
CS267 Lecture 6 1

Shared Memory Programming:

Threads and OpenMP

Lecture 6

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr12/

02/02/2012 CS267 Lecture 6 2

Outline

• Parallel Programming with Threads
• Parallel Programming with OpenMP

• See http://www.nersc.gov/nusers/help/tutorials/openmp/
• Slides on OpenMP derived from: U.Wisconsin tutorial, which in

turn were from LLNL, NERSC, U. Minn, and OpenMP.org
• See tutorial by Tim Mattson and Larry Meadows presented at

SC08, at OpenMP.org; includes programming exercises

• (There are other Shared Memory Models: CILK, TBB…)
• Performance comparison
• Summary

CS267 Lecture 6 3

Parallel
Programming with

Threads

02/02/2012 CS267 Lecture 6 4

Recall Programming Model 1: Shared Memory

• Program is a collection of threads of control.
• Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables
• Also a set of shared variables, e.g., static variables, shared common

blocks, or global heap.
• Threads communicate implicitly by writing and reading shared

variables.
• Threads coordinate by synchronizing on shared variables

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

02/02/2012 CS267 Lecture 6 5

Shared Memory Programming

Several Thread Libraries/systems
• PTHREADS is the POSIX Standard

• Relatively low level
• Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming
• Support for scientific programming on shared memory
• http://www.openMP.org

• TBB: Thread Building Blocks
• Intel

• CILK: Language of the C “ilk”
• Lightweight threads embedded into C

• Java threads
• Built on top of POSIX threads
• Object within Java language

02/02/2012 CS267 Lecture 6 6

Common Notions of Thread Creation

• cobegin/coend
cobegin
 job1(a1);
 job2(a2);
coend

• fork/join
tid1 = fork(job1, a1);
job2(a2);
join tid1;

• future
v = future(job1(a1));
… = …v…;

• Cobegin cleaner than fork, but fork is more general
• Futures require some compiler (and likely hardware) support

• Statements in block may run in parallel
• cobegins may be nested
• Scoped, so you cannot have a missing coend

• Future expression evaluated in parallel
• Attempt to use return value will wait

• Forked procedure runs in parallel
• Wait at join point if it’s not finished

02/02/2012 CS267 Lecture 6 7

Overview of POSIX Threads

• POSIX: Portable Operating System Interface
• Interface to Operating System utilities

• PThreads: The POSIX threading interface
• System calls to create and synchronize threads
• Should be relatively uniform across UNIX-like OS

platforms

• PThreads contain support for
• Creating parallelism
• Synchronizing
• No explicit support for communication, because

shared memory is implicit; a pointer to shared data is
passed to a thread

02/02/2012 CS267 Lecture 6 8

Forking Posix Threads

• thread_id is the thread id or handle (used to halt, etc.)
• thread_attribute various attributes

• Standard default values obtained by passing a NULL pointer
• Sample attribute: minimum stack size

• thread_fun the function to be run (takes and returns void*)
• fun_arg an argument can be passed to thread_fun when it starts
• errorcode will be set nonzero if the create operation fails

Signature:
 int pthread_create(pthread_t *,
 const pthread_attr_t *,
 void * (*)(void *),
 void *);

Example call:
 errcode = pthread_create(&thread_id; &thread_attribute
 &thread_fun; &fun_arg);

02/02/2012 CS267 Lecture 6 9

Simple Threading Example

void* SayHello(void *foo) {
 printf("Hello, world!\n");
 return NULL;
}

int main() {
 pthread_t threads[16];
 int tn;
 for(tn=0; tn<16; tn++) {
 pthread_create(&threads[tn], NULL, SayHello, NULL);
 }
 for(tn=0; tn<16 ; tn++) {
 pthread_join(threads[tn], NULL);
 }
 return 0;
}

Compile using gcc –lpthread

02/02/2012 CS267 Lecture 6 10

Loop Level Parallelism

• Many scientific application have parallelism in loops
• With threads:
 … my_stuff [n][n];
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 … pthread_create (update_cell[i][j], …,
 my_stuff[i][j]);

• But overhead of thread creation is nontrivial
• update_cell should have a significant amount of work
• 1/p-th if possible

02/02/2012

Some More Pthread Functions

•pthread_yield();
• Informs the scheduler that the thread is willing to yield its quantum,

requires no arguments.
•pthread_exit(void *value);

• Exit thread and pass value to joining thread (if exists)
•pthread_join(pthread_t *thread, void **result);

• Wait for specified thread to finish. Place exit value into *result.

Others:
•pthread_t me; me = pthread_self();

• Allows a pthread to obtain its own identifier pthread_t thread;
•pthread_detach(thread);

• Informs the library that the threads exit status will not be needed by
subsequent pthread_join calls resulting in better threads
performance. For more information consult the library or the man
pages, e.g., man -k pthread.. Kathy Yelick Pthreads: 11

02/02/2012 CS267 Lecture 6 12

Shared Data and Threads

• Variables declared outside of main are shared
• Object allocated on the heap may be shared (if pointer is

passed)
• Variables on the stack are private: passing pointer to

these around to other threads can cause problems

• Often done by creating a large “thread data” struct
• Passed into all threads as argument
• Simple example:

 char *message = "Hello World!\n";

 pthread_create(&thread1,

 NULL,
 (void*)&print_fun,
 (void*) message);

02/02/2012 CS267 Lecture 6 13

Setting Attribute Values
• Once an initialized attribute object exists, changes can be made. For

example:
• To change the stack size for a thread to 8192 (before calling

pthread_create), do this:
• pthread_attr_setstacksize(&my_attributes, (size_t)8192);

• To get the stack size, do this:
• size_t my_stack_size;

pthread_attr_getstacksize(&my_attributes, &my_stack_size);

• Other attributes:
• Detached state – set if no other thread will use pthread_join to wait for this

thread (improves efficiency)
• Guard size – use to protect against stack overfow
• Inherit scheduling attributes (from creating thread) – or not
• Scheduling parameter(s) – in particular, thread priority
• Scheduling policy – FIFO or Round Robin
• Contention scope – with what threads does this thread compete for a CPU
• Stack address – explicitly dictate where the stack is located
• Lazy stack allocation – allocate on demand (lazy) or all at once, “up front”

Slide Sorce: Theewara Vorakosit

02/02/2012 CS267 Lecture 6 14

Recall Data Race Example

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

• Problem is a race condition on variable s in the program
• A race condition or data race occurs when:

- two processors (or two threads) access the same
variable, and at least one does a write.

- The accesses are concurrent (not synchronized) so
they could happen simultaneously

02/02/2012 CS267 Lecture 6 15

Barrier -- global synchronization
• Especially common when running multiple copies of

the same function in parallel
• SPMD “Single Program Multiple Data”

• simple use of barriers -- all threads hit the same one
 work_on_my_subgrid();
 barrier;
 read_neighboring_values();
 barrier;

• more complicated -- barriers on branches (or loops)
 if (tid % 2 == 0) {
 work1();
 barrier
 } else { barrier }

• barriers are not provided in all thread libraries

Basic Types of Synchronization: Barrier

02/02/2012 CS267 Lecture 6 16

Creating and Initializing a Barrier

• To (dynamically) initialize a barrier, use code similar to
this (which sets the number of threads to 3):
pthread_barrier_t b;

pthread_barrier_init(&b,NULL,3);

• The second argument specifies an attribute object for
finer control; using NULL yields the default attributes.

• To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

02/02/2012 CS267 Lecture 6 17

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
• threads are working mostly independently
• need to access common data structure

 lock *l = alloc_and_init(); /* shared */
 acquire(l);
 access data
 release(l);

• Locks only affect processors using them:
• If a thread accesses the data without doing the

acquire/release, locks by others will not help

• Java and other languages have lexically scoped
synchronization, i.e., synchronized methods/blocks

• Can’t forgot to say “release”
• Semaphores generalize locks to allow k threads

simultaneous access; good for limited resources

02/02/2012 CS267 Lecture 6 18

Mutexes in POSIX Threads

• To create a mutex:
 #include <pthread.h>
 pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER;
 // or pthread_mutex_init(&amutex, NULL);

• To use it:
 int pthread_mutex_lock(amutex);
 int pthread_mutex_unlock(amutex);

• To deallocate a mutex
 int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Multiple mutexes may be held, but can lead to problems:
 thread1 thread2
 lock(a) lock(b)
 lock(b) lock(a)
• Deadlock results if both threads acquire one of their locks,
so that neither can acquire the second

deadloc
k

02/02/2012 CS267 Lecture 6 19

Summary of Programming with Threads

• POSIX Threads are based on OS features
• Can be used from multiple languages (need appropriate header)
• Familiar language for most of program
• Ability to shared data is convenient

• Pitfalls
• Data race bugs are very nasty to find because they can be

intermittent
• Deadlocks are usually easier, but can also be intermittent

• Researchers look at transactional memory an alternative
• OpenMP is commonly used today as an alternative

CS267 Lecture 6 20

Parallel
Programming in

OpenMP

02/02/2012 CS267 Lecture 6 21

Introduction to OpenMP

• What is OpenMP?
• Open specification for Multi-Processing
• “Standard” API for defining multi-threaded shared-memory

programs
• openmp.org – Talks, examples, forums, etc.

• High-level API
• Preprocessor (compiler) directives (~ 80%)
• Library Calls (~ 19%)
• Environment Variables (~ 1%)

02/02/2012 CS267 Lecture 6 22

A Programmer’s View of OpenMP

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:
• Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

02/02/2012 CS267 Lecture 6 23

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;
 }

02/02/2012 CS267 Lecture 6 24

Motivation – OpenMP

 int main() {

 omp_set_num_threads(16);

 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }

 return 0;
 }

02/02/2012 CS267 Lecture 6 25

Programming Model – Concurrent Loops

• OpenMP easily parallelizes loops
• Requires: No data dependencies

(reads/write or write/write pairs)
between iterations!

• Preprocessor calculates loop
bounds for each thread directly
from serial source

?

?

for(i=0; i < 25; i++)
{

 printf(“Foo”);

}

#pragma omp parallel for

02/02/2012 CS267 Lecture 6 26

Programming Model – Loop Scheduling

•schedule clause determines how loop iterations are
divided among the thread team
•static([chunk]) divides iterations statically between

threads
• Each thread receives [chunk] iterations, rounding as necessary

to account for all iterations
• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread
finishes

• Forms a logical work queue, consisting of all loop iterations
• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

02/02/2012 CS267 Lecture 6 27

Programming Model – Data Sharing

• Parallel programs often employ
two types of data

• Shared data, visible to all
threads, similarly named

• Private data, visible to a single
thread (often stack-allocated)

• OpenMP:
• shared variables are shared
• private variables are private

• PThreads:
• Global-scoped variables are

shared
• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

02/02/2012 CS267 Lecture 6 28

Programming Model - Synchronization

• OpenMP Synchronization
• OpenMP Critical Sections

• Named or unnamed
• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions
• When all else fails – may

require flush directive

• Single-thread regions within
parallel regions
• master, single directives

#pragma omp critical
{
 /* Critical code here */
}

#pragma omp barrier

omp_set_lock(lock l);
/* Code goes here */
omp_unset_lock(lock l);

#pragma omp single
{
 /* Only executed once */
}

02/02/2012 CS267 Lecture 6 29

Microbenchmark: Grid Relaxation (Stencil)

for(t=0; t < t_steps; t++) {

 for(x=0; x < x_dim; x++) {
 for(y=0; y < y_dim; y++) {
 grid[x][y] = /* avg of neighbors */
 }
 }

}

#pragma omp parallel for \

 shared(grid,x_dim,y_dim) private(x,y)

// Implicit Barrier Synchronization

temp_grid = grid;
grid = other_grid;
other_grid = temp_grid;

02/02/2012 CS267 Lecture 6 30

Microbenchmark: Structured Grid

• ocean_dynamic – Traverses entire ocean, row-
by-row, assigning row iterations to threads with
dynamic scheduling.

• ocean_static – Traverses entire ocean, row-
by-row, assigning row iterations to threads with
static scheduling.

• ocean_squares – Each thread traverses a
square-shaped section of the ocean. Loop-level
scheduling not used—loop bounds for each thread
are determined explicitly.

• ocean_pthreads – Each thread traverses a
square-shaped section of the ocean. Loop bounds
for each thread are determined explicitly.

OpenMP

PThreads

02/02/2012 CS267 Lecture 6 31

Microbenchmark: Ocean

02/02/2012 CS267 Lecture 6 32

Microbenchmark: Ocean

02/02/2012 CS267 Lecture 6 33

Microbenchmark: GeneticTSP

• Genetic heuristic-search algorithm for approximating a
solution to the Traveling Salesperson Problem (TSP)

• Find shortest path through weighted graph, visiting each node once

• Operates on a population of possible TSP paths
• Forms new paths by combining known, good paths (crossover)
• Occasionally introduces new random elements (mutation)

• Variables:
Np – Population size, determines search space and working set size
Ng – Number of generations, controls effort spent refining solutions
rC – Rate of crossover, determines how many new solutions are

produced and evaluated in a generation
rM – Rate of mutation, determines how often new (random) solutions

are introduced

02/02/2012 CS267 Lecture 6 34

Microbenchmark: GeneticTSP

while(current_gen < Ng) {
 Breed rC*Np new solutions:
 Select two parents
 Perform crossover()
 Mutate() with probability rM
 Evaluate() new solution

 Identify least-fit rC*Np solutions:
 Remove unfit solutions from population

 current_gen++
}

return the most fit solution found

Outer loop has data
dependence between
iterations, as the
population is not a loop
invariant.

Can generate new
solutions in parallel,
but crossover(),
mutate(), and
evaluate() have
varying runtimes.

Threads
can find
least-fit
population
members
in parallel,
but only
one thread
should
actually
delete
solutions.

02/02/2012 CS267 Lecture 6 35

Microbenchmark: GeneticTSP

•dynamic_tsp – Parallelizes both
breeding loop and survival loop with
OpenMP’s dynamic scheduling

•static_tsp – Parallelizes both breeding
loop and survival loop with OpenMP’s
static scheduling

•tuned_tsp – Attempt to tune scheduilng.
Uses guided (exponential allocation) scheduling
on breeding loop, static predicated scheduling
on survival loop.

•pthreads_tsp – Divides iterations of
breeding loop evenly among threads, conditionally
executes survival loop in parallel

OpenMP

PThreads

02/02/2012 CS267 Lecture 6 36

Microbenchmark: GeneticTSP

02/02/2012 CS267 Lecture 6 37

Evaluation

• OpenMP scales to 16-processor systems
• Was overhead too high?

• In some cases, yes

• Did compiler-generated code compare to hand-written code?
• Yes!

• How did the loop scheduling options affect performance?
• dynamic or guided scheduling helps loops with variable

iteration runtimes
• static or predicated scheduling more appropriate for shorter

loops

• OpenMP is a good tool to parallelize (at least some!)
applications

02/02/2012 CS267 Lecture 6 38

SpecOMP (2001)
• Parallel form of SPEC FP 2000 using Open MP, larger

working sets
• www.spec.org/omp
• Aslot et. Al., Workshop on OpenMP Apps. and Tools (2001)

• Many of CFP2000 were “straightforward” to parallelize:
• ammp (Computational chemistry): 16 Calls to OpenMP API,

13 #pragmas, converted linked lists to vector lists
• Applu (Parabolic/elliptic PDE solver):

50 directives, mostly parallel or do
• Fma3d (Finite element car crash simulation):

127 lines of OpenMP directives (60k lines total)
• mgrid (3D multigrid): automatic translation to OpenMP
• Swim (Shallow water modeling): 8 loops parallelized

02/02/2012 CS267 Lecture 6 39

OpenMP Summary

• OpenMP is a compiler-based technique to create
concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based
code

• Lightweight syntactic language extensions

• OpenMP performs comparably to manually-coded
threading

• Scalable
• Portable

• Not a silver bullet for all applications

02/02/2012 CS267 Lecture 6 40

More Information

• openmp.org
• OpenMP official site

• www.llnl.gov/computing/tutorials/openMP/
• A handy OpenMP tutorial

• www.nersc.gov/assets/Uploads/XE62011OpenMP.pdf
• Another OpenMP tutorial and reference

Extra Slides

CS267 Lecture 6 41

CS267 Lecture 6 42

Shared Memory
Hardware

and
Memory

Consistency

02/02/2012 CS267 Lecture 6 43

Basic Shared Memory Architecture

• Processors all connected to a large shared memory
• Where are caches?

• Now take a closer look at structure, costs, limits,
programming

P1

interconnect

memory

P2 Pn

02/02/2012 Slide source: John Kubiatowicz

What About Caching???

• Want high performance for shared memory: Use Caches!
• Each processor has its own cache (or multiple caches)
• Place data from memory into cache
• Writeback cache: don’t send all writes over bus to memory

• Caches reduce average latency
• Automatic replication closer to processor
• More important to multiprocessor than uniprocessor: latencies longer

• Normal uniprocessor mechanisms to access data
• Loads and Stores form very low-overhead communication primitive

• Problem: Cache Coherence!

I/O devicesMem

P1

$ $

Pn

Bus

02/02/2012

Example Cache Coherence Problem

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

• Things to note:
• Processors could see different values for u after event 3
• With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
• How to fix with a bus: Coherence Protocol

• Use bus to broadcast writes or invalidations
• Simple protocols rely on presence of broadcast medium

• Bus not scalable beyond about 64 processors (max)
• Capacity, bandwidth limitations

Slide source: John Kubiatowicz

02/02/2012

Scalable Shared Memory: Directories

• Every memory block has associated directory information
• keeps track of copies of cached blocks and their states
• on a miss, find directory entry, look it up, and communicate only with the nodes that

have copies if necessary
• in scalable networks, communication with directory and copies is through network

transactions

• Each Reader recorded in directory
• Processor asks permission of memory before writing:

• Send invalidation to each cache with read-only copy
• Wait for acknowledgements before returning permission for writes

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

Slide source: John Kubiatowicz

02/02/2012 CS267 Lecture 6 47

Intuitive Memory Model

• Reading an address should return the last
value written to that address

• Easy in uniprocessors
• except for I/O

• Cache coherence problem in MPs is more
pervasive and more performance critical

• More formally, this is called sequential
consistency:
“A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program.” [Lamport, 1979]

02/02/2012 CS267 Lecture 6 48

Sequential Consistency Intuition

• Sequential consistency says the machine behaves as if
it does the following

memory

P0 P1 P2 P3

02/02/2012 CS267 Lecture 6 49

Memory Consistency Semantics

What does this imply about program behavior?
• No process ever sees “garbage” values, i.e., average of 2 values
• Processors always see values written by some processor
• The value seen is constrained by program order on all

processors
• Time always moves forward

• Example: spin lock
• P1 writes data=1, then writes flag=1
• P2 waits until flag=1, then reads data

If P2 sees the new value of
flag (=1), it must see the
new value of data (=1)

initially: flag=0
 data=0

data = 1
flag = 1

10: if flag=0, goto 10
…= data

P1 P2

If P2
reads flag

Then P2 may
read data

0 1

0 0

1 1

02/02/2012 CS267 Lecture 6 50

Are Caches “Coherent” or Not?
• Coherence means different copies of same location have same

value, incoherent otherwise:
• p1 and p2 both have cached copies of data (= 0)
• p1 writes data=1

• May “write through” to memory
• p2 reads data, but gets the “stale” cached copy

• This may happen even if it read an updated value of another
variable, flag, that came from memory

data 0 data 0

data = 0

p1 p2

data 1

02/02/2012 CS267 Lecture 6 51

Snoopy Cache-Coherence Protocols

• Memory bus is a broadcast medium
• Caches contain information on which addresses they store
• Cache Controller “snoops” all transactions on the bus

• A transaction is a relevant transaction if it involves a cache block currently
contained in this cache

• Take action to ensure coherence
• invalidate, update, or supply value

• Many possible designs (see CS252 or CS258)

State
Address
Data

P0

$ $

Pn

Mem Mem

memory bus
memory op from Pn

bus snoop

02/02/2012 CS267 Lecture 6

Limits of Bus-Based Shared Memory

I/O MEM MEM° ° °

PROC

 cache

PROC

 cache

° ° °

Assume:
1 GHz processor w/o cache

=> 4 GB/s inst BW per processor (32-bit)
=> 1.2 GB/s data BW at 30% load-store

Suppose 98% inst hit rate and 95% data hit
rate

=> 80 MB/s inst BW per processor
=> 60 MB/s data BW per processor
⇒140 MB/s combined BW

Assuming 1 GB/s bus bandwidth
∴ 8 processors will saturate bus

5.2 GB/s

140 MB/s

02/02/2012 CS267 Lecture 6 53

Sample Machines

• Intel Pentium Pro Quad
• Coherent
• 4 processors

• Sun Enterprise server
• Coherent
• Up to 16 processor and/or

memory-I/O cards

• IBM Blue Gene/L
• L1 not coherent, L2 shared

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

P
C

I b
u

s

P
C

I
b

u
sPCI

I/O
cards

Gigaplane bus (256 data, 41 addr ess, 83 MHz)

S
B

U
S

S
B

U
S

S
B

U
S

2
F

ib
e

rC
h

an
ne

l

10
0

bT
, S

C
S

I

Bus interface

CPU/mem
cardsP

$2

$

P

$2

$

Mem ctrl

Bus interface/switch

I/O cards

02/02/2012 CS267 Lecture 6 54

Directory Based Memory/Cache Coherence

• Keep Directory to keep track of which memory stores latest
copy of data

• Directory, like cache, may keep information such as:
• Valid/invalid
• Dirty (inconsistent with memory)
• Shared (in another caches)

• When a processor executes a write operation to shared
data, basic design choices are:
• With respect to memory:

• Write through cache: do the write in memory as well as cache
• Write back cache: wait and do the write later, when the item is flushed

• With respect to other cached copies
• Update: give all other processors the new value
• Invalidate: all other processors remove from cache

• See CS252 or CS258 for details

02/02/2012 CS267 Lecture 6

SGI Altix
3000

• A node contains up to 4 Itanium 2 processors and 32GB of memory
• Network is SGI’s NUMAlink, the NUMAflex interconnect technology.
• Uses a mixture of snoopy and directory-based coherence
• Up to 512 processors that are cache coherent (global address space

is possible for larger machines)

02/02/2012 CS267 Lecture 6

Sharing: A Performance Problem

• True sharing
• Frequent writes to a variable can create a bottleneck
• OK for read-only or infrequently written data
• Technique: make copies of the value, one per processor, if this

is possible in the algorithm
• Example problem: the data structure that stores the

freelist/heap for malloc/free

• False sharing
• Cache block may also introduce artifacts
• Two distinct variables in the same cache block
• Technique: allocate data used by each processor contiguously,

or at least avoid interleaving in memory
• Example problem: an array of ints, one written frequently by

each processor (many ints per cache line)

02/02/2012 CS267 Lecture 6 57

Cache Coherence and Sequential Consistency

• There is a lot of hardware/work to ensure coherent caches
• Never more than 1 version of data for a given address in caches
• Data is always a value written by some processor

• But other HW/SW features may break sequential consistency (SC):
• The compiler reorders/removes code (e.g., your spin lock, see next slide)
• The compiler allocates a register for flag on Processor 2 and spins on that

register value without ever completing
• Write buffers (place to store writes while waiting to complete)

• Processors may reorder writes to merge addresses (not FIFO)
• Write X=1, Y=1, X=2 (second write to X may happen before Y’s)

• Prefetch instructions cause read reordering (read data before flag)
• The network reorders the two write messages.
• The write to flag is nearby, whereas data is far away.
• Some of these can be prevented by declaring variables “volatile”

• Most current commercial SMPs give up SC
• A correct program on a SC processor may be incorrect on one that is not

02/02/2012

Example: Coherence not Enough

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses to

different locations issued by a given process
• to preserve orders among accesses to same location by different

processes

• Coherence is not enough!
• pertains only to single location
• Need statement about ordering

between multiple locations.

P1 P2

/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

Slide source: John Kubiatowicz

02/02/2012 CS267 Lecture 6 59

Programming with Weaker Memory Models than SC

• Possible to reason about machines with fewer
properties, but difficult

• Some rules for programming with these models
• Avoid race conditions
• Use system-provided synchronization primitives
• At the assembly level, may use “fences” (or analogs)

directly
• The high level language support for these differs

• Built-in synchronization primitives normally include the
necessary fence operations

• lock (), … only one thread at a time allowed here…. unlock()
• Region between lock/unlock called critical region

• For performance, need to keep critical region short

02/02/2012 CS267 Lecture 6 60

What to Take Away?

• Programming shared memory machines
• May allocate data in large shared region without too many

worries about where
• Memory hierarchy is critical to performance

• Even more so than on uniprocessors, due to coherence traffic

• For performance tuning, watch sharing (both true and false)

• Semantics
• Need to lock access to shared variable for read-modify-write
• Sequential consistency is the natural semantics

• Write race-free programs to get this

• Architects worked hard to make this work
• Caches are coherent with buses or directories
• No caching of remote data on shared address space machines

• But compiler and processor may still get in the way
• Non-blocking writes, read prefetching, code motion…
• Avoid races or use machine-specific fences carefully

Extra Slides

CS267 Lecture 6 61

02/02/2012

LD1 A ⇒ 5

LD2 B ⇒ 7

LD5 B ⇒ 2

ST1 A,6

LD6 A ⇒ 6

ST4 B,21

LD3 A ⇒ 6

LD4 B ⇒ 21

LD7 A ⇒ 6

ST2 B,13

ST3 B,4

LD8 B ⇒ 4

Sequential Consistency Example

LD1 A ⇒ 5

LD2 B ⇒ 7

ST1 A,6

…

LD3 A ⇒ 6

LD4 B ⇒ 21

ST2 B,13

ST3 B,4

LD5 B ⇒ 2

…

LD6 A ⇒ 6

ST4 B,21

…

LD7 A ⇒ 6

…

LD8 B ⇒ 4

Processor 1 Processor 2 One Consistent Serial Order

Slide source: John Kubiatowicz

02/02/2012

Multithreaded Execution

• Multitasking operating system:
• Gives “illusion” that multiple things happening at same time
• Switches at a course-grained time quanta (for instance: 10ms)

• Hardware Multithreading: multiple threads share
processor simultaneously (with little OS help)

• Hardware does switching
• HW for fast thread switch in small number of cycles
• much faster than OS switch which is 100s to 1000s of clocks

• Processor duplicates independent state of each thread
• e.g., a separate copy of register file, a separate PC, and for running

independent programs, a separate page table
• Memory shared through the virtual memory mechanisms, which already

support multiple processes

• When to switch between threads?
• Alternate instruction per thread (fine grain)
• When a thread is stalled, perhaps for a cache miss, another thread can

be executed (coarse grain)

Slide source: John Kubiatowicz

02/02/2012

Thread Scheduling

• Once created, when will a given thread run?
• It is up to the Operating System or hardware, but it will run eventually,

even if you have more threads than cores
• But – scheduling may be non-ideal for your application

• Programmer can provide hints or affinity in some cases
• E.g., create exactly P threads and assign to P cores

• Can provide user-level scheduling for some systems
• Application-specific tuning based on programming model
• Work in the ParLAB on making user-level scheduling easy to do (Lithe)

main thread Time

Thread A Thread B

Thread C Thread D

Slide source: John Kubiatowicz

02/02/2012

What about combining ILP and TLP?

• TLP and ILP exploit two different kinds of
parallel structure in a program

• Could a processor oriented at ILP benefit from
exploiting TLP?

• functional units are often idle in data path designed for ILP
because of either stalls or dependences in the code

• TLP used as a source of independent instructions that might
keep the processor busy during stalls

• TLP be used to occupy functional units that would otherwise lie
idle when insufficient ILP exists

• Called “Simultaneous Multithreading”
• Intel renamed this “Hyperthreading”

Slide source: John Kubiatowicz

02/02/2012

Quick Recall: Many Resources IDLE!

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-
chip Parallelism,
ISCA 1995.

For an 8-way
superscalar.

Slide source: John Kubiatowicz

02/02/2012

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

Slide source: John Kubiatowicz

02/02/2012

Power 5 dataflow ...

• Why only two threads?
• With 4, one of the shared resources (physical registers,

cache, memory bandwidth) would be prone to bottleneck

• Cost:
• The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

	Shared Memory Programming: Threads and OpenMP Lecture 6
	Outline
	Parallel Programming with Threads
	Recall Programming Model 1: Shared Memory
	Shared Memory Programming
	Common Notions of Thread Creation
	Overview of POSIX Threads
	Forking Posix Threads
	Simple Threading Example
	Loop Level Parallelism
	Some More Pthread Functions
	Shared Data and Threads
	Setting Attribute Values
	Recall Data Race Example
	Basic Types of Synchronization: Barrier
	Creating and Initializing a Barrier
	Basic Types of Synchronization: Mutexes
	Mutexes in POSIX Threads
	Summary of Programming with Threads
	Parallel Programming in OpenMP
	Introduction to OpenMP
	A Programmer’s View of OpenMP
	Motivation – OpenMP
	Slide 24
	Programming Model – Concurrent Loops
	Programming Model – Loop Scheduling
	Programming Model – Data Sharing
	Programming Model - Synchronization
	Microbenchmark: Grid Relaxation (Stencil)
	Microbenchmark: Structured Grid
	Microbenchmark: Ocean
	Slide 32
	Microbenchmark: GeneticTSP
	Slide 34
	Slide 35
	Slide 36
	Evaluation
	SpecOMP (2001)
	OpenMP Summary
	More Information
	Extra Slides
	Shared Memory Hardware and Memory Consistency
	Basic Shared Memory Architecture
	What About Caching???
	Example Cache Coherence Problem
	Scalable Shared Memory: Directories
	Intuitive Memory Model
	Sequential Consistency Intuition
	Memory Consistency Semantics
	Are Caches “Coherent” or Not?
	Snoopy Cache-Coherence Protocols
	Limits of Bus-Based Shared Memory
	Sample Machines
	Directory Based Memory/Cache Coherence
	SGI Altix 3000
	Sharing: A Performance Problem
	Cache Coherence and Sequential Consistency
	Example: Coherence not Enough
	Programming with Weaker Memory Models than SC
	What to Take Away?
	Slide 61
	Sequential Consistency Example
	Multithreaded Execution
	Thread Scheduling
	What about combining ILP and TLP?
	Quick Recall: Many Resources IDLE!
	Simultaneous Multi-threading ...
	Power 5 dataflow ...

