
101/31/2012 CS267 Lecture 5+

CS 267

Tricks with Trees

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr12

201/31/2012 CS267 Lecture 5+

Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2 n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

301/31/2012 CS267 Lecture 5+

Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2 n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

° “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)

° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan

° Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)

401/31/2012 CS267 Lecture 5+

Outlin
e° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log2 n) time

° Inverting n-by-n dense matrices in O(log2 n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

° “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)

° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan

° Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)

° Solving n-by-n tridiagonal matrices in O(log n) time

° Traversing linked lists

° Computing minimal spanning trees

° Computing convex hulls of point sets

501/31/2012 CS267 Lecture 5+

A log n lower bound to compute any function of n
variables

° Assume we can only use binary operations, one per
time unit

° After 1 time unit, an output can only depend on two
inputs

° Use induction to show that after k time units, an
output can only depend on 2k inputs

• After log2 n time units, output depends on at most n inputs

° A binary tree performs such a computation

601/31/2012 CS267 Lecture 5+

Broadcasts and Reductions on Trees

701/31/2012 CS267 Lecture 5+

Parallel Prefix, or
Scan

° If “+” is an associative operator, and x[0],…,x[p-1] are input
data then parallel prefix operation computes

° Notation: j:k means x[j]+x[j+1]+…+x[k], blue is final value

y[j] = x[0] + x[1] + … + x[j] for j=0,1,…,p-1

801/31/2012 CS267 Lecture 5+

Mapping Parallel Prefix onto a Tree - Details
° Up-the-tree phase (from leaves to root)

° By induction, Lsave = sum of all leaves in left subtree

° Down the tree phase (from root to leaves)

° By induction, S = sum of all leaves to left of subtree rooted at the parent

1) Get values L and R from left and right children
2) Save L in a local register Lsave
3) Pass sum L+R to parent

1) Get value S from parent (the root gets 0)
2) Send S to the left child
3) Send S + Lsave to the right child

901/31/2012 CS267 Lecture 5+

E.g., Fibonacci via Matrix Multiply Prefix

Fn+1 = Fn + Fn-1

=

 +

1-n

n

n

1n

F

F

01

11

F

F

Can compute all Fn by matmul_prefix on

[, , , , , , , ,]
then select the upper left entry

01

11

01

11

01

11

01

11

01

11

01

11

01

11

01

11

01

11

Slide source: Alan Edelman, MIT

1001/31/2012 CS267 Lecture 5+

Adding two n-bit integers in O(log n)
time° Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit
binary numbers

° We want their sum s = a+b = s[n]s[n-1]…s[0]

° Challenge: compute all c[i] in O(log n) time via parallel prefix

° Used in all computers to implement addition - Carry look-ahead

c[-1] = 0 … rightmost carry bit
for i = 0 to n-1
 c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
 s[i] = (a[i] xor b[i]) xor c[i-1]

 for all (0 <= i <= n-1) p[i] = a[i] xor b[i] … propagate bit
 for all (0 <= i <= n-1) g[i] = a[i] and b[i] … generate bit

 c[i] = (p[i] and c[i-1]) or g[i] = p[i] g[i] * c[i-1] = C[i] * c[i-1]
 1 1 0 1 1 1
 … 2-by-2 Boolean matrix multiplication (associative)
 = C[i] * C[i-1] * … C[0] * 0
 1
 … evaluate each P[i] = C[i] * C[i-1] * … * C[0] by parallel prefix

1101/31/2012 CS267 Lecture 5+

Other applications of
scans

° There are many applications of scans, some more
obvious than others

• add multi-precision numbers (represented as array of numbers)

• evaluate recurrences, expressions

• solve tridiagonal systems (numerically unstable!)

• implement bucket sort and radix sort

• to dynamically allocate processors

• to search for regular expression (e.g., grep)

° Names: +\ (APL), cumsum (Matlab), MPI_SCAN

° Note: 2n operations used when only n-1 needed

1201/31/2012 CS267 Lecture 5+

Multiplying n-by-n matrices in O(log n)
time

° For all (1 <= i,j,k <= n) P(i,j,k) = A(i,k) * B(k,j)
• cost = 1 time unit, using n3 processors

° For all (1 <= i,j <= n) C(i,j) = Σ P(i,j,k)
• cost = O(log n) time, using a tree with n3 / 2 processors

k =1

n

1301/31/2012 CS267 Lecture 5+

Inverting triangular n-by-n matrices in O(log2 n)
time

° Fact:

° Function Tri_Inv(T) … assume n = dim(T) = 2m for simplicity

° time(Tri_Inv(n)) = time(Tri_Inv(n/2)) + O(log(n))
• Change variable to m = log n to get time(Tri_Inv(n)) = O(log2n)

A 0
C B

-1

= A 0

-B CA B
-1

-1

-1 -1

If T is 1-by-1
 return 1/T
else
 … Write T = A 0
 C B
 In parallel do {
 invA = Tri_Inv(A)
 invB = Tri_Inv(B) } … implicitly uses a tree
 newC = -invB * C * invA
 Return invA 0
 newC invB

1401/31/2012 CS267 Lecture 5+

Inverting Dense n-by-n matrices in O(log n)
time

° Lemma 1: Cayley-Hamilton Theorem
• expression for A-1 via characteristic polynomial in A

° Lemma 2: Newton’s Identities
• Triangular system of equations for coefficients of characteristic

polynomial, where matrix entries = sk

° Lemma 3: sk = trace(Ak) = Σ Ak [i,i] = Σ [λ i (A)]k

° Csanky’s Algorithm (1976)

2

i=1

n

i=1

n

1) Compute the powers A2, A3, …,An-1 by parallel prefix
 cost = O(log2 n)
2) Compute the traces sk = trace(Ak)
 cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
 cost = O(log2 n)
4) Evaluate A-1 using Cayley-Hamilton Theorem
 cost = O(log n)

o Completely numerically unstable

1501/31/2012 CS267 Lecture 5+

Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -,
*, /, parentheses, and n variables, where each
appearance of each variable is counted separately

° Can think of E as arbitrary expression tree with n
leaves (the variables) and internal nodes labeled by
+, -, * and /

° Theorem (Brent): E can be evaluated in O(log n)
time, if we reorganize it using laws of commutativity,
associativity and distributivity

° Sketch of (modern) proof: evaluate expression tree
E greedily by repeatedly

• collapsing all leaves into their parents at each time step

• evaluating all “chains” in E with parallel prefix

1601/31/2012 CS267 Lecture 5+

Evaluating recurrences

° Let xi = fi(xi-1), fi a rational function, x0 given

° How fast can we compute xn?

° Theorem (Kung): Suppose degree(fi) = d for all i

• If d=1, xn can be evaluated in O(log n) using parallel prefix

• If d>1, evaluating xn takes Ω (n) time, i.e. no speedup is possible

° Sketch of proof when d=1

° Sketch of proof when d>1

• degree(xi) as a function of x0 is di

• After k parallel steps, degree(anything) ≤ 2k

• Computing xi take Ω (i) steps

xi = fi(xi-1) = (ai * xi-1 + bi)/(ci * xi-1 + di) can be written as

xi = numi / deni = (ai * numi-1 + bi * deni-1)/(ci * numi-1 + di * deni-1) or

 numi = ai bi * numi-1 = Mi * numi-1 = Mi * Mi-1 * … * M1* num0

 demi ci di deni-1 deni-1 den0

Can use parallel prefix with 2-by-2 matrix multiplication

1701/31/2012 CS267 Lecture 5+

Image Segmentation (1/4)

Image Human Generated Contours Machine Generated
Contours

° Contours are subjective – they depend on perspective

° Surprise: Humans agree (somewhat)

° Goal: generate contours automatically

° Use them to break images into separate segments (subimages)

° J. Malik’s group has leading algorithm

° Enable automatic image search and retrieval (“Find all the pictures with Fred”)

18

Image Segmentation (2/4)

° Think of image as matrix A(i,j) of pixels
• Each pixel has separate R(ed), G(reen), B(lue) intensities

° Bottleneck (so far) of Malik’s algorithm is to compute other
matrices indicating whether pixel (i,j) likely to be on contour

• Ex: C(i,j) = average “R intensity” of pixels in rectangle above (i,j) –

 average “R intensity” of pixels in rectangle below (i,j)

• C(i,j) large for pixel (i,j) marked with , so (i,j) likely to be on
contour

° Algorithm eventually computes eigenvectors of sparse matrix
with entries computed from matrices like C

• Analogous to graph partitioning in later lecture

01/31/2012 CS267 Lecture 5+

19

Image Segmentation (3/4)

° Bottleneck: Given A(i,j), compute C(i,j) where
• Sa(i,j) = sum of A(i,j) for entries in k x (2k+1) rectangle above A(i,j)

 = Σ A(r,s) for i-k ≤ r ≤ i-1 and j-k ≤ s ≤ j+k

• Sb(i,j) = similar sum of rectangle below A(i,j)

• C(i,j) = Sa(i,j) – Sb(i,j)

° Approach (Bryan Catanzaro)
• Compute S(i,j) = Σ A(r,s) for r ≤ i and s ≤ j

• Then sum of A(i,j) over any rectangle (Ilow ≤ i ≤ Ihigh, Jlow ≤ j ≤ Jhigh) is
S(Ihigh, Jhigh) - S(Ilow -1, Jhigh) - S(Ihigh, Jlow-1) + S(Ilow -1, Jlow -1)

01/31/2012 CS267 Lecture 5+

+1

+1 -1 -1 +1 = 0

+1 -1 = 0

+1
-1
=0

Ihigh

Jhigh

Ilow

Jlow

i

j

S(i,j)

20

Image Segmentation (4/4)

° New Bottleneck: Given A(i,j), compute S(i,j) where
• S(i,j) = Σ A(r,s) for r ≤ i and s ≤ j

° “2 dimensional parallel prefix”
• Do parallel prefix independently on each row of A(i,j) :

- Srow(i,j) = Σ A(i,s) for s ≤ j

• Do parallel prefix independently on each column of Srow

- S(i,j) = Σ Srow(r,j) for r ≤ i = Σ A(r,s) for s ≤ j and r ≤ i

01/31/2012 CS267 Lecture 5+

i

j

S(i,j)

21

Sparse-Matrix-Vector-Multiply (SpMV) y = A*x
Using Segmented Scan (SegScan)

° Segscan computes prefix sums of arbitrary segments

° Use CSR format of Sparse Matrix A, store x densely

° Create array P of all nonzero A(i,j)*x(j) = Val(k)*x(Col_Ind(k))

° Create array S showing where segments (rows) start

° Compute SegScan(P, S) =

° Extract A*x = [14 61 24]

° www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS- 93-173.ps.Z
01/31/2012 CS267 Lecture 5+

Segscan ([3, 1, 4, 5, 6, 1, 2, 3],
 [T, F, F, T, T, F, F, T])
 = [3, 4, 8, 5, 6, 7, 9, 3]

1 0 2 3 0
2 4 0 0 5
3 0 0 0 1

A =
Val = [1 2 3 2 4 5 3 1]
Col_Ind = [1 3 4 1 2 5 1 5]
Row_Ptr=[1 4 7 9]

7
8
2
1
3

x=

P = [7 4 3 14 32 15 21 3]

S = [T F F T F F T F]

[7 11 14 14 46 61 21 24]

22

Page layout in a browser

° Applying layout rules to html description of a
webpage is a bottleneck, scan can help

° Simplest example
• Given widths [x1, x2, … , xn] of items to display on page, where

should each item go?

• Item j starts at x1 + x2 + … + xj-1

° Real examples have complicated constraints
• Defined by general trees, since in html each object to display can

be composed of other objects

• To get location of each object, need to do preorder traversal of tree,
“adding up” constraints of previous objects

• Scan can do preorder traversal of any tree in parallel

- Not just binary trees

° Ras Bodik, Leo Meyerovich

01/31/2012 CS267 Lecture 5+

2301/31/2012 CS267 Lecture 5+

Summary of tree
algorithms

° Lots of problems can be done quickly - in theory -
using trees

° Some algorithms are widely used
• broadcasts, reductions, parallel prefix

• carry look ahead addition

° Some are of theoretical interest only
• Csanky’s method for matrix inversion

• Solving general tridiagonals (without pivoting)

• Both numerically unstable

• Csanky needs too many processors

° Embedded in various systems
• MPI, Split-C, Titanium, NESL, other languages

• CM-5 hardware control network

	CS 267 Tricks with Trees
	Outline
	Slide 3
	Slide 4
	A log n lower bound to compute any function of n variables
	Broadcasts and Reductions on Trees
	Parallel Prefix, or Scan
	Mapping Parallel Prefix onto a Tree - Details
	E.g., Fibonacci via Matrix Multiply Prefix
	Adding two n-bit integers in O(log n) time
	Other applications of scans
	Multiplying n-by-n matrices in O(log n) time
	Inverting triangular n-by-n matrices in O(log2 n) time
	Inverting Dense n-by-n matrices in O(log n) time
	Evaluating arbitrary expressions
	Evaluating recurrences
	Image Segmentation (1/4)
	Image Segmentation (2/4)
	Image Segmentation (3/4)
	Image Segmentation (4/4)
	Sparse-Matrix-Vector-Multiply (SpMV) y = A*x Using Segmented Scan (SegScan)
	Page layout in a browser
	Summary of tree algorithms

