
02/28/2012 CS267 Lecture 13 1

CS 267: Applications of Parallel
Computers

Graph Partitioning

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr12

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning Lecture

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 3

Definition of Graph Partitioning

• Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices),
• WN = node weights

• E = edges
• WE = edge weights

• Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different

pairs Nj and Nk is minimized

• Ex: balance the work load, while minimizing communication
• Special case of N = N1 U N2: Graph Bisection

1 (2)

2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)
5

4

6

1

2

1

2
12 3

02/28/2012 CS267 Lecture 13 4

Definition of Graph Partitioning

• Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices),
• WN = node weights

• E = edges
• WE = edge weights

• Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different

pairs Nj and Nk is minimized (shown in black)

• Ex: balance the work load, while minimizing communication
• Special case of N = N1 U N2: Graph Bisection

1 (2)

2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)

4

6

1

2

1

2
12 3

5

02/28/2012 CS267 Lecture 13 5

Some Applications
• Telephone network design

• Original application, algorithm due to Kernighan

• Load Balancing while Minimizing Communication
• Sparse Matrix times Vector Multiplication (SpMV)

• Solving PDEs
• N = {1,…,n}, (j,k) in E if A(j,k) nonzero,
• WN(j) = #nonzeros in row j, WE(j,k) = 1

• VLSI Layout
• N = {units on chip}, E = {wires}, WE(j,k) = wire length

• Sparse Gaussian Elimination
• Used to reorder rows and columns to increase parallelism, and to

decrease “fill-in”

• Data mining and clustering
• Physical Mapping of DNA
• Image Segmentation

02/28/2012 CS267 Lecture 13 6

Sparse Matrix Vector Multiplication y = y +A*x

… declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local
y_local = y_local + A_local * x_local
for all procs P that need part of x_local

send(needed part of x_local, P)
for all procs P owning needed part of x_remote

receive(x_remote, P)
y_local = y_local + A_remote(P)*x_remote

02/28/2012 CS267 Lecture 13 7

Cost of Graph Partitioning

• Many possible partitionings
 to search

• Just to divide in 2 parts there are:

 n choose n/2 = n!/((n/2)!)2 ~

 (2/(nπ))1/2 * 2n possibilities

• Choosing optimal partitioning is NP-complete
• (NP-complete = we can prove it is a hard as other well-known

hard problems in a class Nondeterministic Polynomial time)

• Only known exact algorithms have cost = exponential(n)

• We need good heuristics

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem

• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space
• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages
• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing
• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 9

First Heuristic: Repeated Graph Bisection

• To partition N into 2k parts
• bisect graph recursively k times

• Henceforth discuss mostly graph bisection

02/28/2012 CS267 Lecture 13 10

Edge Separators vs. Vertex Separators

• Edge Separator: Es (subset of E) separates G if removing Es from E
leaves two ~equal-sized, disconnected components of N: N1 and N2

• Vertex Separator: Ns (subset of N) separates G if removing Ns and
all incident edges leaves two ~equal-sized, disconnected
components of N: N1 and N2

• Making an Ns from an Es: pick one endpoint of each edge in Es

• |Ns| ≤ |Es|

• Making an Es from an Ns: pick all edges incident on Ns

• |Es| ≤ d * |Ns| where d is the maximum degree of the graph

• We will find Edge or Vertex Separators, as convenient

G = (N, E), Nodes N and Edges E
Es = green edges or blue edges
Ns = red vertices

02/28/2012 CS267 Lecture 13 11

Overview of Bisection Heuristics

• Partitioning with Nodal Coordinates
• Each node has x,y,z coordinates partition space

• Partitioning without Nodal Coordinates
• E.g., Sparse matrix of Web documents

• A(j,k) = # times keyword j appears in URL k

• Multilevel acceleration (BIG IDEA)
• Approximate problem by “coarse graph,” do so recursively

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem

• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space
• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages
• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing
• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 13

Nodal Coordinates: How Well Can We Do?

• A planar graph can be drawn in plane without edge
crossings

• Ex: m x m grid of m2 nodes: ∃ vertex separator Ns with

|Ns| = m = |N|1/2 (see earlier slide for m=5)

• Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ Ns such
that

• N = N1 U Ns U N2 is a partition,

• |N1| <= 2/3 |N| and |N2| <= 2/3 |N|

• |Ns| <= (8 * |N|)1/2

• Theorem motivates intuition of following algorithms

02/28/2012 CS267 Lecture 13 14

Nodal Coordinates: Inertial Partitioning

• For a graph in 2D, choose line with half the nodes on
one side and half on the other

• In 3D, choose a plane, but consider 2D for simplicity

• Choose a line L, and then choose a line L⊥ perpendicular
to it, with half the nodes on either side

1. Choose a line L through the points
L given by a*(x-xbar)+b*(y-ybar)=0,

 with a2+b2=1; (a,b) is unit vector ⊥ to L
L

(a,b)
(xbar,ybar)

2. Project each point to the line
For each nj = (xj,yj), compute coordinate

 Sj = -b*(xj-xbar) + a*(yj-ybar) along L
3. Compute the median

Let Sbar = median(S1,…,Sn)

4. Use median to partition the nodes

Let nodes with Sj < Sbar be in N1, rest in N2

L⊥

02/28/2012 CS267 Lecture 13 15

Inertial Partitioning: Choosing L

• Clearly prefer L, L⊥ on left below

• Mathematically, choose L to be a total least squares fit of
the nodes

• Minimize sum of squares of distances to L (green lines on last
slide)

• Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name

L

L

N1 N2
N1

N2

L⊥

L⊥

02/28/2012 CS267 Lecture 13 16

Inertial Partitioning: choosing L (continued)

Σ j (length of j-th green line)2

 = Σ j [(xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xbar) + a*(yj - ybar))2]
 … Pythagorean Theorem

 = a2 * Σ j (xj - xbar)2 + 2*a*b* Σ j (xj - xbar)*(xj - ybar) + b2 Σ j (yj - ybar)2

 = a2 * X1 + 2*a*b* X2 + b2 * X3
 = [a b] * X1 X2 * a
 X2 X3 b

Minimized by choosing

 (xbar , ybar) = (Σ j xj , Σ j yj) / n = center of mass
 (a,b) = eigenvector of smallest eigenvalue of X1 X2
 X2 X3

(a,b) is unit vector
perpendicular to L

(a,b)

L

(xbar,ybar)

(xj , yj)

02/28/2012 CS267 Lecture 13 17

Nodal Coordinates: Random Spheres

• Generalize nearest neighbor idea of a planar graph to
higher dimensions

• Any graph can fit in 3D without edge crossings
• Capture intuition of planar graphs of being connected to

“nearest neighbors” but in higher than 2 dimensions

• For intuition, consider graph defined by a regular 3D mesh

• An n by n by n mesh of |N| = n3 nodes
• Edges to 6 nearest neighbors

• Partition by taking plane parallel to 2 axes

• Cuts n2 =|N|2/3 = O(|E|2/3) edges

• For the general graphs
• Need a notion of “well-shaped” like mesh

02/28/2012 CS267 Lecture 13 18

Random Spheres: Well Shaped Graphs

• Approach due to Miller, Teng, Thurston, Vavasis

• Def: A k-ply neighborhood system in d dimensions is a
set {D1,…,Dn} of closed disks in Rd such that no point in
Rd is strictly interior to more than k disks

• Def: An (α,k) overlap graph is a graph defined in terms
of α ≥ 1 and a k-ply neighborhood system {D1,…,Dn}:
There is a node for each Dj, and an edge from j to i if
expanding the radius of the smaller of Dj and Di by >α
causes the two disks to overlap

Ex: n-by-n mesh is a (1,1) overlap graph
Ex: Any planar graph is (α ,k) overlap for
 some α ,k

2D Mesh is
(1,1) overlap
 graph

02/28/2012 CS267 Lecture 13 19

Generalizing Lipton/Tarjan to Higher Dimensions

• Theorem (Miller, Teng, Thurston, Vavasis, 1993):
Let G=(N,E) be an (α,k) overlap graph in d dimensions
with n=|N|. Then there is a vertex separator Ns such that

• N = N1 U Ns U N2 and

• N1 and N2 each has at most n*(d+1)/(d+2) nodes

• Ns has at most O(α * k1/d * n(d-1)/d) nodes

• When d=2, same as Lipton/Tarjan

• Algorithm:
• Choose a sphere S in Rd

• Edges that S “cuts” form edge separator Es

• Build Ns from Es

• Choose S “randomly”, so that it satisfies Theorem with high
probability

02/28/2012 CS267 Lecture 13 20

Stereographic Projection

• Stereographic projection from plane to sphere
• In d=2, draw line from p to North Pole, projection p’ of p is

where the line and sphere intersect

• Similar in higher dimensions

p

p’

p = (x,y) p’ = (2x,2y,x2 + y2 –1) / (x2 + y2 + 1)

02/28/2012 CS267 Lecture 13 21

Choosing a Random Sphere

• Do stereographic projection from Rd to sphere S in Rd+1

• Find centerpoint of projected points
• Any plane through centerpoint divides points ~evenly

• There is a linear programming algorithm, cheaper heuristics

• Conformally map points on sphere
• Rotate points around origin so centerpoint at (0,…0,r) for some r

• Dilate points (unproject, multiply by ((1-r)/(1+r))1/2, project)
• this maps centerpoint to origin (0,…,0), spreads points around S

• Pick a random plane through origin
• Intersection of plane and sphere S is “circle”

• Unproject circle

• yields desired circle C in Rd

• Create Ns: j belongs to Ns if α*Dj intersects C

04/11/2007 CS267 Lecture 23 22

Random Sphere Algorithm (Gilbert)

04/11/2007 CS267 Lecture 23 23

Random Sphere Algorithm (Gilbert)

02/28/2012 CS267 Lecture 23 24

Random Sphere Algorithm (Gilbert)

02/28/2012 CS267 Lecture 13 25

Random Sphere Algorithm (Gilbert)

CS267 Lecture 23 26

Random Sphere Algorithm (Gilbert)

02/28/2012

CS267 Lecture 23 27

Random Sphere Algorithm (Gilbert)

02/28/2012

02/28/2012 CS267 Lecture 8 28

Nodal Coordinates: Summary

• Other variations on these algorithms

• Algorithms are efficient

• Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space

• algorithm does not depend on where actual edges are!

• Common when graph arises from physical model
• Ignores edges, but can be used as good starting guess for

subsequent partitioners that do examine edges

• Can do poorly if graph connection is not spatial:

• Details at
• www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html

• www.cs.ucsb.edu/~gilbert

• www-bcf.usc.edu/~shanghua/

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem

• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space
• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages
• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing
• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 30

Coordinate-Free: Breadth First Search (BFS)

• Given G(N,E) and a root node r in N, BFS produces
• A subgraph T of G (same nodes, subset of edges)
• T is a tree rooted at r
• Each node assigned a level = distance from r

Tree edges
Horizontal edges
Inter-level edges

Level 0

Level 1

Level 2

Level 3

Level 4

N1

N2

root

02/28/2012 CS267 Lecture 13 31

Breadth First Search (details)

• Queue (First In First Out, or FIFO)
• Enqueue(x,Q) adds x to back of Q
• x = Dequeue(Q) removes x from front of Q

• Compute Tree T(NT,ET)

NT = {(r,0)}, ET = empty set … Initially T = root r, which is at level 0
Enqueue((r,0),Q) … Put root on initially empty Queue Q
Mark r … Mark root as having been processed
While Q not empty … While nodes remain to be processed
 (n,level) = Dequeue(Q) … Get a node to process
 For all unmarked children c of n

 NT = NT U (c,level+1) … Add child c to NT

 ET = ET U (n,c) … Add edge (n,c) to ET

 Enqueue((c,level+1),Q)) … Add child c to Q for processing
 Mark c … Mark c as processed
 Endfor
Endwhile

root

02/28/2012 CS267 Lecture 13 32

Partitioning via Breadth First Search

• BFS identifies 3 kinds of edges
• Tree Edges - part of T
• Horizontal Edges - connect nodes at same level
• Interlevel Edges - connect nodes at adjacent levels

• No edges connect nodes in levels

 differing by more than 1 (why?)

• BFS partioning heuristic
• N = N1 U N2, where

• N1 = {nodes at level <= L},

• N2 = {nodes at level > L}

• Choose L so |N1| close to |N2|

BFS partition of a 2D Mesh
using center as root:
 N1 = levels 0, 1, 2, 3
 N2 = levels 4, 5, 6

root

02/28/2012 CS267 Lecture 13 33

Coordinate-Free: Kernighan/Lin

• Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand

• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but
more complicated

• Given G = (N,E,WE) and a partitioning N = A U B, where |
A| = |B|

• T = cost(A,B) = Σ {W(e) where e connects nodes in A and B}

• Find subsets X of A and Y of B with |X| = |Y|

• Consider swapping X and Y if it decreases cost:
• newA = (A – X) U Y and newB = (B – Y) U X

• newT = cost(newA , newB) < T = cost(A,B)

• Need to compute newT efficiently for many possible X
and Y, choose smallest (best)

02/28/2012 CS267 Lecture 13 34

Kernighan/Lin: Preliminary Definitions

• T = cost(A, B), newT = cost(newA, newB)

• Need an efficient formula for newT; will use
• E(a) = external cost of a in A = Σ {W(a,b) for b in B}

• I(a) = internal cost of a in A = Σ {W(a,a’) for other a’ in A}

• D(a) = cost of a in A = E(a) - I(a)

• E(b), I(b) and D(b) defined analogously for b in B

• Consider swapping X = {a} and Y = {b}
• newA = (A - {a}) U {b}, newB = (B - {b}) U {a}

• newT = T - (D(a) + D(b) - 2*w(a,b)) ≡ T - gain(a,b)
• gain(a,b) measures improvement gotten by swapping a and b

• Update formulas
• newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) for a’ in A, a’ ≠ a
• newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) for b’ in B, b’ ≠ b

02/28/2012 CS267 Lecture 13 35

Kernighan/Lin Algorithm
 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
 Repeat
 … One pass greedily computes |N|/2 possible X,Y to swap, picks best

 Compute costs D(n) for all n in N … cost = O(|N|2)
 Unmark all nodes in N … cost = O(|N|)
 While there are unmarked nodes … |N|/2 iterations

 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
 Mark a and b (but do not swap them) … cost = O(1)
 Update D(n) for all unmarked n,
 as though a and b had been swapped … cost = O(|N|)
 Endwhile
 … At this point we have computed a sequence of pairs
 … (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)
 … where k = |N|/2, numbered in the order in which we marked them

 Pick m maximizing Gain = Σk=1 to m gain(k) … cost = O(|N|)
 … Gain is reduction in cost from swapping (a1,b1) through (am,bm)
 If Gain > 0 then … it is worth swapping
 Update newA = A - { a1,…,am } U { b1,…,bm } … cost = O(|N|)
 Update newB = B - { b1,…,bm } U { a1,…,am } … cost = O(|N|)
 Update T = T - Gain … cost = O(1)
 endif
 Until Gain <= 0

02/28/2012 CS267 Lecture 13 36

 Comments on Kernighan/Lin Algorithm

• Most expensive line shown in red, O(n3)

• Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive

• can escape “local minima” where switching no pair helps

• How many times do we Repeat?
• K/L tested on very small graphs (|N|<=360) and got

convergence after 2-4 sweeps

• For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 2-|N|/30

02/28/2012 CS267 Lecture 13 37

Coordinate-Free: Spectral Bisection

• Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

• Motivation, by analogy to a vibrating string

• Basic definitions

• Vibrating string, revisited
• Implementation via the Lanczos Algorithm

• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• No free lunch ...

02/28/2012 CS267 Lecture 13 38

Motivation for Spectral Bisection

• Vibrating string

• Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

• Vibrating string has modes of vibration, or harmonics

• Label nodes by whether mode - or + to partition into N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)

02/28/2012 CS267 Lecture 13 39

Basic Definitions

• Definition: The incidence matrix In(G) of a graph G(N,E)
is an |N| by |E| matrix, with one row for each node and
one column for each edge. If edge e=(i,j) then column e
of In(G) is zero except for the i-th and j-th entries, which
are +1 and -1, respectively.

• Slightly ambiguous definition because multiplying column e of In(G)
by -1 still satisfies the definition, but this won’t matter...

• Definition: The Laplacian matrix L(G) of a graph G(N,E)
is an |N| by |N| symmetric matrix, with one row and
column for each node. It is defined by

• L(G) (i,i) = degree of node i (number of incident edges)

• L(G) (i,j) = -1 if i ≠ j and there is an edge (i,j)

• L(G) (i,j) = 0 otherwise

02/28/2012 CS267 Lecture 13 40

Example of In(G) and L(G) for Simple Meshes

02/28/2012 CS267 Lecture 13 41

Properties of Laplacian Matrix

• Theorem 1: Given G, L(G) has the following properties
(proof on 1996 CS267 web page)

• L(G) is symmetric.
• This means the eigenvalues of L(G) are real and its eigenvectors

are real and orthogonal.

• In(G) * (In(G))T = L(G)

• The eigenvalues of L(G) are nonnegative:

• 0 = λ1 ≤ λ2 ≤ … ≤ λn

• The number of connected components of G is equal to the

number of λi equal to 0.

• Definition: λ2(L(G)) is the algebraic connectivity of G

• The magnitude of λ2 measures connectivity

• In particular, λ2 ≠ 0 if and only if G is connected.

02/28/2012 CS267 Lecture 13 42

Spectral Bisection Algorithm

• Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))

• For each node n of G
• if v2(n) < 0 put node n in partition N-

• else put node n in partition N+

• Why does this make sense? First reasons...
• Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+

defined as above. Then N- is connected. If no v2(n) = 0, then
N+ is also connected. (proof on 1996 CS267 web page)

• Recall λ2(L(G)) is the algebraic connectivity of G
• Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of G(N,E), so

that G1 is “less connected” than G. Then λ2(L(G1)) ≤ λ2(L(G)) ,
i.e. the algebraic connectivity of G1 is less than or equal to the
algebraic connectivity of G. (proof on 1996 CS267 web page)

02/28/2012 CS267 Lecture 13 43

Spectral Bisection Algorithm

• Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))

• For each node n of G
• if v2(n) < 0 put node n in partition N-

• else put node n in partition N+

• Why does this make sense? More reasons...
• Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2

be any partition into part of equal size |N|/2. Then the number
of edges connecting N1 and N2 is at least .25 * |N| * λ2(L(G)).
 (proof on 1996 CS267 web page)

02/28/2012 CS267 Lecture 23 44

Motivation for Spectral Bisection (recap)

• Vibrating string has modes of vibration, or harmonics

• Modes computable as follows

• Model string as masses connected by springs (a 1D mesh)

• Write down F=ma for coupled system, get matrix A

• Eigenvalues and eigenvectors of A are frequencies and shapes of
modes

• Label nodes by whether mode - or + to get N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)

02/28/2012 CS267 Lecture 23 45

Details for Vibrating String Analogy

• Force on mass j = k*[x(j-1) - x(j)] + k*[x(j+1) - x(j)]

 = -k*[-x(j-1) + 2*x(j) - x(j+1)]

• F=ma yields m*x’’(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)] (*)

• Writing (*) for j=1,2,…,n yields

 x(1) 2*x(1) - x(2) 2 -1 x(1) x(1)
 x(2) -x(1) + 2*x(2) - x(3) -1 2 -1 x(2) x(2)

m * d2 … =-k* … =-k* … * … =-k*L* …

 dx2 x(j) -x(j-1) + 2*x(j) - x(j+1) -1 2 -1 x(j) x(j)
 … … … … …
 x(n) 2*x(n-1) - x(n) -1 2 x(n) x(n)

 (-m/k) x’’ = L*x

02/28/2012 CS267 Lecture 13 46

Details for Vibrating String (continued)

• -(m/k) x’’ = L*x, where x = [x1,x2,…,xn]T

• Seek solution of form x(t) = sin(α*t) * x0

• L*x0 = (m/k)*α2 * x0 = λ * x0

• For each integer i, get λ = 2*(1-cos(i*π/(n+1)), x0 = sin(1*i*π/(n+1))

 sin(2*i*π/(n+1))

 …

 sin(n*i*π/(n+1))

• Thus x0 is a sine curve with frequency proportional to i

• Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ (k/m)1/2 * π * i/(n+1)

• L = 2 -1 not quite Laplacian of 1D mesh,

 -1 2 -1 but we can fix that ...

 ….

 -1 2

02/28/2012 CS267 Lecture 13 47

Motivation for Spectral Bisection

• Vibrating string has modes of vibration, or harmonics

• Modes computable as follows

• Model string as masses connected by springs (a 1D mesh)

• Write down F=ma for coupled system, get matrix A

• Eigenvalues and eigenvectors of A are frequencies and shapes
of modes

• Label nodes by whether mode - or + to get N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)

02/28/2012 CS267 Lecture 13 48

Details for Vibrating String (continued)

• Write down F=ma for “vibrating string” below

• Get Graph Laplacian of 1D mesh

02/28/2012 CS267 Lecture 13 49

Eigenvectors of L(1D mesh)

Eigenvector 1
 (all ones)

Eigenvector 2

Eigenvector 3

02/28/2012 CS267 Lecture 13 50

2nd eigenvector of L(planar mesh)

CS267 Lecture 8 51

4th eigenvector of L(planar mesh)

02/28/2012 CS267 Lecture 13 52

Computing v2 and λ2 of L(G) using Lanczos
• Given any n-by-n symmetric matrix A (such as L(G)) Lanczos

computes a k-by-k “approximation” T by doing k matrix-vector
products, k << n

• Approximate A’s eigenvalues/vectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
 j=j+1
 q(j) = r/b(j-1) … scale a vector (BLAS1)
 r = A*q(j) … matrix vector multiplication, the most expensive step
 r = r - b(j-1)*v(j-1) … “axpy”, or scalar*vector + vector (BLAS1)

 a(j) = v(j)T * r … dot product (BLAS1)
 r = r - a(j)*v(j) … “axpy” (BLAS1)
 b(j) = ||r|| … compute vector norm (BLAS1)
until convergence … details omitted

T = a(1) b(1)
 b(1) a(2) b(2)
 b(2) a(3) b(3)
 … … …
 b(k-2) a(k-1) b(k-1)
 b(k-1) a(k)

02/28/2012 CS267 Lecture 13 53

Spectral Bisection: Summary

• Laplacian matrix represents graph connectivity

• Second eigenvector gives a graph bisection
• Roughly equal “weights” in two parts

• Weak connection in the graph will be separator

• Implementation via the Lanczos Algorithm
• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• Have we made progress?
• The first matrix-vector multiplies are slow, but use them to learn

how to make the rest faster

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 55

Introduction to Multilevel Partitioning

• If we want to partition G(N,E), but it is too big to do
efficiently, what can we do?

• 1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and

partition Gc instead

• 2) Use partition of Gc to get a rough partitioning of G, and then
iteratively improve it

• What if Gc still too big?
• Apply same idea recursively

02/28/2012 56

Multilevel Partitioning - High Level Algorithm
 (N+,N-) = Multilevel_Partition(N, E)
 … recursive partitioning routine returns N+ and N- where N = N+ U N-
 if |N| is small
(1) Partition G = (N,E) directly to get N = N+ U N-
 Return (N+, N-)
 else

(2) Coarsen G to get an approximation Gc = (Nc, Ec)

(3) (Nc+ , Nc-) = Multilevel_Partition(Nc, Ec)

(4) Expand (Nc+ , Nc-) to a partition (N+ , N-) of N
(5) Improve the partition (N+ , N-)
 Return (N+ , N-)
 endif

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)

How do we
 Coarsen?
 Expand?
 Improve?

“V - cycle:”

02/28/2012 CS267 Lecture 13 57

Multilevel Kernighan-Lin

• Coarsen graph and expand partition using
maximal matchings

• Improve partition using Kernighan-Lin

02/28/2012 CS267 Lecture 13 58

Maximal Matching

• Definition: A matching of a graph G(N,E) is a subset Em of

E such that no two edges in Em share an endpoint

• Definition: A maximal matching of a graph G(N,E) is a

matching Em to which no more edges can be added and
remain a matching

• A simple greedy algorithm computes a maximal matching:let Em be empty
mark all nodes in N as unmatched
for i = 1 to |N| … visit the nodes in any order
 if i has not been matched
 mark i as matched
 if there is an edge e=(i,j) where j is also unmatched,
 add e to Em

 mark j as matched
 endif
 endif
endfor

02/28/2012 CS267 Lecture 13 59

Maximal Matching: Example

02/28/2012 CS267 Lecture 13 60

Example of Coarsening

02/28/2012 CS267 Lecture 13 61

Coarsening using a maximal matching (details)

1) Construct a maximal matching Em of G(N,E)

for all edges e=(j,k) in Em 2) collapse matched nodes into a single one

 Put node n(e) in Nc

 W(n(e)) = W(j) + W(k) … gray statements update node/edge weights

for all nodes n in N not incident on an edge in Em 3) add unmatched nodes

 Put n in Nc … do not change W(n)

… Now each node r in N is “inside” a unique node n(r) in Nc

… 4) Connect two nodes in Nc if nodes inside them are connected in E

for all edges e=(j,k) in Em

 for each other edge e’=(j,r) or (k,r) in E

 Put edge ee = (n(e),n(r)) in Ec

 W(ee) = W(e’)

If there are multiple edges connecting two nodes in Nc, collapse them,
 adding edge weights

02/28/2012 CS267 Lecture 13 62

Expanding a partition of Gc to a partition of G

02/28/2012 CS267 Lecture 13 63

Multilevel Spectral Bisection

• Coarsen graph and expand partition using
maximal independent sets

• Improve partition using Rayleigh Quotient Iteration

02/28/2012 CS267 Lecture 13 64

Maximal Independent Sets

• Definition: An independent set of a graph G(N,E) is a subset Ni of N

such that no two nodes in Ni are connected by an edge

• Definition: A maximal independent set of a graph G(N,E) is an
independent set Ni to which no more nodes can be added and
remain an independent set

• A simple greedy algorithm computes a maximal independent set:
let Ni be empty
for k = 1 to |N| … visit the nodes in any order

 if node k is not adjacent to any node already in Ni

 add k to Ni

 endif
endfor

02/28/2012 CS267 Lecture 13 65

Example of Coarsening

- encloses domain Dk = node of Nc

02/28/2012 CS267 Lecture 13 66

Coarsening using Maximal Independent Sets (details)
… Build “domains” D(k) around each node k in Ni to get nodes in Nc

… Add an edge to Ec whenever it would connect two such domains

Ec = empty set

for all nodes k in Ni

 D(k) = ({k}, empty set)
 … first set contains nodes in D(k), second set contains edges in D(k)
unmark all edges in E
repeat
 choose an unmarked edge e = (k,j) from E
 if exactly one of k and j (say k) is in some D(m)
 mark e
 add j and e to D(m)
 else if k and j are in two different D(m)’s (say D(mk) and D(mj))
 mark e

 add edge (mk, mj) to Ec

 else if both k and j are in the same D(m)
 mark e
 add e to D(m)
 else
 leave e unmarked
 endif
until no unmarked edges

02/28/2012 CS267 Lecture 13 67

Expanding a partition of Gc to a partition of G

• Need to convert an eigenvector vc of L(Gc) to an
approximate eigenvector v of L(G)

• Use interpolation:
For each node j in N

 if j is also a node in Nc, then

 v(j) = vc(j) … use same eigenvector component
 else

 v(j) = average of vc(k) for all neighbors k of j in Nc

 end if
endif

02/28/2012 CS267 Lecture 13 68

Example: 1D mesh of 9 nodes

02/28/2012 CS267 Lecture 13 69

Improve eigenvector: Rayleigh Quotient Iteration

j = 0

pick starting vector v(0) … from expanding vc
repeat
 j=j+1

 r(j) = vT(j-1) * L(G) * v(j-1)
 … r(j) = Rayleigh Quotient of v(j-1)
 … = good approximate eigenvalue

 v(j) = (L(G) - r(j)*I)-1 * v(j-1)
 … expensive to do exactly, so solve approximately
 … using an iteration called SYMMLQ,
 … which uses matrix-vector multiply (no surprise)
 v(j) = v(j) / || v(j) || … normalize v(j)
until v(j) converges
… Convergence is very fast: cubic

02/28/2012 70

Example of convergence for 1D mesh

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

02/28/2012 CS267 Lecture 13 72

Available Implementations

• Multilevel Kernighan/Lin
• METIS (www.cs.umn.edu/~metis)
• ParMETIS - parallel version

• Multilevel Spectral Bisection
• S. Barnard and H. Simon, “A fast multilevel implementation

of recursive spectral bisection …”, Proc. 6th SIAM Conf.
On Parallel Processing, 1993

• Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

• Hybrids possible
• Ex: Using Kernighan/Lin to improve a partition from

spectral bisection

• Recent package, collection of techniques
• Zoltan (www.cs.sandia.gov/Zoltan)

• See www.cs.sandia.gov/~bahendr/partitioning.html

02/28/2012 CS267 Lecture 13 73

Comparison of methods

• Compare only methods that use edges, not nodal coordinates
• CS267 webpage and KK95a (see below) have other comparisons

• Metrics
• Speed of partitioning
• Number of edge cuts
• Other application dependent metrics

• Summary
• No one method best

• Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the
number of edge cuts

• www-users.cs.umn.edu/~karypis/metis/publications/main.html
• see publications KK95a and KK95b

• Spectral give much better cuts for some applications
• Ex: image segmentation
• See “Normalized Cuts and Image Segmentation” by J. Malik, J. Shi

02/28/2012 74

Number of edges cut for a 64-way partition

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Edges cut
 for 64-way
 partition
 88806
 2965
 675
 194436
 55753
 11388
 58784
 1388
 17894
 4365
 117997

Expected
cuts for
2D mesh
 6427
 2111
 1190
 11320
 3326
 4620
 1746
 8736
 2252
 4674
 7579

Expected
cuts for
3D mesh
 31805
 7208
 3357
 67647
 13215
 20481
 5595
 47887
 7856
 20796
 39623

Expected # cuts for 64-way partition of 2D mesh of n nodes

 n1/2 + 2*(n/2)1/2 + 4*(n/4)1/2 + … + 32*(n/32)1/2 ~ 17 * n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes =

 n2/3 + 2*(n/2)2/3 + 4*(n/4)2/3 + … + 32*(n/32)2/3 ~ 11.5 * n2/3

For Multilevel Kernighan/Lin, as implemented in METIS (see KK95a)

02/28/2012 CS267 Lecture 13 75

Speed of 256-way partitioning (from KK95a)

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Multilevel
 Spectral
Bisection
 607.3
 25.0
 18.7
 2214.2
 474.2
 311.0
 142.6
 850.2
 117.9
 130.0
 1053.4

Multilevel
Kernighan/
 Lin
 48.1
 3.1
 1.6
 179.2
 25.5
 18.0
 8.1
 44.8
 4.3
 10.1
 63.9

Partitioning time in seconds

Kernighan/Lin much faster than Spectral Bisection!

02/28/2012 CS267 Lecture 13

Outline of Graph Partitioning
Lectures

• Review definition of Graph Partitioning problem
• Overview of heuristics
• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) space

• Partitioning without Nodal Coordinates
• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration
• BIG IDEA, appears often in scientific computing

• Comparison of Methods and Applications
• Beyond Graph Partitioning: Hypergraphs

76

 r1

 r2

 r3

 r4

c1

c2

c3

c4

Beyond simple graph partitioning:
Representing a sparse matrix as a hypergraph

7702/28/2012 CS267 Lecture 13

 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 4!

 ⇒ Cut size of graph
partition is not an accurate
count of communication
volume

Source vector entries
corresponding to c2
and c3 are needed by
both partitions – so
total volume of
communication is 2

Using a graph to partition, versus a hypergraph

7802/28/2012

 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 3!

 ⇒ Cut size of graph partition
may not accurately count
communication volume

Source vector entries
corresponding to c2
and c3 are needed by
both partitions – so
total volume of
communication is 2

Using a graph to partition, versus a hypergraph

1 2

3 4

P1

P2

7902/28/2012

Two Different 2D Mesh Partitioning Strategies

Y
Y

Graph:
Cartesian Partitioning

Communication Volume per proc (SpMV) =
nodes needed by 1 other proc * 1 + nodes
needed by 2 other procs *2 = 14*1 + 1*2 = 16

Total Communication Volume (SpMV) =
nprocs * (comm per proc) = 4 * 16 = 64

Total SpMV communication volume = 64

Hypergraph:
MeshPart Algorithm [Ucar, Catalyurek,

2010]

Total SpMV communication volume = 58

8002/28/2012 CS267 Lecture 13

Generalization of the MeshPart Algorithm

Source: Ucar and Catalyruk, 2010

For NxN mesh on PxP processor grid:
Usual Cartesian partitioning costs ~4NP words moved
MeshPart costs ~3NP words moved, 25% savings

8102/28/2012 CS267 Lecture 13

Experimental Results: Hypergraph vs. Graph Partitioning

~8% reduction in total communication volume
using hypergraph partitioning (PaToH)

versus graph partitioning (METIS)

64x64 Mesh (5-pt stencil), 16 processors

Hypergraph Partitioning (PaToH)
Total Comm. Vol = 719
Max Vol per Proc = 59

Graph Partitioning (Metis)
Total Comm. Vol = 777
Max Vol per Proc = 69

8202/28/2012

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
• Same graph for A as |A| + |AT|
• Ok for symmetric matrices, what about nonsymmetric?

• Try A upper triangular

Graph Partitioning (Metis)
Total Communication Volume= 254

Load imbalance ratio = 6%

Hypergraph Partitioning (PaToH)
Total Communication Volume= 181

Load imbalance ratio = 0.1%

8302/28/2012 CS267 Lecture 13

Summary: Graphs versus Hypergraphs
• Pros and cons

• When matrix is non-symmetric, the graph partitioning model
(using A+AT) loses information, resulting in suboptimal
partitioning in terms of communication and load balance.

• Even when matrix is symmetric, graph cut size is not an
accurate measurement of communication volume

• Hypergraph partitioning model solves both these problems

• However, hypergraph partitioning (PaToH) can be much more
expensive than graph partitioning (METIS)

• Hypergraph partitioners: PaToH, HMETIS, ZOLTAN

• For more see Bruce Hendrickson’s web page

• www.cs.sandia.gov/~bahendr/partitioning.html

• “Load Balancing Fictions, Falsehoods and Fallacies”
02/28/2012 CS267 Lecture 13 84

02/28/2012 CS267 Lecture 13 85

Extra Slides

03/01/2011 CS267 Lecture 13 86

Beyond Simple Graph Partitioning

• Undirected graphs model symmetric matrices, not
unsymmetric ones

• More general graph models include:
• Hypergraph: nodes are computation, edges are

communication, but connected to a set (>= 2) of nodes
• HMETIS, PATOH, ZOLTAN packages

• Bipartite model: use bipartite graph for directed graph

• Multi-object, Multi-Constraint model: use when single structure
may involve multiple computations with differing costs

• For more see Bruce Hendrickson’s web page
• www.cs.sandia.gov/~bahendr/partitioning.html

• “Load Balancing Myths, Fictions & Legends”

Graph vs. Hypergraph Partitioning

Consider a 2-way partition of a 2D mesh:

The cost of communicating vertex A is 1 – we can send
the value in one message to the other processor

According to the graph model, however the vertex A
contributes 2 to the total communication volume, since
2 edges are cut.

The hypergraph model accurately represents
the cost of communicating A (one hyperedge
cut, so communication volume of 1.

Result: Unlike graph partitioning model, the hypergraph partitioning model gives
exact communication volume (minimizing cut = minimizing communication)

Therefore, we expect that hypergraph partitioning approach can do a better job at
minimizing total communication. Let’s look at a simple example…

Edge cut = 10

Hyperedge cut
= 7

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
• Same graph for A as |A| + |AT|
• Ok for symmetric matrices, what about nonsymmetric?

Illustrative Bad Example: triangular matrix

 This results in a suboptimal partition in terms of both communication and load balancing. In this case,

Total Communication Volume = 60 (optimal is ~12 in this case, subject to load balancing)
Proc1: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals with
nonsymmetry by partitioning the graph of A+AT (which in this case is a dense matrix).

Given A, graph
partition A+AT

which gives the
partition for A

Experimental Results: Illustration of Triangular Example

Graph Partitioning (Metis)
Total Communication Volume= 254

Imbalance ratio = 6%

Hypergraph Partitioning (PaToH)
Total Communication Volume= 181

Imbalance ratio = 0.1%

Conclusions from this section:
•When matrix is non-symmetric, the graph partitioning model (using A+AT) loses
information, resulting in suboptimal partitioning in terms of communication and load
balance.
•Even when matrix is symmetric, graph cut size is not an accurate measurement of
communication volume
•Hypergraph partitioning model solves both these problems

03/09/2009 CS267 Lecture 13 90

Coordinate-Free Partitioning: Summary

• Several techniques for partitioning without coordinates
• Breadth-First Search – simple, but not great partition

• Kernighan-Lin – good corrector given reasonable partition

• Spectral Method – good partitions, but slow

• Multilevel methods
• Used to speed up problems that are too large/slow
• Coarsen, partition, expand, improve

• Can be used with K-L and Spectral methods and others

• Speed/quality
• For load balancing of grids, multi-level K-L probably best
• For other partitioning problems (vision, clustering, etc.) spectral

may be better

• Good software available

03/09/2009 CS267 Lecture 13 91

Is Graph Partitioning a Solved Problem?

• Myths of partitioning due to Bruce Hendrickson
1. Edge cut = communication cost

2. Simple graphs are sufficient

3. Edge cut is the right metric

4. Existing tools solve the problem

5. Key is finding the right partition

6. Graph partitioning is a solved problem

• Slides and myths based on Bruce Hendrickson’s:
 “Load Balancing Myths, Fictions & Legends”

03/09/2009 CS267 Lecture 13 92

Myth 1: Edge Cut = Communication Cost

• Myth1: The edge-cut deceit

 edge-cut = communication cost

• Not quite true:
• #vertices on boundary is actual communication volume

• Do not communicate same node value twice

• Cost of communication depends on # of messages too (α term)

• Congestion may also affect communication cost

• Why is this OK for most applications?
• Mesh-based problems match the model: cost is ~ edge cuts

• Other problems (data mining, etc.) do not

03/09/2009 CS267 Lecture 13 93

Myth 2: Simple Graphs are Sufficient

• Graphs often used to encode data dependencies
• Do X before doing Y

• Graph partitioning determines data partitioning
• Assumes graph nodes can be evaluated in parallel

• Communication on edges can also be done in parallel

• Only dependence is between sweeps over the graph

• More general graph models include:
• Hypergraph: nodes are computation, edges are

communication, but connected to a set (>= 2) of nodes

• Bipartite model: use bipartite graph for directed graph

• Multi-object, Multi-Constraint model: use when single structure
may involve multiple computations with differing costs

03/09/2009 CS267 Lecture 13 94

Myth 3: Partition Quality is Paramount

• When structure are changing dynamically during a
simulation, need to partition dynamically

• Speed may be more important than quality
• Partitioner must run fast in parallel

• Partition should be incremental
• Change minimally relative to prior one

• Must not use too much memory

• Example from Touheed, Selwood, Jimack and Bersins
• 1 M elements with adaptive refinement on SGI Origin

• Timing data for different partitioning algorithms:
• Repartition time from 3.0 to 15.2 secs
• Migration time : 17.8 to 37.8 secs
• Solve time: 2.54 to 3.11 secs

03/09/2009 CS267 Lecture 13 95

References

• Details of all proofs on Jim Demmel’s 267 web page

• A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs”, SIAM J. Mat.
Anal. Appl. 11:430-452 (1990)

• M. Fiedler, “Algebraic Connectivity of Graphs”, Czech.
Math. J., 23:298-305 (1973)

• M. Fiedler, Czech. Math. J., 25:619-637 (1975)
• B. Parlett, “The Symmetric Eigenproblem”, Prentice-Hall,

1980
• www.cs.berkeley.edu/~ruhe/lantplht/lantplht.html

• www.netlib.org/laso

03/109/2009 CS267 Lecture 13 96

Summary

• Partitioning with nodal coordinates:
• Inertial method

• Projection onto a sphere

• Algorithms are efficient

• Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space

• Partitioning without nodal coordinates:
• Breadth-First Search – simple, but not great partition

• Kernighan-Lin – good corrector given reasonable partition
• Spectral Method – good partitions, but slow

• Today:
• Spectral methods revisited

• Multilevel methods

03/09/2009 CS267 Lecture 13 97

Another Example

• Definition: The Laplacian matrix L(G) of a graph G(N,E)
is an |N| by |N| symmetric matrix, with one row and
column for each node. It is defined by

• L(G) (i,i) = degree of node I (number of incident edges)

• L(G) (i,j) = -1 if i != j and there is an edge (i,j)
• L(G) (i,j) = 0 otherwise

2 -1 -1 0 0
-1 2 -1 0 0
-1 -1 4 -1 -1
0 0 -1 2 -1
0 0 -1 -1 2

1

2 3

4

5

G = L(G) =

Hidden slide

02/28/2012 CS267 Lecture 13 98

Properties of Incidence and Laplacian matrices

• Theorem 1: Given G, In(G) and L(G) have the following properties
(proof on Demmel’s 1996 CS267 web page)

• L(G) is symmetric. (This means the eigenvalues of L(G) are real and its
eigenvectors are real and orthogonal.)

• Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.
• In(G) * (In(G))T = L(G). This is independent of the signs chosen for

each column of In(G).
• Suppose L(G)*v = λ*v, v ≠ 0, so that v is an eigenvector and λ an

eigenvalue of L(G). Then

• The eigenvalues of L(G) are nonnegative:

• 0 = λ1 ≤ λ2 ≤ … ≤ λn

• The number of connected components of G is equal to the number of

λi equal to 0. In particular, λ2 ≠ 0 if and only if G is connected.

• Definition: λ2(L(G)) is the algebraic connectivity of G

λ = || In(G)T * v ||2 / || v ||2 … ||x||2 = Σk xk
2

 = Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σ i v(i)2

	CS 267: Applications of Parallel Computers Graph Partitioning
	Outline of Graph Partitioning Lecture
	Definition of Graph Partitioning
	Slide 4
	Some Applications
	Sparse Matrix Vector Multiplication y = y +A*x
	Cost of Graph Partitioning
	Outline of Graph Partitioning Lectures
	First Heuristic: Repeated Graph Bisection
	Edge Separators vs. Vertex Separators
	Overview of Bisection Heuristics
	Slide 12
	Nodal Coordinates: How Well Can We Do?
	Nodal Coordinates: Inertial Partitioning
	Inertial Partitioning: Choosing L
	Inertial Partitioning: choosing L (continued)
	Nodal Coordinates: Random Spheres
	Random Spheres: Well Shaped Graphs
	Generalizing Lipton/Tarjan to Higher Dimensions
	Stereographic Projection
	Choosing a Random Sphere
	Random Sphere Algorithm (Gilbert)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Nodal Coordinates: Summary
	Slide 29
	Coordinate-Free: Breadth First Search (BFS)
	Breadth First Search (details)
	Partitioning via Breadth First Search
	Coordinate-Free: Kernighan/Lin
	Kernighan/Lin: Preliminary Definitions
	Kernighan/Lin Algorithm
	Comments on Kernighan/Lin Algorithm
	Coordinate-Free: Spectral Bisection
	Motivation for Spectral Bisection
	Basic Definitions
	Example of In(G) and L(G) for Simple Meshes
	Properties of Laplacian Matrix
	Spectral Bisection Algorithm
	Slide 43
	Motivation for Spectral Bisection (recap)
	Details for Vibrating String Analogy
	Details for Vibrating String (continued)
	Slide 47
	Slide 48
	Eigenvectors of L(1D mesh)
	2nd eigenvector of L(planar mesh)
	4th eigenvector of L(planar mesh)
	Computing v2 and l2 of L(G) using Lanczos
	Spectral Bisection: Summary
	Slide 54
	Introduction to Multilevel Partitioning
	Multilevel Partitioning - High Level Algorithm
	Multilevel Kernighan-Lin
	Maximal Matching
	Maximal Matching: Example
	Example of Coarsening
	Coarsening using a maximal matching (details)
	Expanding a partition of Gc to a partition of G
	Multilevel Spectral Bisection
	Maximal Independent Sets
	Slide 65
	Coarsening using Maximal Independent Sets (details)
	Slide 67
	Example: 1D mesh of 9 nodes
	Improve eigenvector: Rayleigh Quotient Iteration
	Example of convergence for 1D mesh
	Slide 71
	Available Implementations
	Comparison of methods
	Number of edges cut for a 64-way partition
	Speed of 256-way partitioning (from KK95a)
	Slide 76
	PowerPoint Presentation
	Slide 78
	Slide 79
	Two Different 2D Mesh Partitioning Strategies
	Generalization of the MeshPart Algorithm
	Experimental Results: Hypergraph vs. Graph Partitioning
	Further Benefits of Hypergraph Model: Nonsymmetric Matrices
	Summary: Graphs versus Hypergraphs
	Extra Slides
	Beyond Simple Graph Partitioning
	Graph vs. Hypergraph Partitioning
	Slide 88
	Experimental Results: Illustration of Triangular Example
	Coordinate-Free Partitioning: Summary
	Is Graph Partitioning a Solved Problem?
	Myth 1: Edge Cut = Communication Cost
	Myth 2: Simple Graphs are Sufficient
	Myth 3: Partition Quality is Paramount
	References
	Summary
	Another Example
	Properties of Incidence and Laplacian matrices

