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Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2  n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time



301/31/2012 CS267 Lecture 5+

Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2  n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

° “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)

° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan

° Parallel  page layout in a browser (Leo Meyerovich, Ras Bodik)
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Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2  n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

° “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)

° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan

° Parallel  page layout in a browser (Leo Meyerovich, Ras Bodik)

° Solving n-by-n tridiagonal matrices in O(log n) time

° Traversing linked lists 

° Computing minimal spanning trees

° Computing convex hulls of point sets
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A log n lower bound to compute any function of n 
variables

° Assume we can only use binary operations, one per 
time unit

° After 1 time unit, an output can only depend on two 
inputs

° Use induction to show that after k time units, an 
output can only depend on 2k inputs

• After log2 n time units, output depends on at most n inputs

° A binary tree performs such a computation
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Broadcasts and Reductions on Trees
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Parallel Prefix, or 
Scan

° If “+” is an associative operator, and x[0],…,x[p-1] are input 
data then parallel prefix operation computes

° Notation:    j:k  means x[j]+x[j+1]+…+x[k],  blue is final value

y[j] = x[0] + x[1] + … + x[j]    for j=0,1,…,p-1
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Mapping Parallel Prefix onto a Tree - Details
° Up-the-tree phase (from leaves to root)

° By induction, Lsave = sum of all leaves in left subtree

° Down the tree phase (from root to leaves)

° By induction, S = sum of all leaves to left of subtree rooted at the parent

1)  Get values L and R from left and right children
2)  Save L in a local register Lsave
3)  Pass sum L+R to parent

1) Get value S from parent (the root gets 0)
2) Send S to the left child
3) Send S + Lsave to the right child
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E.g., Fibonacci via Matrix Multiply Prefix

Fn+1 = Fn  + Fn-1
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Can compute all Fn  by matmul_prefix on 

[        ,       ,       ,       ,        ,       ,      ,       ,        ]
then select the upper left entry  
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Slide source: Alan Edelman, MIT
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Adding two n-bit integers in O(log n) 
time° Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit 
binary numbers

° We want their sum s = a+b = s[n]s[n-1]…s[0]

° Challenge: compute all c[i] in O(log n) time via parallel prefix

° Used in all computers to implement addition - Carry look-ahead

c[-1] = 0           … rightmost carry bit
for i = 0 to n-1
     c[i] = ( (a[i] xor b[i])  and  c[i-1] )  or  ( a[i]  and  b[i] )   ... next carry bit
     s[i] = ( a[i] xor b[i] ) xor c[i-1]

 for all (0 <= i <= n-1)  p[i] = a[i] xor b[i]       … propagate bit
 for all (0 <= i <= n-1)  g[i] = a[i] and b[i]      … generate bit

  c[i]   =  ( p[i] and c[i-1] ) or g[i]  =  p[i]    g[i]  *  c[i-1]   =   C[i] *  c[i-1]
   1                             1                   0       1         1                         1
                   … 2-by-2 Boolean matrix multiplication (associative)
          =  C[i] * C[i-1] * … C[0] *     0
                                                     1
                   … evaluate each P[i] = C[i] * C[i-1] * … * C[0] by parallel prefix
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Other applications of 
scans

° There are many applications of scans, some more 
obvious than others

• add multi-precision numbers (represented as array of numbers)

• evaluate recurrences, expressions 

• solve tridiagonal systems (numerically unstable!)

• implement bucket sort and radix sort

• to dynamically allocate processors

• to search for regular expression (e.g., grep)

° Names:  +\ (APL),  cumsum (Matlab),  MPI_SCAN

° Note: 2n operations used when only n-1 needed



1201/31/2012 CS267 Lecture 5+

Multiplying n-by-n matrices in O(log n) 
time

° For all (1 <= i,j,k <= n)    P(i,j,k) = A(i,k) * B(k,j)
• cost = 1 time unit, using n3 processors

° For all (1 <= i,j <= n)      C(i,j) = Σ P(i,j,k)
• cost = O(log n) time, using a tree with n3 / 2 processors

k =1

n
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Inverting triangular n-by-n matrices in O(log2 n) 
time

° Fact:

° Function Tri_Inv(T)   …  assume n = dim(T) = 2m for simplicity

° time(Tri_Inv(n)) = time(Tri_Inv(n/2)) + O(log(n))
• Change variable to m = log n to get time(Tri_Inv(n)) = O(log2n)

A   0
C   B

-1

=      A          0

-B  CA      B
-1

-1

-1 -1

If T is 1-by-1
    return 1/T
else
     …   Write T =   A   0
                              C   B
     In parallel do {
             invA = Tri_Inv(A) 
             invB = Tri_Inv(B)  }      …  implicitly uses a tree
     newC = -invB * C * invA
     Return   invA      0
                   newC  invB
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Inverting Dense n-by-n matrices in O(log  n) 
time

° Lemma 1: Cayley-Hamilton Theorem
• expression for A-1 via characteristic polynomial in A

° Lemma 2: Newton’s Identities
• Triangular system of equations for coefficients of characteristic 

polynomial,  where matrix entries = sk

° Lemma 3: sk = trace(Ak)  =  Σ Ak [i,i]  =  Σ  [λ i (A)]k

° Csanky’s Algorithm (1976)

2

i=1

n

i=1

n

1) Compute the powers A2, A3, …,An-1 by parallel prefix
          cost = O(log2 n)
2) Compute the traces sk = trace(Ak)
          cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
          cost = O(log2 n)
4) Evaluate A-1 using Cayley-Hamilton Theorem
          cost = O(log n)

o Completely numerically unstable
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Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -, 
*, /, parentheses, and n variables, where each 
appearance of each variable is counted separately

° Can think of E as arbitrary expression tree with n 
leaves (the variables) and internal nodes labeled by 
+, -, * and /

° Theorem (Brent): E can be evaluated in O(log n) 
time, if we reorganize it using laws of commutativity, 
associativity and distributivity

° Sketch of (modern) proof: evaluate expression tree 
E greedily by repeatedly

• collapsing all leaves into their parents at each time step

• evaluating all “chains” in E with parallel prefix
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Evaluating recurrences

° Let xi = fi(xi-1),  fi a rational function, x0 given

° How fast can we compute xn?

° Theorem (Kung): Suppose degree(fi) = d for all i

• If d=1, xn can be evaluated in O(log n) using parallel prefix

• If d>1, evaluating xn takes Ω (n) time, i.e. no speedup is possible

° Sketch of proof when d=1

° Sketch of proof when d>1

• degree(xi) as a function of x0 is di

• After k parallel steps, degree(anything) ≤  2k

• Computing xi take Ω (i) steps

xi = fi(xi-1) = (ai * xi-1 + bi )/( ci *  xi-1 + di )   can be written as

xi = numi / deni = (ai * numi-1 + bi * deni-1)/(ci * numi-1 + di * deni-1)  or

       numi    =     ai   bi  * numi-1   =    Mi  * numi-1   = Mi * Mi-1 * … * M1*  num0

       demi           ci   di     deni-1                  deni-1                                       den0

Can use parallel prefix with 2-by-2 matrix multiplication
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Image Segmentation (1/4)

Image Human Generated Contours Machine Generated
Contours

° Contours are subjective – they depend on perspective

° Surprise: Humans agree (somewhat)

° Goal: generate contours automatically

° Use them to break images into separate segments (subimages)

° J. Malik’s group has leading algorithm

° Enable automatic image search and retrieval (“Find all the pictures with Fred”)
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Image Segmentation (2/4)

° Think of image as matrix A(i,j) of pixels
• Each pixel has separate R(ed), G(reen), B(lue) intensities

° Bottleneck (so far) of Malik’s algorithm is to compute other 
matrices indicating whether pixel (i,j) likely to be on contour

• Ex: C(i,j) = average “R intensity” of pixels in rectangle above (i,j) –    

                      average “R intensity” of pixels in rectangle below (i,j)

• C(i,j) large for pixel (i,j) marked with        , so (i,j) likely to be on 
contour

° Algorithm eventually computes eigenvectors of sparse matrix 
with entries computed from matrices like C

• Analogous to graph partitioning in later lecture

01/31/2012 CS267 Lecture 5+
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Image Segmentation (3/4)

° Bottleneck: Given A(i,j), compute  C(i,j) where
• Sa(i,j) = sum of A(i,j) for entries in k x (2k+1) rectangle above A(i,j)

              = Σ  A(r,s) for  i-k ≤  r ≤  i-1 and j-k ≤  s ≤  j+k 

• Sb(i,j) = similar sum of rectangle below A(i,j)   

• C(i,j) = Sa(i,j) – Sb(i,j)

° Approach (Bryan Catanzaro)
• Compute S(i,j) = Σ  A(r,s) for  r ≤  i and  s ≤  j  

• Then sum of A(i,j) over any rectangle (Ilow ≤  i ≤  Ihigh, Jlow ≤  j ≤  Jhigh )     is 
S(Ihigh, Jhigh) - S(Ilow -1, Jhigh) -  S(Ihigh, Jlow-1) + S(Ilow -1, Jlow -1) 
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Image Segmentation (4/4)

° New Bottleneck: Given A(i,j), compute  S(i,j) where
• S(i,j) = Σ  A(r,s) for  r ≤  i and  s ≤  j 

° “2 dimensional parallel prefix”
• Do parallel prefix independently on each row of A(i,j) :

- Srow(i,j) = Σ  A(i,s) for s ≤  j

• Do parallel prefix independently on each column of Srow

- S(i,j) = Σ  Srow(r,j)  for r ≤  i  = Σ A(r,s) for s ≤  j and  r ≤  i

01/31/2012 CS267 Lecture 5+
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Sparse-Matrix-Vector-Multiply  (SpMV)  y = A*x 
Using  Segmented Scan (SegScan)

° Segscan computes prefix sums of arbitrary segments

° Use CSR format of Sparse Matrix A, store x densely

° Create array P of all nonzero A(i,j)*x(j) = Val(k)*x(Col_Ind(k))

° Create array S showing where segments (rows) start

° Compute SegScan( P, S ) = 

° Extract A*x = [14  61  24 ]

° www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS- 93-173.ps.Z
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Segscan ( [3, 1, 4, 5, 6, 1, 2, 3 ],
                  [T, F, F, T, T, F, F, T ])
             =   [3, 4, 8, 5, 6, 7, 9, 3] 

1 0   2   3   0
2 4   0   0   5
3   0   0   0   1

A =
Val         = [ 1  2  3  2  4  5  3  1 ]
Col_Ind = [  1  3  4  1  2  5  1  5 ]
Row_Ptr=[   1 4  7  9 ]

7
8
2
1
3

x=

P = [ 7   4   3  14  32  15  21   3 ]

S = [ T   F   F    T   F    F    T   F ]

[ 7  11  14  14  46  61  21  24 ]
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Page layout in a browser

° Applying layout rules to html description of a 
webpage is a bottleneck, scan can help

° Simplest example
• Given widths [x1, x2, … , xn] of items to display on page, where 

should each item go?

• Item j starts at x1 + x2 + … + xj-1 

° Real examples have complicated constraints 
• Defined by general trees, since in html each object to display can 

be composed of other objects

• To get location of each object, need to do preorder traversal of tree, 
“adding up” constraints of previous objects

• Scan can do preorder traversal of any tree in parallel 

- Not  just  binary trees

° Ras Bodik, Leo Meyerovich

01/31/2012 CS267 Lecture 5+
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Summary of tree 
algorithms

° Lots of problems can be done quickly - in theory - 
using trees

° Some algorithms are widely used
• broadcasts, reductions, parallel prefix

• carry look ahead addition

° Some are of theoretical interest only
• Csanky’s method for matrix inversion

• Solving general tridiagonals (without pivoting)

• Both numerically unstable

• Csanky needs too many processors

° Embedded in various systems
• MPI,  Split-C, Titanium, NESL, other languages

• CM-5 hardware control network
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