
01/31/2012 CS267 Lecture 5 1

CS 267
Sources of

Parallelism and Locality
in Simulation – Part 2

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr12

01/31/2012 CS267 Lecture 5 2

Recap of Last Lecture

• 4 kinds of simulations
• Discrete Event Systems
• Particle Systems
• Ordinary Differential Equations (ODEs)
• Partial Differential Equations (PDEs) (today)

• Common problems:
• Load balancing

• May be due to lack of parallelism or poor work distribution
• Statically, divide grid (or graph) into blocks
• Dynamically, if load changes significantly during run

• Locality
• Partition into large chunks with low surface-to-volume ratio

– To minimize communication
• Distributed particles according to location, but use irregular spatial

decomposition (e.g., quad tree) for load balance

• Constant tension between these two
• Particle-Mesh method: can’t balance particles (moving), balance mesh

(fixed) and keep particles near mesh points without communication

01/31/2012 CS267 Lecture 5 3

Partial Differential Equations
PDEs

01/31/2012 CS267 Lecture 5 4

Continuous Variables, Continuous Parameters
Examples of such systems include
• Elliptic problems (steady state, global space dependence)

• Electrostatic or Gravitational Potential: Potential(position)
• Hyperbolic problems (time dependent, local space dependence):

• Sound waves: Pressure(position,time)
• Parabolic problems (time dependent, global space dependence)

• Heat flow: Temperature(position, time)
• Diffusion: Concentration(position, time)

Global vs Local Dependence
• Global means either a lot of communication, or tiny time steps
• Local arises from finite wave speeds: limits communication

Many problems combine features of above
• Fluid flow: Velocity,Pressure,Density(position,time)
• Elasticity: Stress,Strain(position,time)

01/31/2012 CS267 Lecture 5 5

Example: Deriving the Heat Equation

0 1x x+h
Consider a simple problem
• A bar of uniform material, insulated except at ends
• Let u(x,t) be the temperature at position x at time t
• Heat travels from x-h to x+h at rate proportional to:

• As h  0, we get the heat equation:

d u(x,t) (u(x-h,t)-u(x,t))/h - (u(x,t)-
u(x+h,t))/h

 dt h

= C *

d u(x,t) d2
u(x,t)

 dt
dx2

= C *

x-h

01/31/2012 CS267 Lecture 5 6

Details of the Explicit Method for Heat

• Discretize time and space using explicit approach
(forward Euler) to approximate time derivative:

 (u(x,t+δ) – u(x,t))/δ = C [(u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h] / h
 = C [u(x-h,t) – 2*u(x,t) + u(x+h,t)]/h2

 Solve for u(x,t+δ) :
 u(x,t+δ) = u(x,t)+ C*δ /h2 *(u(x-h,t) – 2*u(x,t) + u(x+h,t))

• Let z = C*δ /h2, simplify:
 u(x,t+δ) = z* u(x-h,t) + (1-2z)*u(x,t) + z*u(x+h,t)

• Change variable x to j*h, t to i*δ , and u(x,t) to u[j,i]
 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+ z*u[j+1,i]

d u(x,t) d2
u(x,t)

 dt
dx2

= C *

01/31/2012 CS267 Lecture 5 7

Explicit Solution of the Heat Equation

• Use “finite differences” with u[j,i] as the temperature at
• time t= i*δ (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h)
• initial conditions on u[j,0]
• boundary conditions on u[0,i] and u[N,i]

• At each timestep i = 0,1,2,...

• This corresponds to
• Matrix-vector-multiply by T (next slide)
• Combine nearest neighbors on grid

i=5

i=4

i=3

i=2

i=1

i=0
 u[0,0] u[1,0] u[2,0] u[3,0] u[4,0]
u[5,0]

For j=0 to N

 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i]

where z =C*δ /h2

i

j

01/31/2012 CS267 Lecture 5 8

Matrix View of Explicit Method for Heat
• u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i], same as:
• u[:, i+1] = T * u[:, i] where T is tridiagonal:

• L called Laplacian (in 1D)
• For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal

• More on the matrix/grid views later

1-2zz z

Graph and “3 point stencil”

T = = I – z*L, L
=

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

1-2z z

z 1-2z z

 z 1-2z z

 z 1-2z z

 z 1-2z

01/31/2012 CS267 Lecture 5 9

Parallelism in Explicit Method for PDEs
• Sparse matrix vector multiply, via Graph Partitioning
• Partitioning the space (x) into p chunks

• good load balance (assuming large number of points relative to p)
• minimize communication (least dependence on data outside chunk)

• Generalizes to
• multiple dimensions.
• arbitrary graphs (= arbitrary sparse matrices).

• Explicit approach often used for hyperbolic equations
• Finite wave speed, so only depend on nearest chunks

• Problem with explicit approach for heat (parabolic):
• numerical instability.
• solution blows up eventually if z = Cδ/h2 > .5
• need to make the time step δ very small when h is small: δ < .5*h2 /C

01/31/2012 CS267 Lecture 5 10

Instability in Solving the Heat Equation Explicitly

01/31/2012 CS267 Lecture 5 11

Implicit Solution of the Heat Equation

• Discretize time and space using implicit approach
(Backward Euler) to approximate time derivative:

 (u(x,t+δ) – u(x,t))/dt = C*(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h, t+δ))/h2

 u(x,t) = u(x,t+δ) - C*δ/h2 *(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h,t+δ))

• Let z = C*δ /h2 and change variable t to i*δ , x to j*h and
u(x,t) to u[j,i]

 (I + z *L)* u[:, i+1] = u[:,i]

• Where I is identity and
 L is Laplacian as before

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L =

d u(x,t) d2
u(x,t)

 dt
dx2

= C *

01/31/2012 CS267 Lecture 5 12

Implicit Solution of the Heat Equation

• The previous slide derived Backward Euler
• (I + z *L)* u[:, i+1] = u[:,i]

• But the Trapezoidal Rule has better numerical properties:

• Again I is the identity matrix and L is:

• Other problems (elliptic instead of parabolic) yield
Poisson’s equation (Lx = b in 1D)

(I + (z/2)*L) * u[:,i+1]= (I - (z/2)*L) *u[:,i]

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L = 2-1 -1

Graph and “stencil”

01/31/2012 CS267 Lecture 5 13

Relation of Poisson to Gravity, Electrostatics

• Poisson equation arises in many problems
• E.g., force on particle at (x,y,z) due to particle at 0 is
 -(x,y,z)/r3, where r = sqrt(x2 + y2 + z2)
• Force is also gradient of potential V = -1/r
 = -(d/dx V, d/dy V, d/dz V) = -grad V
• V satisfies Poisson’s equation (try working this out!)

d2V + d2V + d2V
 = 0

dx2 dy2 dz2

01/31/2012 CS267 Lecture 5 14

2D Implicit Method

• Similar to the 1D case, but the matrix L is now

• Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D grid.

• To solve this system, there are several techniques.

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L =

4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous
(7 point stencil)

01/31/2012 CS267 Lecture 5 15

Algorithms for 2D (3D) Poisson Equation (N vars)

Algorithm Serial PRAM Memory #Procs
• Dense LU N3 N N2 N2

• Band LU N2 (N7/3) N N3/2 (N5/3) N(N4/3)
• Jacobi N2 (N5/3) N (N2/3) N N
• Explicit Inv. N log N N N
• Conj.Gradients N3/2 (N4/3) N1/2 (1/3) *log N N N
• Red/Black SORN3/2 (N4/3) N1/2 (N4/3) N N
• Sparse LU N3/2 (N2) N1/2 (N2/3) N*log N (N4/3) N(N4/3)
• FFT N*log N log N N N
• Multigrid N log2 N N N
• Lower bound N log N N

All entries in “Big-Oh” sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

2 22

01/31/2012 CS267 Lecture 5 16

Overview of Algorithms
• Sorted in two orders (roughly):

• from slowest to fastest on sequential machines.
• from most general (works on any matrix) to most specialized (works on matrices “like” T).

• Dense LU: Gaussian elimination; works on any N-by-N matrix.
• Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main
diagonal.

• Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative
algorithm.

• Explicit Inverse: Assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it (but still expensive).

• Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits
mathematical properties of T that Jacobi does not.

• Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet
different mathematical properties of T. Used in multigrid schemes.

• Sparse LU: Gaussian elimination exploiting particular zero structure of T.
• FFT (Fast Fourier Transform): Works only on matrices very like T.
• Multigrid: Also works on matrices like T, that come from elliptic PDEs.
• Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).
• Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

01/31/2012 CS267 Lecture 5 17

Mflop/s Versus Run Time in Practice

• Problem: Iterative solver for a convection-diffusion
problem; run on a 1024-CPU NCUBE-2.

• Reference: Shadid and Tuminaro, SIAM Parallel
Processing Conference, March 1991.

Solver Flops CPU Time(s) Mflop/s
Jacobi 3.82x1012 2124 1800
Gauss-Seidel1.21x1012 885 1365
Multigrid 2.13x109 7 318

• Which solver would you select?

01/31/2012 CS267 Lecture 5 18

Summary of Approaches to Solving PDEs

• As with ODEs, either explicit or implicit approaches are
possible

• Explicit, sparse matrix-vector multiplication
• Implicit, sparse matrix solve at each step

• Direct solvers are hard (more on this later)
• Iterative solves turn into sparse matrix-vector multiplication

– Graph partitioning

• Grid and sparse matrix correspondence:
• Sparse matrix-vector multiplication is nearest neighbor

“averaging” on the underlying mesh

• Not all nearest neighbor computations have the same
efficiency

• Depends on the mesh structure (nonzero structure) and the
number of Flops per point.

01/31/2012 CS267 Lecture 5 19

Comments on practical meshes

• Regular 1D, 2D, 3D meshes
• Important as building blocks for more complicated meshes

• Practical meshes are often irregular
• Composite meshes, consisting of multiple “bent” regular

meshes joined at edges
• Unstructured meshes, with arbitrary mesh points and

connectivities
• Adaptive meshes, which change resolution during solution

process to put computational effort where needed

01/31/2012 CS267 Lecture 5 20

Parallelism in Regular meshes

• Computing a Stencil on a regular mesh
• need to communicate mesh points near boundary to

neighboring processors.
• Often done with ghost regions

• Surface-to-volume ratio keeps communication down, but
• Still may be problematic in practice

Implemented using
“ghost” regions.

Adds memory overhead

01/31/2012 CS267 Lecture 5 21

Composite mesh from a mechanical structure

01/31/2012 CS267 Lecture 5 22

Converting the mesh to a matrix

01/31/2012 CS267 Lecture 7 23

Example of Matrix Reordering Application

When performing
Gaussian Elimination
Zeros can be filled 

Matrix can be reordered
to reduce this fill
But it’s not the same
ordering as for
parallelism

01/31/2012 CS267 Lecture 5 24

Irregular mesh: NASA Airfoil in 2D (direct solution)

01/31/2012 CS267 Lecture 9 25

Irregular mesh: Tapered Tube (multigrid)

01/31/2012 CS267 Lecture 5 26

Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress

01/31/2012 CS267 Lecture 5 27

Micro-Computed Tomography
µCT @ 22 µm resolution

Mechanical Testing
E, εyield, σult, etc.

Methods: µFE modeling (Gordon Bell Prize, 2004)

3D image

2.5 mm cube
44 µm elements

µFE mesh

Source: Mark Adams, PPPL

Up to 537M unknowns

01/31/2012 CS267 Lecture 5 28

Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion
• Refinement done by estimating errors; refine mesh if too large

• Parallelism
• Mostly between “patches,” assigned to processors for load balance
• May exploit parallelism within a patch

• Projects:
• Titanium (http://www.cs.berkeley.edu/projects/titanium)
• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

http://www.cs.berkeley.edu/projects/titanium

01/31/2012 CS267 Lecture 5 29

Adaptive Mesh

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement)
See: http://www.llnl.gov/CASC/SAMRAI/

flu
id

 d
en

s i
ty

http://www.llnl.gov/CASC/SAMRAI/

01/31/2012 CS267 Lecture 5 30

Challenges of Irregular Meshes

• How to generate them in the first place
• Start from geometric description of object
• Triangle, a 2D mesh partitioner by Jonathan Shewchuk
• 3D harder!

• How to partition them
• ParMetis, a parallel graph partitioner

• How to design iterative solvers
• PETSc, a Portable Extensible Toolkit for Scientific Computing
• Prometheus, a multigrid solver for finite element problems on

irregular meshes

• How to design direct solvers
• SuperLU, parallel sparse Gaussian elimination

• These are challenges to do sequentially, more so in parallel

01/31/2012 CS267 Lecture 5 31

Summary – sources of parallelism and locality

• Current attempts to categorize main “kernels”
dominating simulation codes

• “Seven Dwarfs” (P. Colella)
• Structured grids

• including locally structured grids, as in AMR
• Unstructured grids
• Spectral methods (Fast Fourier Transform)
• Dense Linear Algebra
• Sparse Linear Algebra

• Both explicit (SpMV) and implicit (solving)
• Particle Methods
• Monte Carlo/Embarrassing Parallelism/Map Reduce

(easy!)

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

E
m

b
ed

S
P
E
C

D
B

G
am

es

M
L

H
P
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

01/31/2012 CS267 Lecture 5 33

Extra Slides

01/31/2012 CS267 Lecture 5 34

CS267 Final Projects

• Project proposal
• Teams of 3 students, typically across departments
• Interesting parallel application or system
• Conference-quality paper
• High performance is key:

• Understanding performance, tuning, scaling, etc.
• More important than the difficulty of problem

• Leverage
• Projects in other classes (but discuss with me first)
• Research projects

01/31/2012 CS267 Lecture 5 35

Project Ideas (from 2009)

• Applications
• Implement existing sequential or shared memory program on

distributed memory
• Investigate SMP trade-offs (using only MPI versus MPI and

thread based parallelism)

• Tools and Systems

• Effects of reordering on sparse matrix factoring and solves

• Numerical algorithms
• Improved solver for immersed boundary method
• Use of multiple vectors (blocked algorithms) in iterative solvers

01/31/2012 CS267 Lecture 5 36

Project Ideas (from 2009)

• Novel computational platforms
• Exploiting hierarchy of SMP-clusters in benchmarks
• Computing aggregate operations on ad hoc networks (Culler)
• Push/explore limits of computing on “the grid”
• Performance under failures

• Detailed benchmarking and performance analysis,
including identification of optimization opportunities

• Titanium
• UPC
• IBM SP (Blue Horizon)

01/31/2012 CS267 Lecture 5 37

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including locally
structured grids, e.g. AMR)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Well-defined targets from algorithmic,
software, and architecture standpoint

Phillip Colella’s “Seven dwarfs”

• Add 4 for embedded
 8. Search/Sort
 9. Finite State Machine
10. Filter
11. Combinational logic

• Then covers all 41 EEMBC
benchmarks

• Revise 1 for SPEC
• 7. Monte Carlo => Easily
parallel (to add ray tracing)

• Then covers 26 SPEC
benchmarks

Slide from “Defining Software Requirements
for Scientific Computing”, Phillip Colella,
2004

01/31/2012 CS267 Lecture 5 38

Implicit Methods and Eigenproblems

• Implicit methods for ODEs solve linear systems
• Direct methods (Gaussian elimination)

• Called LU Decomposition, because we factor A = L*U.
• Future lectures will consider both dense and sparse cases.
• More complicated than sparse-matrix vector multiplication.

• Iterative solvers
• Will discuss several of these in future.

• Jacobi, Successive over-relaxation (SOR) , Conjugate Gradient (CG),
Multigrid,...

• Most have sparse-matrix-vector multiplication in kernel.

• Eigenproblems
• Future lectures will discuss dense and sparse cases.
• Also depend on sparse-matrix-vector multiplication, direct

methods.

01/31/2012 CS267 Lecture 5 39

ODEs and Sparse Matrices

• All these problems reduce to sparse matrix
problems

• Explicit: sparse matrix-vector multiplication (SpMV).
• Implicit: solve a sparse linear system

• direct solvers (Gaussian elimination).
• iterative solvers (use sparse matrix-vector multiplication).

• Eigenvalue/vector algorithms may also be explicit or
implicit.

• Conclusion: SpMV is key to many ODE
problems

• Relatively simple algorithm to study in detail
• Two key problems: locality and load balance

01/31/2012 CS267 Lecture 5 40

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

SpMV in Compressed Sparse Row (CSR) Format

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

CSR format is one of many possibilities

01/31/2012 CS267 Lecture 5 41

Parallel Sparse Matrix-vector multiplication

• y = A*x, where A is a sparse n x n matrix

• Questions
• which processors store

• y[i], x[i], and A[i,j]

• which processors compute
• y[i] = sum (from 1 to n) A[i,j] * x[j]
 = (row i of A) * x … a sparse dot product

• Partitioning
• Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np.
• For all i in Nk, Processor k stores y[i], x[i], and row i of A
• For all i in Nk, Processor k computes y[i] = (row i of A) * x

• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y

P1

P2

P3

P4

May require
communication

01/31/2012 CS267 Lecture 5 42

Matrix Reordering via Graph Partitioning

• “Ideal” matrix structure for parallelism: block diagonal
• p (number of processors) blocks, can all be computed locally.
• If no non-zeros outside these blocks, no communication needed

• Can we reorder the rows/columns to get close to this?
• Most nonzeros in diagonal blocks, few outside

P0

P1

P2

P3

P4

= *

P0 P1 P2 P3 P4

01/31/2012 CS267 Lecture 5 43

Goals of Reordering

• Performance goals
• balance load (how is load measured?).

• Approx equal number of nonzeros (not necessarily rows)

• balance storage (how much does each processor store?).
• Approx equal number of nonzeros

• minimize communication (how much is communicated?).
• Minimize nonzeros outside diagonal blocks
• Related optimization criterion is to move nonzeros near diagonal

• improve register and cache re-use
• Group nonzeros in small vertical blocks so source (x) elements

loaded into cache or registers may be reused (temporal locality)
• Group nonzeros in small horizontal blocks so nearby source (x)

elements in the cache may be used (spatial locality)

• Other algorithms reorder for other reasons
• Reduce # nonzeros in matrix after Gaussian elimination
• Improve numerical stability

01/31/2012 CS267 Lecture 5 44

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix: here the matrix is
symmetric (edges are unordered) and weights are equal (1)

• If divided over 3 procs, there are 14 nonzeros outside the diagonal
blocks, which represent the 7 (bidirectional) edges

4

01/31/2012 CS267 Lecture 5 45

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

• Relationship between matrix and graph

• A “good” partition of the graph has
• equal (weighted) number of nodes in each part (load and storage balance).
• minimum number of edges crossing between (minimize communication).

• Reorder the rows/columns by putting all nodes in one partition together.

3

6

1

5

42

	CS 267 Sources of Parallelism and Locality in Simulation – Part 2
	Recap of Last Lecture
	PowerPoint Presentation
	Continuous Variables, Continuous Parameters
	Example: Deriving the Heat Equation
	Details of the Explicit Method for Heat
	Explicit Solution of the Heat Equation
	Matrix View of Explicit Method for Heat
	Parallelism in Explicit Method for PDEs
	Instability in Solving the Heat Equation Explicitly
	Implicit Solution of the Heat Equation
	Slide 12
	Relation of Poisson to Gravity, Electrostatics
	2D Implicit Method
	Algorithms for 2D (3D) Poisson Equation (N vars)
	Overview of Algorithms
	Mflop/s Versus Run Time in Practice
	Summary of Approaches to Solving PDEs
	Comments on practical meshes
	Parallelism in Regular meshes
	Composite mesh from a mechanical structure
	Converting the mesh to a matrix
	Example of Matrix Reordering Application
	Irregular mesh: NASA Airfoil in 2D (direct solution)
	Irregular mesh: Tapered Tube (multigrid)
	Source of Unstructured Finite Element Mesh: Vertebra
	Methods: FE modeling (Gordon Bell Prize, 2004)
	Adaptive Mesh Refinement (AMR)
	Adaptive Mesh
	Challenges of Irregular Meshes
	Summary – sources of parallelism and locality
	Motif/Dwarf: Common Computational Methods (Red Hot  Blue Cool)
	Extra Slides
	CS267 Final Projects
	Project Ideas (from 2009)
	Slide 36
	High-end simulation in the physical sciences = 7 numerical methods:
	Implicit Methods and Eigenproblems
	ODEs and Sparse Matrices
	SpMV in Compressed Sparse Row (CSR) Format
	Parallel Sparse Matrix-vector multiplication
	Matrix Reordering via Graph Partitioning
	Goals of Reordering
	Graph Partitioning and Sparse Matrices
	Slide 45

