choose line with half the nodes on 
one side and half on the other

• In 3D, choose a plane, but consider 2D for simplicity

• Choose a line L, and then choose a line L⊥ perpendicular 
to it, with half the nodes on either side

1. Choose a line L through the points
L given by a*(x-xbar)+b*(y-ybar)=0,

      with a2+b2=1; (a,b) is unit vector ⊥ to L 
L

(a,b)
(xbar,ybar)

2. Project each point to the line
For each nj = (xj,yj), compute coordinate

     Sj = -b*(xj-xbar) + a*(yj-ybar) along L
3. Compute the median

Let Sbar = median(S1,…,Sn)

4. Use median to partition the nodes

Let nodes with Sj < Sbar be in N1, rest in N2 

L⊥
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Inertial Partitioning: Choosing L

• Clearly prefer L, L⊥ on left below

• Mathematically, choose L to be a total least squares fit of 
the nodes

• Minimize sum of squares of distances to L (green lines on last 
slide)

• Equivalent to choosing L as axis of rotation that minimizes the 
moment of inertia of nodes (unit weights) - source of name

L

L

N1 N2
N1

N2

L⊥

L⊥
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Inertial Partitioning: choosing L (continued)

Σ j (length of j-th green line)2

   = Σ j  [ (xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xbar) + a*(yj - ybar))2 ]
                    …   Pythagorean Theorem

   = a2 * Σ j (xj - xbar)2  +  2*a*b* Σ j (xj - xbar)*(xj - ybar)  +  b2 Σ j (yj - ybar)2

   = a2 * X1                   +  2*a*b*  X2                                  +  b2 * X3
   = [a b] *  X1   X2   *  a
                  X2   X3      b

Minimized by choosing

       (xbar , ybar) = (Σ j xj , Σ j yj) / n = center of mass
       (a,b) = eigenvector of smallest eigenvalue of    X1  X2
                                                                                       X2  X3

(a,b) is unit vector
perpendicular to L

(a,b)

L

(xbar,ybar)

(xj , yj )
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Nodal Coordinates: Random Spheres

• Generalize nearest neighbor idea of a planar graph to 
higher dimensions 

• Any graph can fit in 3D without edge crossings
• Capture intuition of planar graphs of being connected to      

“nearest neighbors” but in higher than 2 dimensions

• For intuition, consider graph defined by a regular 3D mesh

• An n by n by n mesh of |N| = n3 nodes
• Edges to 6 nearest neighbors

• Partition by taking plane parallel to 2 axes

• Cuts n2 =|N|2/3 = O(|E|2/3) edges

• For the general graphs
• Need a notion of “well-shaped” like mesh
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Random Spheres: Well Shaped Graphs

• Approach due to Miller, Teng, Thurston, Vavasis

• Def: A k-ply neighborhood system in d dimensions is a 
set {D1,…,Dn} of closed disks in Rd such that no point in 
Rd is strictly interior to more than k disks

• Def: An (α,k) overlap graph is a graph defined in terms 
of α ≥  1 and a k-ply neighborhood system {D1,…,Dn}: 
There is a node for each Dj, and an edge from j to i if 
expanding the radius of the smaller of Dj and Di by >α 
causes the two disks to overlap

Ex: n-by-n mesh is a (1,1) overlap graph
Ex: Any planar graph is (α ,k) overlap for
      some α ,k

2D Mesh is 
(1,1) overlap
 graph
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Generalizing Lipton/Tarjan to Higher Dimensions

• Theorem (Miller, Teng, Thurston, Vavasis, 1993):         
Let G=(N,E) be an (α,k) overlap graph in d dimensions 
with n=|N|. Then there is a vertex separator Ns such that 

• N = N1 U Ns U N2 and

• N1 and N2 each has at most n*(d+1)/(d+2) nodes

• Ns has at most O(α * k1/d * n(d-1)/d ) nodes

• When d=2, same as Lipton/Tarjan

• Algorithm:
• Choose a sphere S in Rd

• Edges that S “cuts” form edge separator Es

• Build Ns from Es

• Choose S “randomly”, so that it satisfies Theorem with high 
probability
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Stereographic Projection

• Stereographic projection from plane to sphere
• In d=2, draw line from p to North Pole, projection p’ of p is 

where the line and sphere intersect

• Similar in higher dimensions

p

p’

p = (x,y)          p’ = (2x,2y,x2 + y2 –1) / (x2 + y2 + 1)
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Choosing a Random Sphere

• Do stereographic projection from Rd to sphere S in Rd+1

• Find centerpoint of projected points
• Any plane through centerpoint divides points ~evenly

• There is a linear programming algorithm, cheaper heuristics

• Conformally map points on sphere
• Rotate points around origin so centerpoint at (0,…0,r) for some r

• Dilate  points (unproject, multiply by ((1-r)/(1+r))1/2, project)
• this maps centerpoint to origin (0,…,0), spreads points around S

• Pick a random plane through origin
• Intersection of plane and sphere S is “circle”

• Unproject circle

• yields desired circle C in Rd

• Create Ns: j belongs to Ns if α*Dj intersects  C
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Random Sphere Algorithm (Gilbert)
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Random Sphere Algorithm (Gilbert)
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Random Sphere Algorithm (Gilbert)
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Random Sphere Algorithm (Gilbert)



CS267 Lecture 23 26

Random Sphere Algorithm (Gilbert)

02/28/2012
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Random Sphere Algorithm (Gilbert)

02/28/2012
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Nodal Coordinates: Summary

• Other variations on these algorithms

• Algorithms are efficient

• Rely on graphs having nodes connected (mostly) to “nearest 
neighbors” in space

• algorithm does not depend on where actual edges are!

• Common when graph arises from physical model
• Ignores edges, but can be used as good starting guess for 

subsequent partitioners that do examine edges

• Can do poorly if graph connection is not spatial:

• Details at
• www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html

• www.cs.ucsb.edu/~gilbert

• www-bcf.usc.edu/~shanghua/
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• Beyond Graph Partitioning: Hypergraphs
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Coordinate-Free:  Breadth First Search (BFS)

• Given G(N,E) and a root node r in N, BFS produces
• A subgraph T of G (same nodes, subset of edges)
• T is a tree rooted at r
• Each node assigned a level = distance from r

Tree edges
Horizontal edges
Inter-level edges

Level 0

Level 1

Level 2

Level 3

Level 4

N1

N2

root
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Breadth First Search (details)

• Queue (First In First Out, or FIFO)
• Enqueue(x,Q) adds x to back of Q
• x = Dequeue(Q) removes x from front of Q

• Compute Tree T(NT,ET)

NT = {(r,0)}, ET = empty set            … Initially T = root r, which is at level 0
Enqueue((r,0),Q)                             … Put root on initially empty Queue Q
Mark r                                              … Mark root as having been processed
While Q not empty                         … While nodes remain to be processed
       (n,level) = Dequeue(Q)            … Get a node to process
       For all unmarked children c of n

              NT = NT U (c,level+1)        …  Add child c to NT

              ET = ET U (n,c)                  …  Add edge (n,c) to ET

              Enqueue((c,level+1),Q))   … Add child c to Q for processing
              Mark c                                … Mark c as processed
       Endfor
Endwhile

root
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Partitioning via Breadth First Search

• BFS identifies 3 kinds of edges
• Tree Edges - part of T
• Horizontal Edges - connect nodes at same level
• Interlevel Edges - connect nodes at adjacent levels

• No edges connect nodes in levels

       differing by more than 1 (why?)

• BFS partioning heuristic
• N = N1 U N2, where 

• N1 = {nodes at level <= L},  

• N2 = {nodes at level > L}

• Choose L so |N1| close to |N2|

BFS partition of a 2D Mesh 
using center as root:
  N1 = levels 0, 1, 2, 3
  N2 = levels 4, 5, 6

root
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Coordinate-Free: Kernighan/Lin

• Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand

• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but 
more complicated

• Given G = (N,E,WE) and a partitioning N = A U B, where |
A| = |B|

• T = cost(A,B) = Σ {W(e) where e connects nodes in A and B}

• Find subsets X of A and Y of B with |X| = |Y|

• Consider swapping X and Y if it decreases cost:
• newA = (A – X) U Y    and    newB = (B – Y) U X

• newT = cost(newA , newB) < T = cost(A,B)

• Need to compute newT efficiently for many possible X 
and Y, choose smallest (best)
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Kernighan/Lin: Preliminary Definitions

• T = cost(A, B),   newT = cost(newA, newB)

• Need an efficient formula for newT; will use
• E(a) = external cost of a in A = Σ {W(a,b) for b in B}

• I(a)  = internal  cost of a in A = Σ {W(a,a’) for other a’ in A}

• D(a) = cost of a in A               = E(a) - I(a)

• E(b), I(b) and D(b) defined analogously for b in B

• Consider swapping X = {a} and Y = {b}
• newA = (A - {a}) U {b},   newB = (B - {b}) U {a}

• newT = T - ( D(a) + D(b) - 2*w(a,b) ) ≡ T - gain(a,b)
• gain(a,b) measures improvement gotten by swapping a and b

• Update formulas
• newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b)   for a’ in A, a’ ≠ a
• newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a)   for b’ in B, b’ ≠ b
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Kernighan/Lin Algorithm
    Compute  T = cost(A,B) for initial A, B                                    … cost = O(|N|2)
    Repeat 
           … One pass greedily computes |N|/2 possible X,Y to swap, picks best

           Compute costs D(n) for all n in N                                          … cost = O(|N|2)
           Unmark all nodes in N                                                            … cost = O(|N|) 
           While there are unmarked nodes                                           … |N|/2 iterations

                 Find an unmarked pair (a,b) maximizing gain(a,b)             … cost = O(|N|2) 
                Mark a and b (but do not swap them)                                   … cost = O(1)
                Update D(n) for all unmarked n, 
                        as though a and b had been swapped                      … cost = O(|N|) 
            Endwhile
                … At this point we have computed a sequence of pairs
                …  (a1,b1), … , (ak,bk)   and gains gain(1),…., gain(k)
                … where k = |N|/2, numbered in the order in which we marked them

           Pick m maximizing Gain = Σk=1 to m   gain(k)                         … cost = O(|N|)
                … Gain is reduction in cost from swapping (a1,b1) through (am,bm)
           If Gain > 0 then   … it is worth swapping
                 Update newA = A - { a1,…,am } U { b1,…,bm }              … cost = O(|N|)
                 Update newB = B - { b1,…,bm } U { a1,…,am }              … cost = O(|N|)
                 Update T = T - Gain                                                          … cost = O(1)
           endif
     Until Gain <= 0
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 Comments on Kernighan/Lin Algorithm

• Most expensive line shown in red, O(n3)

• Some gain(k) may be negative, but if later gains are 
large, then final Gain may be positive

• can escape “local minima” where switching no pair helps

• How many times do we Repeat?
• K/L tested on very small graphs (|N|<=360) and got 

convergence after 2-4 sweeps

• For random graphs (of theoretical interest) the probability of 
convergence in one step appears to drop like 2-|N|/30
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Coordinate-Free: Spectral Bisection

• Based on theory of Fiedler (1970s), popularized by 
Pothen, Simon, Liou (1990)

• Motivation, by analogy to a vibrating string

• Basic definitions

• Vibrating string, revisited
• Implementation via the Lanczos Algorithm

• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix 
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• No free lunch ...
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Motivation for Spectral Bisection

• Vibrating string

• Think of G = 1D mesh as masses (nodes) connected by springs 
(edges), i.e. a string that can vibrate

• Vibrating string has modes of vibration, or harmonics

• Label nodes by whether mode - or + to partition into N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)
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Basic Definitions

• Definition: The incidence matrix In(G) of a graph G(N,E) 
is an |N| by |E| matrix, with one row for each node and 
one column for each edge. If edge e=(i,j) then column e 
of In(G) is zero except for the i-th and j-th entries, which 
are +1 and -1, respectively.

• Slightly ambiguous definition because multiplying column e of In(G) 
by -1 still satisfies the definition, but this won’t matter...

• Definition: The Laplacian matrix L(G) of a graph G(N,E) 
is an |N| by |N| symmetric matrix, with one row and 
column for each node. It is defined by

• L(G) (i,i) = degree of node i (number of incident edges)

• L(G) (i,j) = -1 if i ≠ j and there is an edge (i,j)

• L(G) (i,j) = 0 otherwise
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Example of In(G) and L(G) for Simple Meshes
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Properties of Laplacian Matrix

• Theorem 1: Given G, L(G) has the following properties  
(proof on  1996 CS267 web page)

• L(G) is symmetric. 
• This means the eigenvalues of L(G) are real and its eigenvectors 

are real and orthogonal.

• In(G) * (In(G))T = L(G)

• The eigenvalues of L(G) are nonnegative:

• 0 = λ1 ≤  λ2 ≤  … ≤  λn

• The number of connected components of G is equal to the 

number of λi equal to 0. 

• Definition: λ2(L(G)) is the algebraic connectivity of G

• The magnitude of λ2 measures connectivity

• In particular, λ2 ≠ 0 if and only if G is connected.
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Spectral Bisection Algorithm

• Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))

• For each node n of G
• if v2(n) < 0 put node n in partition N-

• else put node n in partition N+

• Why does this make sense? First reasons...
• Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+ 

defined as above. Then N- is connected. If no v2(n) = 0, then   
N+ is also connected. (proof on 1996 CS267 web page)

• Recall λ2(L(G)) is the algebraic connectivity of G
•  Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of G(N,E), so 

that G1 is “less connected” than G. Then λ2(L(G1))  ≤   λ2(L(G)) , 
i.e. the algebraic connectivity of G1 is less than or equal to the 
algebraic connectivity of G. (proof on 1996 CS267 web page)
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Spectral Bisection Algorithm

• Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))

• For each node n of G
• if v2(n) < 0 put node n in partition N-

• else put node n in partition N+

• Why does this make sense? More reasons...
• Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2 

be any partition into part of equal size |N|/2. Then the number 
of edges connecting N1 and N2 is at least   .25 * |N| *  λ2(L(G)).  
      (proof on 1996 CS267 web page)
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Motivation for Spectral Bisection (recap)

• Vibrating string has modes of vibration, or harmonics

• Modes computable as follows

• Model string as masses connected by springs (a 1D mesh)

• Write down F=ma for coupled system, get matrix A

• Eigenvalues and eigenvectors of A are frequencies and shapes of 
modes

• Label nodes by whether mode - or + to get N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)
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Details for Vibrating String Analogy

• Force on mass j = k*[x(j-1) - x(j)]  + k*[x(j+1) - x(j)]

                               = -k*[-x(j-1) + 2*x(j) - x(j+1)]

• F=ma yields  m*x’’(j) =  -k*[-x(j-1) + 2*x(j) - x(j+1)]    (*)

• Writing (*) for j=1,2,…,n yields

                 x(1)            2*x(1) - x(2)                          2   -1                           x(1)                 x(1)
                 x(2)            -x(1) + 2*x(2) - x(3)              -1    2    -1                   x(2)                 x(2)

m * d2       …     =-k*     …                               =-k*            …                 *   …      =-k*L*     … 

      dx2     x(j)             -x(j-1) + 2*x(j) - x(j+1)                       -1   2   -1        x(j)                  x(j)
                 …               …                                                              …           …                     … 
                 x(n)            2*x(n-1) - x(n)                                          -1   2       x(n)                 x(n) 

    (-m/k) x’’ = L*x     
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Details for Vibrating String (continued)

• -(m/k) x’’ = L*x, where x = [x1,x2,…,xn ]T

• Seek solution of form x(t) = sin(α*t) * x0

• L*x0 = (m/k)*α2 * x0 = λ * x0

• For each integer i, get   λ = 2*(1-cos(i*π/(n+1)),  x0  =   sin(1*i*π/(n+1))

                                                                                           sin(2*i*π/(n+1))

                                                                                                        …

                                                                                           sin(n*i*π/(n+1))

• Thus x0 is a sine curve with frequency proportional to i

• Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ (k/m)1/2  * π * i/(n+1)

• L  =   2  -1                   not quite Laplacian of 1D mesh, 

           -1   2   -1                 but we can fix that ...

                  ….

                      -1    2
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Motivation for Spectral Bisection

• Vibrating string has modes of vibration, or harmonics

• Modes computable as follows

• Model string as masses connected by springs (a 1D mesh)

• Write down F=ma for coupled system, get matrix A

• Eigenvalues and eigenvectors of A are frequencies and shapes 
of modes

• Label nodes by whether mode - or + to get N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)
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Details for Vibrating String (continued)

• Write down F=ma for “vibrating string” below

• Get Graph Laplacian of 1D mesh
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Eigenvectors of L(1D mesh)

Eigenvector 1
  (all ones)

Eigenvector 2

Eigenvector 3
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2nd eigenvector of L(planar mesh)
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4th eigenvector of L(planar mesh)
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Computing v2 and λ2 of L(G) using Lanczos
• Given any n-by-n symmetric matrix A (such as L(G))  Lanczos 

computes a k-by-k “approximation”  T by doing k matrix-vector 
products, k << n

• Approximate A’s eigenvalues/vectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
     j=j+1
     q(j) = r/b(j-1)               … scale a vector (BLAS1)
     r = A*q(j)                     … matrix vector multiplication, the most expensive step
     r = r - b(j-1)*v(j-1)       …  “axpy”, or scalar*vector + vector (BLAS1)

    a(j) = v(j)T * r               … dot product (BLAS1)
    r = r - a(j)*v(j)               … “axpy” (BLAS1)
    b(j) = ||r||                      … compute vector norm (BLAS1)
until convergence          … details omitted

T =  a(1)   b(1)
        b(1)  a(2)    b(2)
                b(2)    a(3)    b(3)
                          …        …      … 
                                     b(k-2)   a(k-1)  b(k-1)
                                                  b(k-1)  a(k)
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Spectral Bisection: Summary

• Laplacian matrix represents graph connectivity

• Second eigenvector gives a graph bisection
• Roughly equal “weights” in two parts

• Weak connection in the graph will be separator

• Implementation via the Lanczos Algorithm
• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix 
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• Have we made progress?
• The first matrix-vector multiplies are slow, but use them to learn 

how to make the rest faster
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Outline of Graph Partitioning 
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW,  nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs
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Introduction to Multilevel Partitioning

• If we want to partition G(N,E), but it is too big to do 
efficiently, what can we do?

• 1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and 

partition Gc instead

• 2) Use partition of Gc to get a rough partitioning of G, and then 
iteratively improve it

• What if Gc still too big?
• Apply same idea recursively
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Multilevel Partitioning - High Level Algorithm
       (N+,N- ) = Multilevel_Partition( N, E )
             … recursive partitioning routine returns N+ and N- where N = N+ U N-
             if |N| is small
(1)               Partition G = (N,E)  directly to get N = N+ U N-
                   Return (N+, N- )
             else

(2)               Coarsen G to get an approximation Gc = (Nc, Ec)

(3)               (Nc+ , Nc- ) = Multilevel_Partition( Nc, Ec )

(4)               Expand (Nc+ , Nc- ) to a partition  (N+ , N- ) of N
(5)               Improve the partition ( N+ , N- )
                   Return ( N+ , N- )
             endif

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)

How do we
    Coarsen?
    Expand?
    Improve?

“V - cycle:”
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Multilevel Kernighan-Lin

• Coarsen graph and expand partition using 
maximal matchings

• Improve partition using Kernighan-Lin
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Maximal Matching

• Definition: A matching of a graph G(N,E) is a subset Em of 

E such that no two edges in Em share an endpoint

• Definition: A maximal matching of a graph G(N,E) is a 

matching Em to which no more edges can be added and 
remain a matching

• A simple greedy algorithm computes a maximal matching:let Em be empty
mark all nodes in N as unmatched
for i = 1 to |N|      … visit the nodes in any order
     if i has not been matched
            mark i as matched
            if there is an edge e=(i,j)  where j is also unmatched, 
                  add e to Em

                  mark j as matched
             endif
     endif
endfor
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Maximal Matching:  Example
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Example of Coarsening
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Coarsening using a maximal matching (details)

1) Construct a maximal matching  Em of G(N,E)

for all edges e=(j,k) in Em             2) collapse matched nodes into a single one

     Put node n(e) in Nc

      W(n(e)) = W(j) + W(k)     … gray statements update node/edge weights

for all nodes n in N not incident on an edge in Em  3) add unmatched nodes

     Put n in Nc      … do not change W(n)

… Now each node r in N is “inside” a unique node n(r) in Nc

… 4) Connect two nodes in Nc if nodes inside them are connected in E

for all edges e=(j,k) in Em  

     for each other edge e’=(j,r) or (k,r) in E 

           Put edge ee = (n(e),n(r)) in Ec   

             W(ee) = W(e’)
     

If there are multiple edges connecting two nodes in Nc, collapse them,
          adding edge weights                 
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Expanding a partition of Gc to a partition of G
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Multilevel Spectral Bisection

• Coarsen graph and expand partition using   
maximal independent sets

• Improve partition using Rayleigh Quotient Iteration
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Maximal Independent Sets

• Definition: An independent set of a graph G(N,E) is a subset Ni of N 

such that no two nodes in Ni are connected by an edge

• Definition: A maximal independent set of a graph G(N,E) is an 
independent set Ni to which no more nodes can be added and 
remain an independent set

• A simple greedy algorithm computes a maximal independent set:
let Ni be empty
for k = 1 to |N|      … visit the nodes in any order

     if  node k is not adjacent to any node already in Ni

          add k to Ni

     endif
endfor
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Example of Coarsening

- encloses domain Dk = node of Nc
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Coarsening using Maximal Independent Sets (details)
… Build “domains” D(k) around each node k in Ni to get nodes in Nc

… Add an edge to Ec whenever it would connect two such domains

Ec = empty set

for all nodes k in Ni

     D(k) = ( {k}, empty set )     
     … first set contains nodes in D(k), second set contains edges in D(k)
unmark all edges in E
repeat
     choose an unmarked edge e = (k,j) from E
     if exactly one of k and j (say k) is in some D(m)
           mark e
           add j and e to D(m)
     else if k and j are in two different D(m)’s (say D(mk) and D(mj))
           mark e

           add edge (mk, mj) to Ec

     else if both k and j are in the same D(m)
           mark e
           add e to D(m)
     else
           leave e unmarked
     endif
until no unmarked edges
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Expanding a partition of Gc to a partition of G

• Need to convert an eigenvector vc of L(Gc) to an 
approximate eigenvector v of L(G)

• Use interpolation:
For each node j in N

     if  j is also a node in Nc, then

            v(j) = vc(j)    … use same eigenvector component
     else

            v(j) = average of vc(k) for all neighbors k of j in Nc

     end if
endif
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Example: 1D mesh of 9 nodes
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Improve eigenvector: Rayleigh Quotient Iteration

j = 0

pick starting vector v(0)   … from expanding vc
repeat
       j=j+1

       r(j) = vT(j-1) * L(G) * v(j-1)   
       …  r(j) = Rayleigh Quotient of v(j-1) 
       …        = good approximate eigenvalue

       v(j) = (L(G) - r(j)*I)-1 * v(j-1)
       … expensive to do exactly, so solve approximately
       … using an iteration called SYMMLQ, 
       … which uses matrix-vector multiply (no surprise)
       v(j) = v(j) / || v(j) ||     … normalize v(j) 
until v(j) converges
… Convergence is very fast: cubic
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Example of convergence for 1D mesh
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Outline of Graph Partitioning 
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW,  nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs
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Available Implementations

• Multilevel Kernighan/Lin
• METIS (www.cs.umn.edu/~metis)
• ParMETIS - parallel version

• Multilevel Spectral Bisection
• S. Barnard and H. Simon, “A fast multilevel implementation 

of recursive spectral bisection …”, Proc. 6th SIAM Conf. 
On Parallel Processing, 1993

• Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

• Hybrids possible 
• Ex: Using Kernighan/Lin to improve a partition from 

spectral bisection

• Recent package, collection of techniques
• Zoltan (www.cs.sandia.gov/Zoltan)

• See www.cs.sandia.gov/~bahendr/partitioning.html
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Comparison of methods

• Compare only methods that use edges, not nodal coordinates 
• CS267 webpage and KK95a (see below) have other comparisons

• Metrics
• Speed of partitioning
• Number of edge cuts
• Other application dependent metrics

• Summary
• No one method best

• Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the 
number of edge cuts

• www-users.cs.umn.edu/~karypis/metis/publications/main.html
• see publications KK95a and KK95b

• Spectral give much better cuts for some applications 
• Ex: image segmentation
• See “Normalized Cuts and Image Segmentation” by J. Malik, J. Shi
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Number of edges cut for a 64-way partition

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

   # of 
Nodes

  144649
    15606
      4960
  448695
    38744
    74752
    10672
  267241
    17758
    76480
  201142

    # of
 Edges

1074393
    45878
      9462
3314611
  993481
  261120
  209093
  334931
    54196
  152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

# Edges cut
 for 64-way 
  partition 
        88806
          2965
            675
      194436
        55753
        11388
        58784
          1388
        17894
          4365
      117997

Expected
# cuts for
2D mesh
     6427
     2111
     1190
   11320
     3326
     4620
    1746
    8736
    2252
    4674
    7579

Expected
# cuts for
3D mesh
  31805
    7208
      3357
   67647
   13215
   20481
     5595
   47887
     7856
   20796
   39623

Expected # cuts for 64-way partition of 2D mesh of n nodes 

       n1/2 + 2*(n/2)1/2 + 4*(n/4)1/2 + … + 32*(n/32)1/2 ~ 17 * n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes = 

       n2/3 + 2*(n/2)2/3 + 4*(n/4)2/3 + … + 32*(n/32)2/3 ~ 11.5 * n2/3

For Multilevel Kernighan/Lin, as implemented in METIS  (see KK95a)
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Speed of 256-way partitioning (from KK95a)

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

   # of 
Nodes

  144649
    15606
      4960
  448695
    38744
    74752
    10672
  267241
    17758
    76480
  201142

    # of
 Edges

1074393
    45878
      9462
3314611
  993481
  261120
  209093
  334931
    54196
  152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Multilevel
 Spectral
Bisection
        607.3
          25.0
          18.7
      2214.2
        474.2
        311.0
        142.6
        850.2
        117.9
        130.0
      1053.4

Multilevel
Kernighan/
      Lin
       48.1
         3.1
         1.6
     179.2
       25.5
       18.0
         8.1
       44.8
         4.3
       10.1
       63.9

Partitioning time in seconds

Kernighan/Lin much faster than Spectral Bisection!
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Outline of Graph Partitioning 
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW,  nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs
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 r1

 r2

 r3

 r4

c1

c2

c3

c4

Beyond simple graph partitioning:
Representing a sparse matrix as a hypergraph
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 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 4!

 ⇒ Cut size of graph 
partition is not an accurate 
count of communication 
volume

Source vector  entries 
corresponding to  c2 
and c3 are needed by 
both partitions –  so 
total volume of 
communication is 2

Using a graph to partition, versus a hypergraph
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 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 3!

 ⇒ Cut size of graph partition 
may not accurately count 
communication volume

Source vector  entries 
corresponding to  c2 
and c3 are needed by 
both partitions –  so 
total volume of 
communication is 2

Using a graph to partition, versus a hypergraph

1 2

3 4

P1

P2
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Two Different 2D Mesh Partitioning Strategies

Y
Y

Graph:
Cartesian Partitioning

Communication Volume per proc (SpMV) = 
nodes needed by 1 other proc * 1 + nodes 
needed by 2 other procs *2 = 14*1 + 1*2 = 16

Total Communication Volume (SpMV) =
nprocs * (comm per proc) = 4  * 16 = 64

Total SpMV communication volume = 64 

Hypergraph:
MeshPart Algorithm [Ucar, Catalyurek, 

2010]

Total SpMV communication volume = 58 
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Generalization of the MeshPart Algorithm 

Source: Ucar and Catalyruk, 2010

For NxN mesh on PxP processor grid:
Usual Cartesian partitioning costs ~4NP words moved
MeshPart costs ~3NP words moved,  25% savings
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Experimental Results:  Hypergraph vs. Graph Partitioning

~8% reduction in total communication volume 
using hypergraph partitioning (PaToH) 

versus graph partitioning (METIS)

64x64 Mesh (5-pt stencil), 16 processors

Hypergraph Partitioning (PaToH)
Total Comm. Vol = 719
Max Vol per Proc = 59

Graph Partitioning  (Metis)
Total Comm. Vol = 777
Max Vol per Proc = 69
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Further Benefits of Hypergraph Model: Nonsymmetric Matrices 

• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
• Same graph for A as |A| + |AT|
• Ok for symmetric matrices, what about nonsymmetric?

• Try A upper triangular

Graph Partitioning (Metis)
Total Communication Volume= 254

Load imbalance ratio = 6%

Hypergraph Partitioning (PaToH)
Total Communication Volume= 181

Load imbalance ratio = 0.1%
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Summary: Graphs versus Hypergraphs
• Pros and cons

• When matrix is non-symmetric, the graph partitioning model 
(using A+AT ) loses information, resulting in suboptimal 
partitioning in terms of communication and load balance.

• Even when matrix is symmetric,  graph cut size is not an 
accurate measurement of communication volume

• Hypergraph partitioning model solves both these problems

• However, hypergraph partitioning (PaToH) can be much more 
expensive than graph partitioning (METIS)

• Hypergraph partitioners: PaToH, HMETIS, ZOLTAN

• For more see Bruce Hendrickson’s web page

• www.cs.sandia.gov/~bahendr/partitioning.html

• “Load Balancing Fictions, Falsehoods and Fallacies”
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Extra Slides
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Beyond Simple Graph Partitioning

• Undirected graphs model symmetric matrices, not 
unsymmetric ones

• More general graph models include:
• Hypergraph: nodes are computation, edges are 

communication, but connected to a set (>= 2) of nodes
• HMETIS, PATOH, ZOLTAN packages

• Bipartite model: use bipartite graph for directed graph

• Multi-object, Multi-Constraint model: use when single structure 
may involve multiple computations with differing costs

• For more see Bruce Hendrickson’s web page
• www.cs.sandia.gov/~bahendr/partitioning.html

• “Load Balancing Myths, Fictions & Legends”



Graph vs. Hypergraph Partitioning

Consider a 2-way partition of a 2D mesh:

The cost of communicating vertex A is 1 – we can send 
the value in one message to the other processor

According to the graph model,  however  the vertex A 
contributes 2 to the total communication volume, since 
2 edges are cut.

The hypergraph model accurately  represents 
the cost of communicating A (one hyperedge 
cut, so communication volume of 1.  

Result: Unlike graph partitioning model, the hypergraph partitioning model gives 
exact communication volume (minimizing cut = minimizing communication) 

Therefore, we expect that hypergraph partitioning approach can do a better job at 
minimizing total communication. Let’s look at a simple example…

Edge cut = 10

Hyperedge cut 
= 7



Further Benefits of Hypergraph Model: Nonsymmetric Matrices 

• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
• Same graph for A as |A| + |AT|
• Ok for symmetric matrices, what about nonsymmetric?

Illustrative Bad Example: triangular matrix

 This results in a suboptimal partition in terms of both communication and load balancing. In this case, 

Total Communication Volume = 60 (optimal is ~12 in this case, subject to load balancing)
Proc1: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals with 
nonsymmetry by partitioning the graph of A+AT  (which in this case is a dense matrix).

Given A, graph 
partition A+AT 

which gives the 
partition for A



Experimental Results: Illustration of Triangular Example

Graph Partitioning (Metis)
Total Communication Volume= 254

Imbalance ratio = 6%

Hypergraph Partitioning (PaToH)
Total Communication Volume= 181

Imbalance ratio = 0.1%

Conclusions from this section:
•When matrix is non-symmetric, the graph partitioning model (using A+AT ) loses 
information, resulting in suboptimal partitioning in terms of communication and load 
balance.
•Even when matrix is symmetric,  graph cut size is not an accurate measurement of 
communication volume
•Hypergraph partitioning model solves both these problems
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Coordinate-Free Partitioning: Summary

• Several techniques for partitioning without coordinates
• Breadth-First Search – simple, but not great partition

• Kernighan-Lin – good corrector given reasonable partition

• Spectral Method – good partitions, but slow

• Multilevel methods
• Used to speed up problems that are too large/slow
• Coarsen, partition, expand, improve

• Can be used with K-L and Spectral methods and others

• Speed/quality
• For load balancing of grids, multi-level K-L probably best
• For other partitioning problems (vision, clustering, etc.) spectral 

may be better

• Good software available
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Is Graph Partitioning a Solved Problem?

• Myths of partitioning due to Bruce Hendrickson
1. Edge cut = communication cost

2. Simple graphs are sufficient

3. Edge cut is the right metric

4. Existing tools solve the problem

5. Key is finding the right partition

6. Graph partitioning is a solved problem

• Slides and myths based on Bruce Hendrickson’s:
   “Load Balancing Myths, Fictions & Legends”
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Myth 1: Edge Cut = Communication Cost

• Myth1: The edge-cut deceit

             edge-cut = communication cost

• Not quite true:
• #vertices on boundary is actual communication volume

• Do not communicate same node value twice

• Cost of communication depends on # of messages too (α term)

• Congestion may also affect communication cost

• Why is this OK for most applications?
• Mesh-based problems match the model: cost is ~ edge cuts

• Other problems (data mining, etc.) do not
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Myth 2: Simple Graphs are Sufficient

• Graphs often used to encode data dependencies
• Do X before doing Y

• Graph partitioning determines data partitioning
• Assumes graph nodes can be evaluated in parallel

• Communication on edges can also be done in parallel

• Only dependence is between sweeps over the graph

• More general graph models include:
• Hypergraph: nodes are computation, edges are 

communication, but connected to a set (>= 2) of nodes

• Bipartite model: use bipartite graph for directed graph

• Multi-object, Multi-Constraint model: use when single structure 
may involve multiple computations with differing costs
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Myth 3: Partition Quality is Paramount

• When structure are changing dynamically during a 
simulation, need to partition dynamically

• Speed may be more important than quality
• Partitioner must run fast in parallel

• Partition should be incremental
• Change minimally relative to prior one

• Must not use too much memory 

• Example from Touheed, Selwood, Jimack and Bersins
• 1 M elements with adaptive refinement on SGI Origin

• Timing data for different partitioning algorithms:
• Repartition time from 3.0 to 15.2 secs
• Migration time : 17.8 to 37.8 secs
• Solve time: 2.54 to 3.11 secs
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Summary

• Partitioning with nodal coordinates:
• Inertial method

• Projection onto a sphere

• Algorithms are efficient

• Rely on graphs having nodes connected (mostly) to “nearest 
neighbors” in space

• Partitioning without nodal coordinates:
• Breadth-First Search – simple, but not great partition

• Kernighan-Lin – good corrector given reasonable partition
• Spectral Method – good partitions, but slow

• Today:
• Spectral methods revisited

• Multilevel methods
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Another Example

• Definition: The Laplacian matrix L(G) of a graph G(N,E) 
is an |N| by |N| symmetric matrix, with one row and 
column for each node. It is defined by

• L(G) (i,i) = degree of node I (number of incident edges)

• L(G) (i,j) = -1 if i != j and there is an edge (i,j)
• L(G) (i,j) = 0 otherwise

2  -1  -1   0   0 
-1  2  -1   0   0
-1  -1  4  -1  -1
0   0   -1  2  -1
0   0   -1  -1  2

1

2 3

4

5

G = L(G) =

Hidden slide
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Properties of Incidence and Laplacian matrices

• Theorem 1: Given G, In(G) and L(G) have the following properties  
(proof on Demmel’s 1996 CS267 web page)

• L(G) is symmetric. (This means the eigenvalues of L(G) are real and its 
eigenvectors are real and orthogonal.)

• Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.
• In(G) * (In(G))T = L(G). This is independent of the signs chosen for 

each column of In(G).
• Suppose L(G)*v = λ*v, v ≠ 0, so that  v is an eigenvector and λ an 

eigenvalue of L(G). Then

• The eigenvalues of L(G) are nonnegative:

• 0 = λ1 ≤  λ2  ≤  …  ≤  λn

• The number of connected components of G is equal to the number of 

λi equal to 0. In particular, λ2 ≠ 0 if and only if G is connected.

• Definition: λ2(L(G)) is the algebraic connectivity of G

λ = || In(G)T * v ||2 / || v ||2                                                    … ||x||2 = Σk xk
2 

   =  Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σ i v(i)2
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