CS 267 Sources of Parallelism and Locality in Simulation – Part 2

James Demmel www.cs.berkeley.edu/~demmel/cs267_Spr12

Recap of Last Lecture

- 4 kinds of simulations
 - Discrete Event Systems
 - Particle Systems
 - Ordinary Differential Equations (ODEs)
 - Partial Differential Equations (PDEs) (today)
- Common problems:
 - Load balancing
 - May be due to lack of parallelism or poor work distribution
 - Statically, divide grid (or graph) into blocks
 - Dynamically, if load changes significantly during run
 - Locality
 - Partition into large chunks with low surface-to-volume ratio
 - To minimize communication
 - Distributed particles according to location, but use irregular spatial decomposition (e.g., quad tree) for load balance
 - Constant tension between these two
 - Particle-Mesh method: can't balance particles (moving), balance mesh (fixed) and keep particles near mesh points without communication

Partial Differential Equations PDEs

Continuous Variables, Continuous Parameters

Examples of such systems include

- Elliptic problems (steady state, global space dependence)
 - Electrostatic or Gravitational Potential: Potential(position)
- Hyperbolic problems (time dependent, local space dependence):
 - Sound waves: Pressure(position,time)
- Parabolic problems (time dependent, global space dependence)
 - Heat flow: Temperature(position, time)
 - Diffusion: Concentration(position, time)

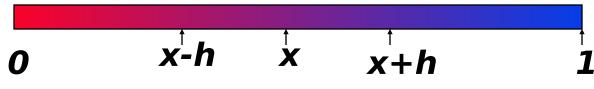
Global vs Local Dependence

- Global means either a lot of communication, or tiny time steps
- Local arises from finite wave speeds: limits communication

Many problems combine features of above

- Fluid flow: Velocity, Pressure, Density (position, time)
- Elasticity: Stress,Strain(position,time) 01/31/2012 CS267 Lecture 5

Example: Deriving the Heat Equation



Consider a simple problem

- A bar of uniform material, insulated except at ends
- Let u(x,t) be the temperature at position x at time t
- Heat travels from x-h to x+h at rate proportional to:

dt • As $h \rightarrow 0$, we get the heat equation: $d u(x,t) = C * d^2$

01/31/2012

CS267 Lecture 5

h

Details of the Explicit Method for Heat

• Discretize time $\frac{dt}{dt}$ (forward Euler) to approximate time derivative:

 $(u(x,t+\delta) - u(x,t))/\delta = C [(u(x-h,t)-u(x,t))/h - (u(x,t)-u(x+h,t))/h]/h$ = C [u(x-h,t) - 2*u(x,t) + u(x+h,t)]/h²

Solve for $u(x,t+\delta)$:

 $u(x,t+\delta) = u(x,t) + C^*\delta / h^2 * (u(x-h,t) - 2^*u(x,t) + u(x+h,t))$

- Let $z = C^* \delta / h^2$, simplify: $u(x,t+\delta) = z^* u(x-h,t) + (1-2z)^* u(x,t) + z^* u(x+h,t)$
- Change variable x to j*h, t to i* δ , and u(x,t) to u[j,i] u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+ z*u[j+1,i]

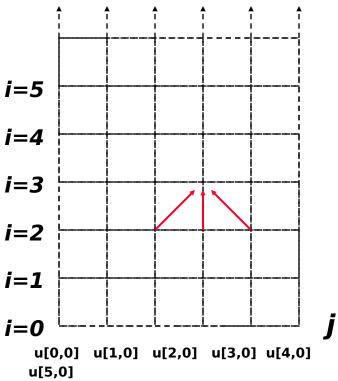
Explicit Solution of the Heat Equation

- Use "finite differences" with u[j,i] as the temperature at
 - time t= i* δ (i = 0,1,2,...) and position x = j*h (j=0,1,...,N=1/h)
 - initial conditions on u[j,0]
 - boundary conditions on u[0,i] and u[N,i] i
- At each timestep i = 0,1,2,...

For j=0 to N

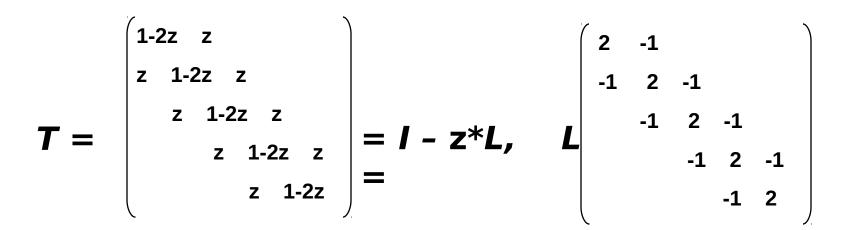
u[j,i+1] = z*u[j-1,i] + (1-2*z)*u[j,i] + z*u[j+1,i]where $z = C*\delta/h^2$

- This corresponds to
 - Matrix-vector-multiply by T (next slide) i=1
 - Combine nearest neighbors on grid



Matrix View of Explicit Method for Heat

u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i], same as:
u[:, i+1] = T * u[:, i] where T is tridiagonal:

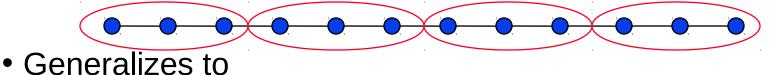


Graph and "3 point stencil"

- L called Laplacian (in 1D)
- For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal
 - More on the matrix/grid views later

Parallelism in Explicit Method for PDEs

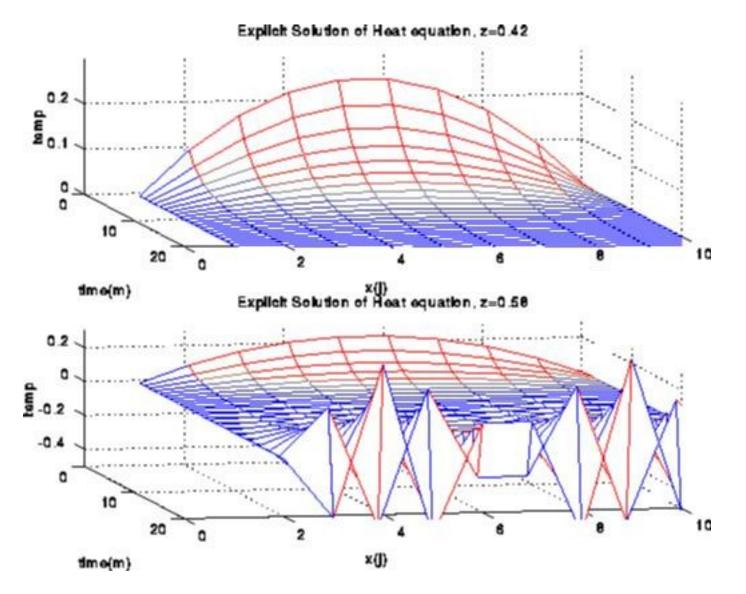
- Sparse matrix vector multiply, via Graph Partitioning
- Partitioning the space (x) into p chunks
 - good load balance (assuming large number of points relative to p)
 - minimize communication (least dependence on data outside chunk)



- multiple dimensions.
- arbitrary graphs (= arbitrary sparse matrices).
- Explicit approach often used for hyperbolic equations
 - Finite wave speed, so only depend on nearest chunks
- Problem with explicit approach for heat (parabolic):
 - numerical instability.
 - solution blows up eventually if $z = C\delta/h^2 > .5$

• need to make the time step δ very small when h is small: $\delta < .5*h^2$ /C CS267 Lecture 5 9

Instability in Solving the Heat Equation Explicitly



Implicit Solution of the Heat Equation

- Discretize time and space using implicit approach (Backward Euler) to approximate time derivative: $(u(x,t+\delta) - u(x,t))/dt = C^*(u(x-h,t+\delta) - 2^*u(x,t+\delta) + u(x+h,t+\delta))/h^2$ $u(x,t) = u(x,t+\delta) - C^*\delta/h^2 * (u(x-h,t+\delta) - 2^*u(x,t+\delta) + u(x+h,t+\delta))$
- Let $z = C^* \delta/h^2$ and change variable t to $i^* \delta$, x to $j^* h$ and u(x,t) to u[j,i]

(I + z *L)* u[:, i+1] = u[:,i]

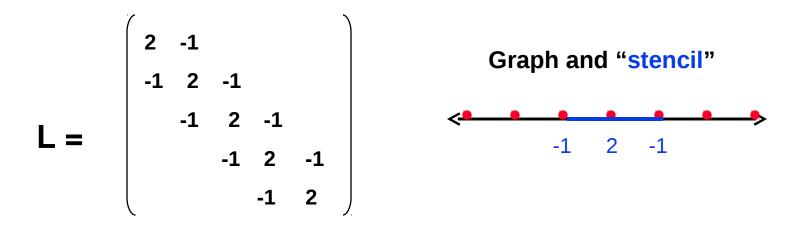
 $L = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$ Where I is identity and L is Laplacian as before

Implicit Solution of the Heat Equation

• The previous slide derived Backward Euler

• But the Trapezoidal Rule has better numerical properties:

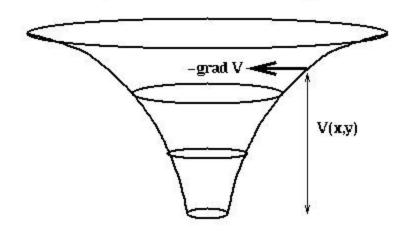
• Again I is the identity matrix and L is:



 Other problems (elliptic instead of parabolic) yield Poisson's equation (Lx = b in 1D) 01/31/2012 CS267 Lecture 5

Relation of Poisson to Gravity, Electrostatics

- Poisson equation arises in many problems
- E.g., force on particle at (x,y,z) due to particle at 0 is $-(x,y,z)/r^3$, where $r = sqrt(x^2 + y^2 + z^2)$
- Force is also gradient of potential V = -1/r
 - = -(d/dx V, d/dy V, d/dz V) = -grad V
- V satisfies Poisson's equation (try working this out!)

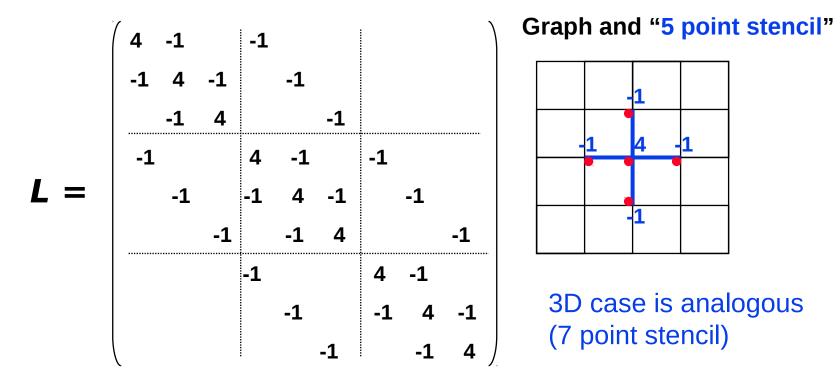


Relationship of Potential V and Force -grad V in 2D

$$\frac{d^2V}{dz} + \frac{d^2V}{dz} + \frac{d^2V}{dz^2}$$
$$\frac{dz^2}{dz^2}$$

2D Implicit Method

• Similar to the 1D case, but the matrix L is now



- Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D grid.
- To solve this system, there are several techniques.

Algorithms for 2D (3D) Poisson Equation (N vars)

Algorithm	Serial		PRAM		Memory	,	#Procs
 Dense LU 	N ³		Ν		N ²		N^2
 Band LU 	N² (N ^{7/3})		Ν		N ^{3/2} (N ^{5/3})	N (N ^{4/3})	
 Jacobi 	N ² (N ^{5/3})		N (N ²/3)		N		N
 Explicit Inv. 	N ²		log N		N ²		N ²
 Conj.Gradients 	N ^{3/2} (N ^{4/3})	N ^{1/2 (1/3)} *lo	g N	Ν		Ν	
 Red/Black SOF 	R N ^{3/2} (N ^{4/3})	N ^{1/2} (N ^{4/3})	N		Ν		
 Sparse LU 	N ^{3/2} (N ²)		N ^{1/2} (N ^{2/3})	N*log N	(N ^{4/3})	N (N ^{4/3})	
• FFT	N*log N		log N		Ν		Ν
 Multigrid 	Ν		log ² N		Ν		Ν
 Lower bound 	Ν		log N		Ν		

All entries in "Big-Oh" sense (constants omitted) PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Overview of Algorithms

- Sorted in two orders (roughly):
 - from slowest to fastest on sequential machines.
 - from most general (works on any matrix) to most specialized (works on matrices "like" T).
- Dense LU: Gaussian elimination; works on any N-by-N matrix.
- Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main diagonal.
- Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative algorithm.
- Explicit Inverse: Assume we want to solve many systems with T, so we can precompute and store inv(T) "for free", and just multiply by it (but still expensive).
- Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of T that Jacobi does not.
- Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of T. Used in multigrid schemes.
- Sparse LU: Gaussian elimination exploiting particular zero structure of T.
- FFT (Fast Fourier Transform): Works only on matrices very like T.
- Multigrid: Also works on matrices like T, that come from elliptic PDEs.
- Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).
- Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

01/31/2012

CS267 Lecture 5

Mflop/s Versus Run Time in Practice

- Problem: Iterative solver for a convection-diffusion problem; run on a 1024-CPU NCUBE-2.
- Reference: Shadid and Tuminaro, SIAM Parallel Processing Conference, March 1991.

Solver	Flops	CPU 7	Fime(s) Mflop/s
Jacobi	3.82x10 ¹²	2124	1800
Gauss-Seidel1.21x1	LO ¹² 885		1365
Multigrid	2.13x10 ⁹	7	318

• Which solver would you select?

Summary of Approaches to Solving PDEs

- As with ODEs, either explicit or implicit approaches are possible
 - Explicit, sparse matrix-vector multiplication
 - Implicit, sparse matrix solve at each step
 - Direct solvers are hard (more on this later)
 - Iterative solves turn into sparse matrix-vector multiplication
 - Graph partitioning
- Grid and sparse matrix correspondence:
 - Sparse matrix-vector multiplication is nearest neighbor "averaging" on the underlying mesh
- Not all nearest neighbor computations have the same efficiency
 - Depends on the mesh structure (nonzero structure) and the number of Flops per point.

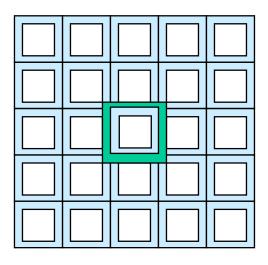
CS267 Lecture 5

Comments on practical meshes

- Regular 1D, 2D, 3D meshes
 - Important as building blocks for more complicated meshes
- Practical meshes are often irregular
 - Composite meshes, consisting of multiple "bent" regular meshes joined at edges
 - Unstructured meshes, with arbitrary mesh points and connectivities
 - Adaptive meshes, which change resolution during solution process to put computational effort where needed

Parallelism in Regular meshes

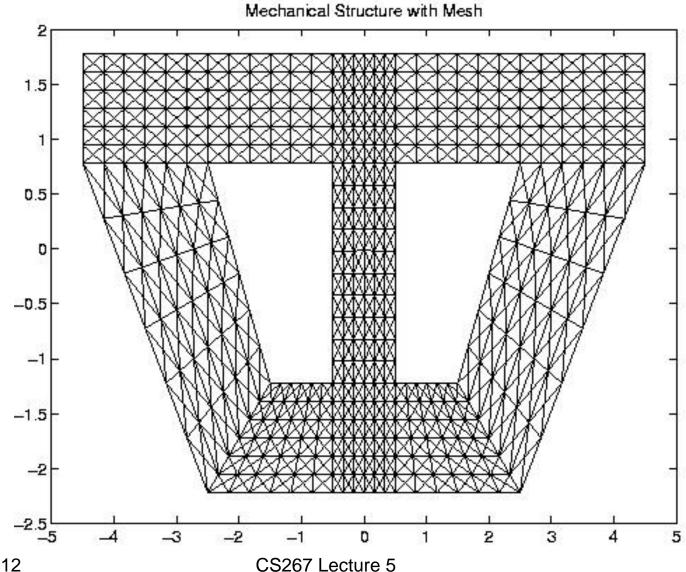
- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
 - Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice



Implemented using "ghost" regions.

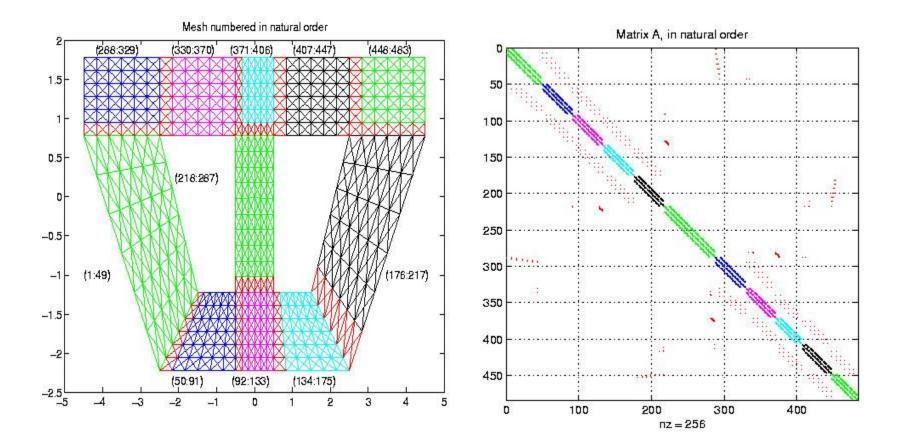
Adds memory overhead

Composite mesh from a mechanical structure

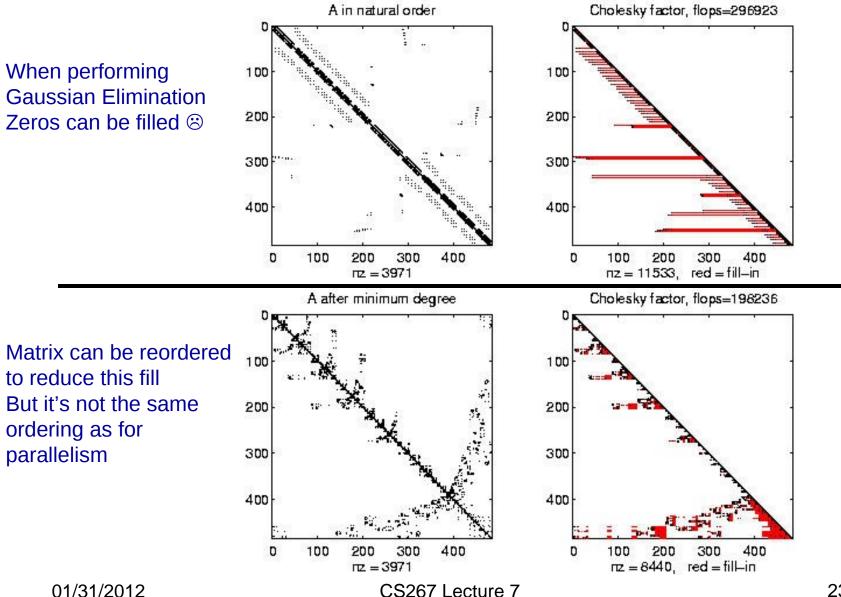


01/31/2012

Converting the mesh to a matrix

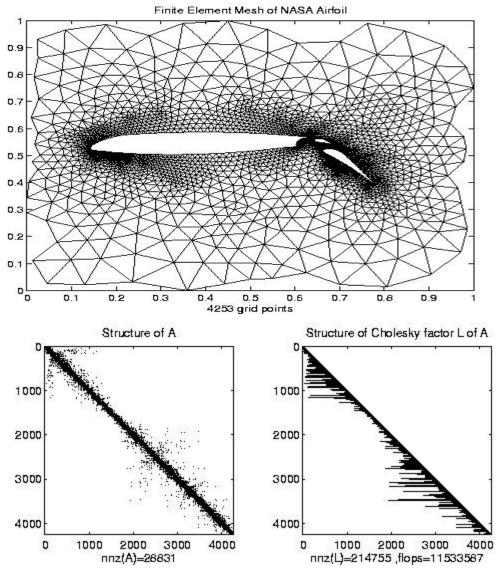


Example of Matrix Reordering Application



01/31/2012

Irregular mesh: NASA Airfoil in 2D (direct solution)



01/31/2012

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

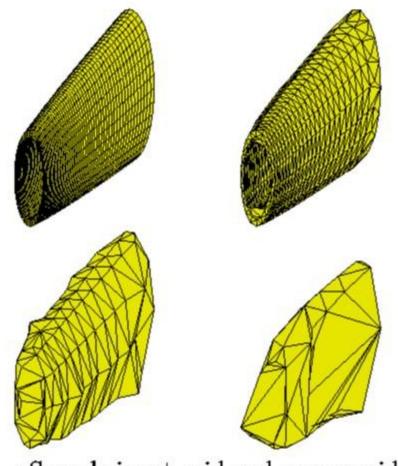


Figure 6 Sample input grid and coarse grids

Source of Unstructured Finite Element Mesh: Vertebra

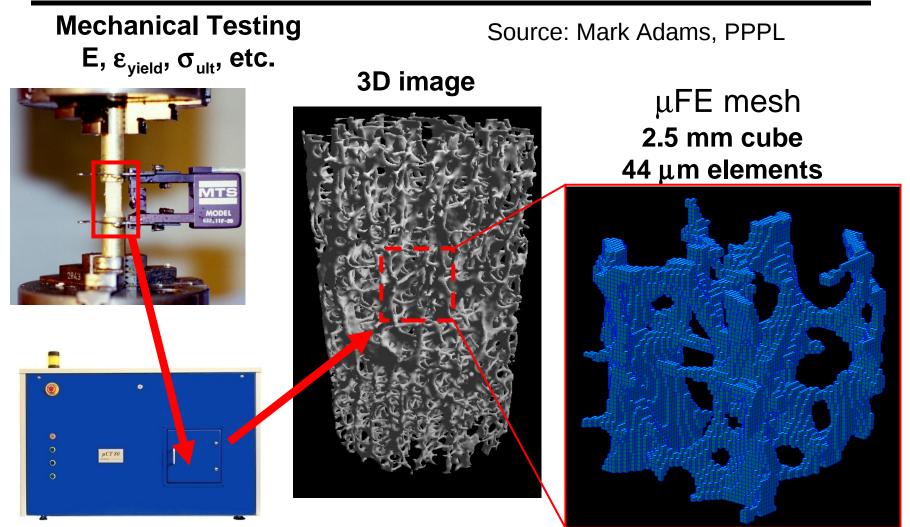
Study failure modes of trabecular Bone under stress

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

01/31/2012

CS267 Lecture 5

Methods: µFE modeling (Gordon Bell Prize, 2004)



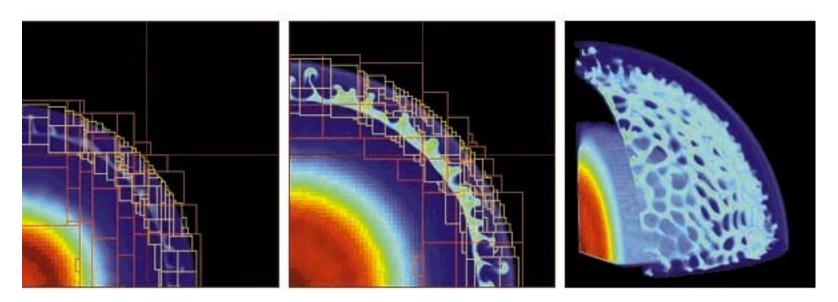
Micro-Computed Tomography μ CT @ 22 μ m resolution

01/31/2012

CS267 Lecture 5

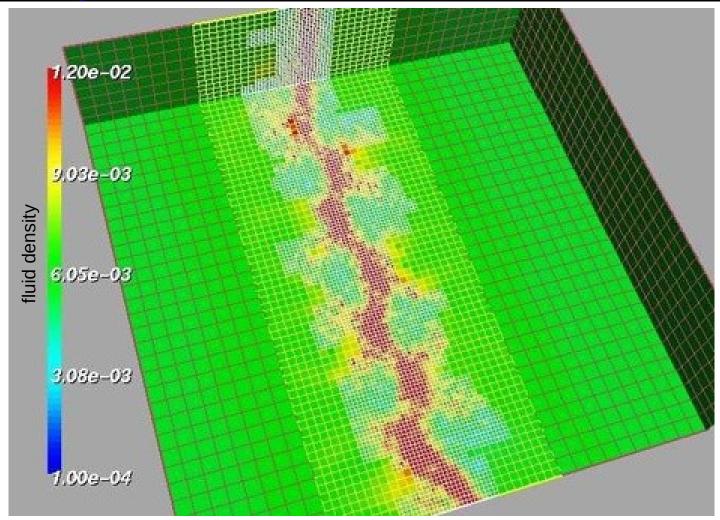
Up to 537M unknowns

Adaptive Mesh Refinement (AMR)



- Adaptive mesh around an explosion
 - Refinement done by estimating errors; refine mesh if too large
- Parallelism
 - Mostly between "patches," assigned to processors for load balance
 - May exploit parallelism within a patch
- Projects:
 - Titanium (http://www.cs.berkeley.edu/projects/titanium)
 - Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

Adaptive Mesh



Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement) See: http://www.llnl.gov/CASC/SAMRAI/ 01/31/2012 CS267 Lecture 5

Challenges of Irregular Meshes

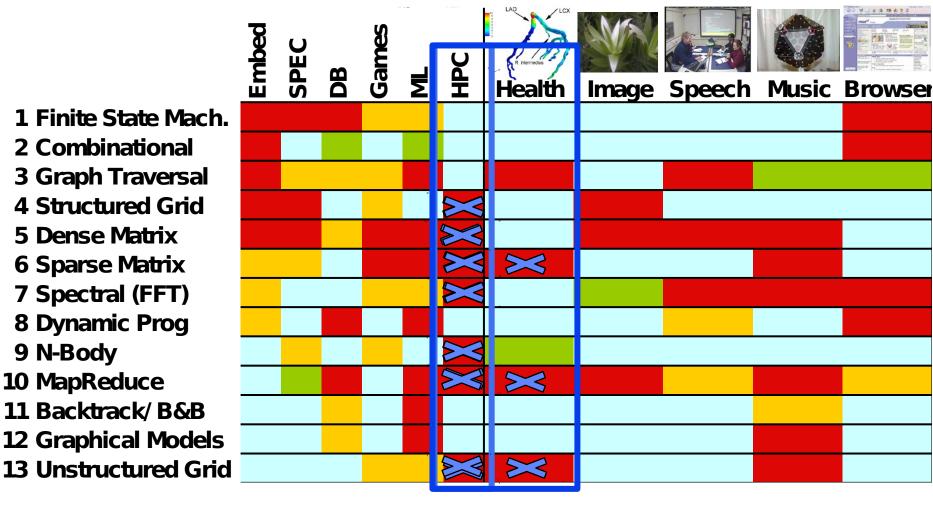
- How to generate them in the first place
 - Start from geometric description of object
 - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
 - 3D harder!
- How to partition them
 - ParMetis, a parallel graph partitioner
- How to design iterative solvers
 - PETSc, a Portable Extensible Toolkit for Scientific Computing
 - Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
 - SuperLU, parallel sparse Gaussian elimination
- These are challenges to do sequentially, more so in parallel

Summary – sources of parallelism and locality

- Current attempts to categorize main "kernels" dominating simulation codes
- "Seven Dwarfs" (P. Colella)
 - Structured grids
 - including locally structured grids, as in AMR
 - Unstructured grids
 - Spectral methods (Fast Fourier Transform)
 - Dense Linear Algebra
 - Sparse Linear Algebra
 - Both explicit (SpMV) and implicit (solving)
 - Particle Methods
 - Monte Carlo/Embarrassing Parallelism/Map Reduce (easy!)

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods (Red Hot \rightarrow Blue Cool)



Extra Slides

CS267 Final Projects

- Project proposal
 - Teams of 3 students, typically across departments
 - Interesting parallel application or system
 - Conference-quality paper
 - High performance is key:
 - Understanding performance, tuning, scaling, etc.
 - More important than the difficulty of problem
- Leverage
 - Projects in other classes (but discuss with me first)
 - Research projects

Project Ideas (from 2009)

- Applications
 - Implement existing sequential or shared memory program on distributed memory
 - Investigate SMP trade-offs (using only MPI versus MPI and thread based parallelism)
- Tools and Systems
 - Effects of reordering on sparse matrix factoring and solves
- Numerical algorithms
 - Improved solver for immersed boundary method
 - Use of multiple vectors (blocked algorithms) in iterative solvers

Project Ideas (from 2009)

- Novel computational platforms
 - Exploiting hierarchy of SMP-clusters in benchmarks
 - Computing aggregate operations on ad hoc networks (Culler)
 - Push/explore limits of computing on "the grid"
 - Performance under failures
- Detailed benchmarking and performance analysis, including identification of optimization opportunities
 - Titanium
 - UPC
 - IBM SP (Blue Horizon)

Phillip Colella's "Seven dwarfs"

High-end simulation in the physical sciences = 7 numerical methods:

- 1. Structured Grids (including locally structured grids, e.g. AMR)
- 2. Unstructured Grids
- 3. Fast Fourier Transform
- 4. Dense Linear Algebra
- 5. Sparse Linear Algebra
- 6. Particles
- 7. Monte Carlo

- Add 4 for embedded
 - 8. Search/Sort
 - 9. Finite State Machine
 - 10. Filter
 - 11. Combinational logic
- Then covers all 41 EEMBC benchmarks
- Revise 1 for SPEC
 - 7. Monte Carlo => Easily parallel (to add ray tracing)
- Then covers 26 SPEC benchmarks

Well-defined targets from algorithmic, software, and architecture standpoint

Slide from "Defining Software Requirements for Scientific Computing", Phillip Colella, 2004

Implicit Methods and Eigenproblems

- Implicit methods for ODEs solve linear systems
- Direct methods (Gaussian elimination)
 - Called LU Decomposition, because we factor A = L*U.
 - Future lectures will consider both dense and sparse cases.
 - More complicated than sparse-matrix vector multiplication.
- Iterative solvers
 - Will discuss several of these in future.
 - Jacobi, Successive over-relaxation (SOR), Conjugate Gradient (CG), Multigrid,...
 - Most have sparse-matrix-vector multiplication in kernel.
- Eigenproblems
 - Future lectures will discuss dense and sparse cases.
 - Also depend on sparse-matrix-vector multiplication, direct methods.

01/31/2012

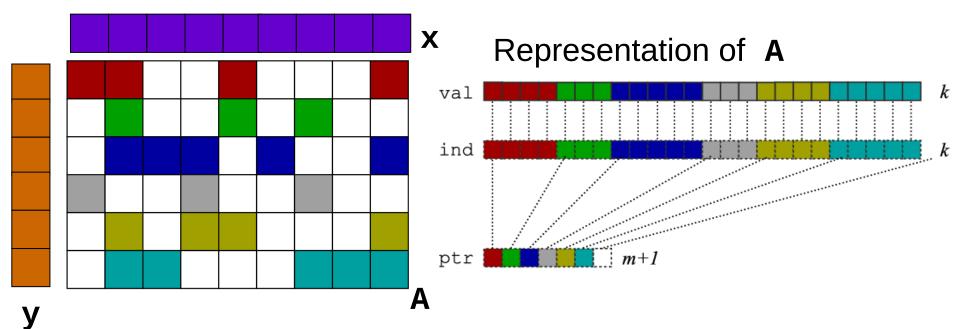
CS267 Lecture 5

ODEs and Sparse Matrices

- All these problems reduce to sparse matrix problems
 - Explicit: sparse matrix-vector multiplication (SpMV).
 - Implicit: solve a sparse linear system
 - direct solvers (Gaussian elimination).
 - iterative solvers (use sparse matrix-vector multiplication).
 - Eigenvalue/vector algorithms may also be explicit or implicit.
- Conclusion: SpMV is key to many ODE problems
 - Relatively simple algorithm to study in detail
 - Two key problems: locality and load balance

SpMV in Compressed Sparse Row (CSR) Format

CSR format is one of many possibilities



Matrix-vector multiply kernel: $y(i) \leftarrow y(i) + A(i,j) \cdot x(j)$

Parallel Sparse Matrix-vector multiplication

• $y = A^*x$, where A is a sparse n x n matrix

- Questions
 - which processors store
 - y[i], x[i], and A[i,j]
 - which processors compute
 - y[i] = sum (from 1 to n) A[i,j] * x[j]

= (row i of A) * x ... a sparse dot product

V

- Partitioning
 - Partition index set $\{1, ..., n\} = N1 \cup N2 \cup ... \cup Np$.
 - For all i in Nk, Processor k stores y[i], x[i], and row i of A
 - For all i in Nk, Processor k computes y[i] = (row i of A) (* x
 - "owner computes" rule: Processor k compute the y[i]s it owns.

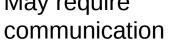
P4 May require

Х

P1

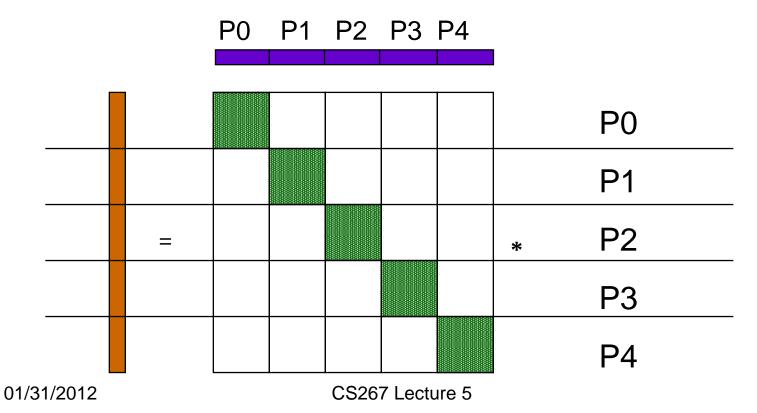
P2

P3



Matrix Reordering via Graph Partitioning

- "Ideal" matrix structure for parallelism: block diagonal
 - p (number of processors) blocks, can all be computed locally.
 - If no non-zeros outside these blocks, no communication needed
- Can we reorder the rows/columns to get close to this?
 - Most nonzeros in diagonal blocks, few outside



42

Goals of Reordering

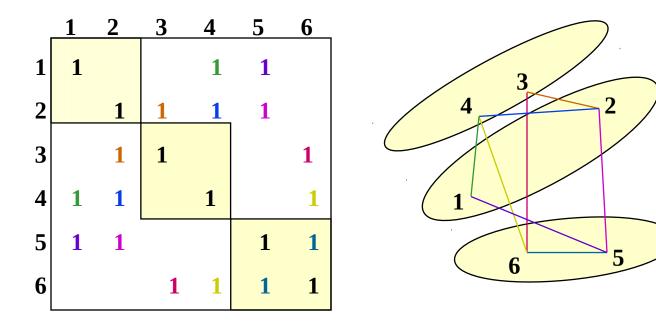
- Performance goals
 - balance load (how is load measured?).
 - Approx equal number of nonzeros (not necessarily rows)
 - balance storage (how much does each processor store?).
 - Approx equal number of nonzeros
 - minimize communication (how much is communicated?).
 - Minimize nonzeros outside diagonal blocks
 - Related optimization criterion is to move nonzeros near diagonal
 - improve register and cache re-use
 - Group nonzeros in small vertical blocks so source (x) elements loaded into cache or registers may be reused (temporal locality)
 - Group nonzeros in small horizontal blocks so nearby source (x) elements in the cache may be used (spatial locality)
- Other algorithms reorder for other reasons
 - Reduce # nonzeros in matrix after Gaussian elimination
 - Improve numerical stability

01/31/2012

CS267 Lecture 5

Graph Partitioning and Sparse Matrices

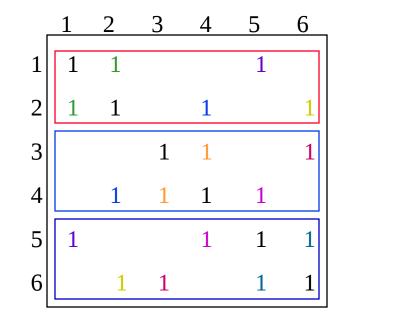
• Relationship between matrix and graph

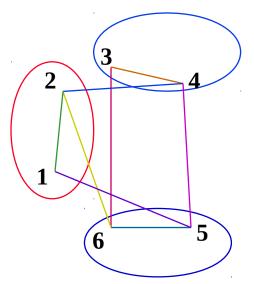


- Edges in the graph are nonzero in the matrix: here the matrix is symmetric (edges are unordered) and weights are equal (1)
- If divided over 3 procs, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

Graph Partitioning and Sparse Matrices

• Relationship between matrix and graph





- A "good" partition of the graph has
 - equal (weighted) number of nodes in each part (load and storage balance).
 - minimum number of edges crossing between (minimize communication).
- Reorder the rows/columns by putting all nodes in one partition together.