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Recap of Last Lecture

• 4 kinds of simulations
• Discrete Event Systems
• Particle Systems
• Ordinary Differential Equations (ODEs)
• Partial Differential Equations (PDEs) (today)

• Common problems:
• Load balancing

• May be due to lack of parallelism or poor work distribution
• Statically, divide grid (or graph) into blocks
• Dynamically, if load changes significantly during run

• Locality
• Partition into large chunks with low surface-to-volume ratio

– To minimize communication
• Distributed particles according to location, but use irregular spatial 

decomposition (e.g., quad tree) for load balance

• Constant tension between these two
• Particle-Mesh method: can’t balance particles (moving), balance mesh 

(fixed) and keep particles near mesh points without communication
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Partial Differential Equations
PDEs
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Continuous Variables, Continuous Parameters
Examples of such systems include
• Elliptic problems (steady state, global space dependence)

• Electrostatic or Gravitational Potential: Potential(position)
• Hyperbolic problems (time dependent, local space dependence):

• Sound waves: Pressure(position,time)
• Parabolic problems (time dependent, global space dependence)

• Heat flow:  Temperature(position, time)
• Diffusion:  Concentration(position, time)

Global vs Local Dependence
• Global means either a lot of communication, or tiny time steps
• Local arises from finite wave speeds: limits communication

Many problems combine features of above
• Fluid flow: Velocity,Pressure,Density(position,time)
• Elasticity:   Stress,Strain(position,time)
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Example: Deriving the Heat Equation

0 1x x+h
Consider a simple problem
• A bar of uniform material, insulated except at ends
• Let u(x,t) be the temperature at position x at time t
• Heat travels from x-h to x+h at rate proportional to:

• As h   0, we get the heat equation:

d u(x,t)                  (u(x-h,t)-u(x,t))/h - (u(x,t)- 
u(x+h,t))/h

    dt                                                  h

= C *

d u(x,t)           d2 
u(x,t)

    dt                  
dx2

= C *

x-h
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Details of the Explicit Method for Heat

• Discretize time and space using explicit approach           
(forward Euler) to approximate time derivative:

     (u(x,t+δ) – u(x,t))/δ  =  C  [ (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h  ] / h
                                     =  C [u(x-h,t) – 2*u(x,t) + u(x+h,t)]/h2

      Solve for  u(x,t+δ) :
                       u(x,t+δ) =  u(x,t)+ C*δ  /h2 *(u(x-h,t) – 2*u(x,t) + u(x+h,t))

• Let z = C*δ  /h2, simplify:
     u(x,t+δ) =  z* u(x-h,t) + (1-2z)*u(x,t) + z*u(x+h,t)

• Change variable x to j*h,  t to i*δ , and u(x,t) to u[j,i] 
       u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+ z*u[j+1,i]

d u(x,t)           d2 
u(x,t)

    dt                  
dx2

= C *
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Explicit Solution of the Heat Equation

• Use “finite differences” with u[j,i] as the temperature at
• time t= i*δ (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h)
• initial conditions on u[j,0]
• boundary conditions on u[0,i] and u[N,i]

• At each timestep i = 0,1,2,...

• This corresponds to
• Matrix-vector-multiply by T (next slide)
• Combine nearest neighbors on grid

i=5

i=4

i=3

i=2

i=1

i=0
 u[0,0]   u[1,0]   u[2,0]   u[3,0]  u[4,0]   
u[5,0]

For j=0 to N

    u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i]

where z =C*δ /h2

i

j
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Matrix View of Explicit Method for Heat
• u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i],   same as:
• u[ :, i+1] = T * u[ :, i] where T is tridiagonal:

• L called Laplacian (in 1D)
• For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal

• More on the matrix/grid views later

1-2zz z

Graph and “3 point stencil”

T = = I – z*L,    L 
= 

2     -1 

-1     2    -1

       -1     2    -1

               -1    2    -1

                     -1    2

1-2z    z 

z    1-2z    z

      z    1-2z    z

             z    1-2z    z

                   z    1-2z
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Parallelism in Explicit Method for PDEs
• Sparse matrix vector multiply, via Graph Partitioning
• Partitioning the space (x) into p chunks

• good load balance (assuming large number of points relative to p)
• minimize communication (least dependence on data outside chunk)

• Generalizes to 
• multiple dimensions.
• arbitrary graphs (= arbitrary sparse matrices).

• Explicit approach often used for hyperbolic equations
• Finite wave speed, so only depend on nearest chunks

• Problem with explicit approach for heat (parabolic): 
• numerical instability.
• solution blows up eventually if z = Cδ/h2  > .5
• need to make the time step δ very small when h is small:  δ < .5*h2  /C
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Instability in Solving the Heat Equation Explicitly
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Implicit Solution of the Heat Equation

• Discretize time and space using implicit approach 
(Backward Euler) to approximate time derivative:

     (u(x,t+δ) – u(x,t))/dt = C*(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h, t+δ))/h2

        u(x,t) =  u(x,t+δ) - C*δ/h2 *(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h,t+δ))

• Let z = C*δ /h2  and change variable t to i*δ , x to j*h and 
u(x,t) to u[j,i]

       (I + z *L)* u[:, i+1] = u[:,i] 

• Where I is identity and
    L is Laplacian as before

       

2    -1 

-1    2    -1

      -1     2    -1

             -1    2     -1

                   -1     2

L =

d u(x,t)           d2 
u(x,t)

    dt                  
dx2

= C *
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Implicit Solution of the Heat Equation

• The previous slide derived Backward Euler
• (I + z *L)* u[:, i+1] = u[:,i] 

• But the Trapezoidal Rule has better numerical properties:

• Again I is the identity matrix and L is:

• Other problems (elliptic instead of parabolic) yield 
Poisson’s equation (Lx = b in 1D)

(I + (z/2)*L) * u[:,i+1]= (I - (z/2)*L) *u[:,i]

2    -1 

-1    2    -1

      -1     2    -1

             -1    2     -1

                   -1     2

L = 2-1 -1

Graph and “stencil”
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Relation of Poisson to Gravity, Electrostatics

• Poisson equation arises in many problems
• E.g., force on particle at (x,y,z) due to particle at 0 is
      -(x,y,z)/r3,  where r = sqrt(x2  + y2  + z2)
• Force is also gradient of potential V = -1/r
     = -(d/dx V, d/dy V, d/dz V) = -grad V
• V satisfies Poisson’s equation (try working this out!)

d2V   + d2V   +  d2V   
 =   0

dx2           dy2        dz2
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2D Implicit Method 

• Similar to the 1D case, but the matrix L is now

• Multiplying by this matrix (as in the explicit case) is 
simply nearest neighbor computation on 2D grid.

• To solve this system, there are several techniques.

4    -1           -1

-1    4    -1          -1

      -1     4                 -1

 -1                4     -1          -1

       -1         -1     4    -1          -1          

              -1         -1     4                  -1

                   -1                   4    -1

                          -1            -1     4    -1

                                -1             -1     4

L =

4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous 
(7 point stencil)
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Algorithms for 2D (3D) Poisson Equation (N vars)

Algorithm Serial PRAM Memory     #Procs
• Dense LU N3 N N2 N2

• Band LU N2  (N7/3) N N3/2  (N5/3) N(N4/3)
• Jacobi N2  (N5/3) N (N2/3) N N
• Explicit Inv. N log N N N
• Conj.Gradients N3/2 (N4/3) N1/2 (1/3) *log N N N
• Red/Black SORN3/2 (N4/3) N1/2 (N4/3) N N
• Sparse LU N3/2 (N2) N1/2 (N2/3) N*log N (N4/3) N(N4/3)
• FFT N*log N log N N N
• Multigrid N log2 N N N
• Lower bound N log N N

All entries in “Big-Oh” sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

2 22
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Overview of Algorithms
• Sorted in two orders (roughly):

• from slowest to fastest on sequential machines.
• from most general (works on any matrix) to most specialized (works on matrices “like” T).

• Dense LU: Gaussian elimination; works on any N-by-N matrix.
• Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main 
diagonal.

• Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative 
algorithm.

• Explicit Inverse: Assume we want to solve many systems with T, so we can 
precompute and store inv(T) “for free”, and just multiply by it (but still expensive).

• Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits 
mathematical properties of T that Jacobi does not.

• Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet 
different mathematical properties of T.  Used in multigrid schemes.

• Sparse LU: Gaussian elimination exploiting particular zero structure of T.
• FFT (Fast Fourier Transform): Works only on matrices very like T.
• Multigrid: Also works on matrices like T, that come from elliptic PDEs.
• Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).
• Details in class notes and www.cs.berkeley.edu/~demmel/ma221.



01/31/2012 CS267 Lecture 5 17

Mflop/s Versus Run Time in Practice

• Problem: Iterative solver for a convection-diffusion 
problem; run on a 1024-CPU NCUBE-2.

• Reference: Shadid and Tuminaro, SIAM Parallel 
Processing Conference, March 1991.

Solver Flops CPU Time(s) Mflop/s
Jacobi 3.82x1012 2124 1800
Gauss-Seidel1.21x1012   885 1365
Multigrid 2.13x109       7   318

• Which solver would you select?
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Summary of Approaches to Solving PDEs

• As with ODEs, either explicit or implicit approaches are 
possible

• Explicit, sparse matrix-vector multiplication
• Implicit, sparse matrix solve at each step

• Direct solvers are hard (more on this later)
• Iterative solves turn into sparse matrix-vector multiplication

– Graph partitioning

• Grid and sparse matrix correspondence:
• Sparse matrix-vector multiplication is nearest neighbor 

“averaging” on the underlying mesh

• Not all nearest neighbor computations have the same 
efficiency

• Depends on the mesh structure (nonzero structure) and the 
number of Flops per point.
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Comments on practical meshes

• Regular 1D, 2D, 3D meshes
• Important as building blocks for more complicated meshes

• Practical meshes are often irregular
• Composite meshes, consisting of multiple “bent” regular 

meshes joined at edges
• Unstructured meshes, with arbitrary mesh points and 

connectivities
• Adaptive meshes, which change resolution during solution 

process to put computational effort where needed
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Parallelism in  Regular meshes

• Computing a Stencil on a regular mesh
• need to communicate mesh points near boundary to 

neighboring processors.
• Often done with ghost regions

• Surface-to-volume ratio keeps communication down, but
• Still may be problematic in practice

Implemented using 
“ghost” regions.  

Adds memory overhead
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Composite mesh from a mechanical structure
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Converting the mesh to a matrix
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Example of Matrix Reordering Application

When performing 
Gaussian Elimination
Zeros can be filled 

Matrix can be reordered 
to reduce this fill
But it’s not the same 
ordering as for 
parallelism
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Irregular mesh: NASA Airfoil in 2D (direct solution)
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Irregular mesh: Tapered Tube (multigrid)
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Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress



01/31/2012 CS267 Lecture 5 27

Micro-Computed Tomography
µCT @ 22 µm resolution

Mechanical Testing
E, εyield, σult, etc.

Methods: µFE modeling (Gordon Bell Prize, 2004)

3D image

2.5 mm cube
44 µm elements

µFE mesh

Source: Mark Adams, PPPL

Up to 537M unknowns
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Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion
• Refinement done by estimating errors; refine mesh if too large

• Parallelism 
• Mostly between “patches,” assigned to processors for load balance
• May exploit parallelism within a patch  

• Projects: 
• Titanium (http://www.cs.berkeley.edu/projects/titanium)
• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

http://www.cs.berkeley.edu/projects/titanium
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Adaptive Mesh

Shock waves in  gas dynamics using AMR (Adaptive Mesh Refinement) 
See: http://www.llnl.gov/CASC/SAMRAI/

flu
id

 d
en

s i
ty

http://www.llnl.gov/CASC/SAMRAI/
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Challenges of Irregular Meshes

• How to generate them in the first place
• Start from geometric description of object
• Triangle, a 2D mesh partitioner by Jonathan Shewchuk
• 3D harder!

• How to partition them
• ParMetis, a parallel graph partitioner

• How to design iterative solvers
• PETSc, a Portable Extensible Toolkit for Scientific Computing
• Prometheus, a multigrid solver for finite element problems on 

irregular meshes

• How to design direct solvers
• SuperLU, parallel sparse Gaussian elimination

• These are challenges to do sequentially, more so in parallel
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Summary – sources of parallelism and locality

• Current attempts to categorize main “kernels” 
dominating simulation codes

• “Seven Dwarfs” (P. Colella)
• Structured grids 

• including locally structured grids, as in AMR
• Unstructured grids
• Spectral methods (Fast Fourier Transform)
• Dense Linear Algebra
• Sparse Linear Algebra

• Both explicit (SpMV) and implicit (solving)
• Particle Methods
• Monte Carlo/Embarrassing Parallelism/Map Reduce 

(easy!)



Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)
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Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common?
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Extra Slides
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CS267 Final Projects

• Project proposal
• Teams of 3 students, typically across departments
• Interesting parallel application or system
• Conference-quality paper
• High performance is key: 

• Understanding performance, tuning, scaling, etc.
• More important than the difficulty of problem

• Leverage 
• Projects in other classes (but discuss with me first)
• Research projects  
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Project Ideas (from 2009)

• Applications
• Implement existing sequential or shared memory program on 

distributed memory
• Investigate SMP trade-offs (using only MPI versus MPI and 

thread based parallelism)

• Tools and Systems

• Effects of reordering on sparse matrix factoring and solves

• Numerical algorithms
• Improved solver for immersed boundary method
• Use of  multiple vectors (blocked algorithms) in iterative solvers
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Project Ideas (from 2009)

• Novel computational platforms
• Exploiting hierarchy of SMP-clusters in benchmarks
• Computing aggregate operations on ad hoc networks (Culler)
• Push/explore limits of computing on “the grid” 
• Performance under failures

• Detailed benchmarking and performance analysis, 
including identification of optimization opportunities

• Titanium
• UPC
• IBM SP (Blue Horizon)
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High-end simulation in the physical 
sciences = 7 numerical methods:

1. Structured Grids (including locally 
structured grids, e.g. AMR)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra 
6. Particles
7. Monte Carlo

Well-defined targets from algorithmic, 
software, and architecture standpoint 

Phillip Colella’s “Seven dwarfs”

• Add 4 for embedded
  8. Search/Sort
  9. Finite State Machine
10. Filter
11. Combinational logic

• Then covers all 41 EEMBC 
benchmarks

• Revise 1 for SPEC
• 7.  Monte Carlo => Easily 
parallel (to add ray tracing)

• Then covers 26 SPEC 
benchmarks

Slide from “Defining Software Requirements 
for Scientific Computing”, Phillip Colella, 
2004 
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Implicit Methods and Eigenproblems

• Implicit methods for ODEs solve linear systems
• Direct methods (Gaussian elimination)

• Called LU Decomposition, because we factor A = L*U.
• Future lectures will consider both dense and sparse cases.
• More complicated than sparse-matrix vector multiplication.

• Iterative solvers
• Will discuss several of these in future.

• Jacobi, Successive over-relaxation (SOR) , Conjugate Gradient (CG), 
Multigrid,...

• Most have sparse-matrix-vector multiplication in kernel.

• Eigenproblems
• Future lectures will discuss dense and sparse cases.
• Also depend on sparse-matrix-vector multiplication,  direct 

methods.
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ODEs and Sparse Matrices

• All these problems reduce to sparse matrix 
problems

• Explicit: sparse matrix-vector multiplication (SpMV).
• Implicit: solve a sparse linear system

• direct solvers (Gaussian elimination).
• iterative solvers (use sparse matrix-vector multiplication).

• Eigenvalue/vector algorithms may also be explicit or 
implicit.

• Conclusion: SpMV is key to many ODE 
problems

• Relatively simple algorithm to study in detail
• Two key problems: locality and load balance
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Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

SpMV in Compressed Sparse Row (CSR) Format

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

CSR format is one of many possibilities
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Parallel Sparse Matrix-vector multiplication

• y = A*x, where A is a sparse  n x n matrix

• Questions
• which processors store

• y[i], x[i], and A[i,j]

• which processors compute
• y[i] = sum (from 1 to n) A[i,j] * x[j]
            = (row i of A) * x          … a sparse dot product

• Partitioning
• Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np.
• For all i in Nk, Processor k stores y[i], x[i], and row i of A 
• For all i in Nk, Processor k computes y[i] = (row i of A) * x

• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y

P1

P2

P3

P4

May require 
communication
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Matrix Reordering via Graph Partitioning

• “Ideal” matrix structure for parallelism: block diagonal
• p (number of processors) blocks, can all be computed locally.
• If no non-zeros outside these blocks, no communication needed

• Can we reorder the rows/columns to get close to this?
• Most nonzeros in diagonal blocks, few outside

P0

P1

P2

P3

P4

= *

P0    P1   P2   P3  P4  
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Goals of Reordering

• Performance goals
• balance load (how is load measured?).

• Approx equal number of nonzeros (not necessarily rows)

• balance storage (how much does each processor store?).
• Approx equal number of nonzeros

• minimize communication (how much is communicated?).
• Minimize nonzeros outside diagonal blocks
• Related optimization criterion is to move nonzeros near diagonal

• improve register and cache re-use
• Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality)
• Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality)

• Other algorithms reorder for other reasons
• Reduce # nonzeros in matrix after Gaussian elimination
• Improve numerical stability
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Graph Partitioning and Sparse Matrices 

1    1                     1      1

2           1     1       1      1

3           1     1                      1

4    1     1             1               1 

5    1     1                      1      1

6                    1     1      1      1

  1     2      3      4      5      6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix: here the matrix is 
symmetric (edges are unordered) and weights are equal (1)

• If divided over 3 procs, there are 14 nonzeros outside the diagonal 
blocks, which represent the 7 (bidirectional) edges

4
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Graph Partitioning and Sparse Matrices 

1    1     1                      1

2    1     1             1               1

3                   1     1               1

4           1      1     1       1 

5    1                    1       1      1

6            1     1              1      1

  1     2      3      4      5      6

• Relationship between matrix and graph

• A “good” partition of the graph has
• equal (weighted) number of nodes in each part (load and storage balance).
• minimum number of edges crossing between (minimize communication).

• Reorder the rows/columns by putting all nodes in one partition together.

3

6

1

5

42
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