
CS267 Lecture 4 1

CS 267
Sources of

Parallelism and Locality
in Simulation

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr12

01/26/2012 CS267 Lecture 4 2

Parallelism and Locality in Simulation

• Parallelism and data locality both critical to performance
• Recall that moving data is the most expensive operation

• Real world problems have parallelism and locality:
• Many objects operate independently of others.
• Objects often depend much more on nearby than distant objects.
• Dependence on distant objects can often be simplified.

• Example of all three: particles moving under gravity

• Scientific models may introduce more parallelism:
• When a continuous problem is discretized, time dependencies are

generally limited to adjacent time steps.
• Helps limit dependence to nearby objects (eg collisions)

• Far-field effects may be ignored or approximated in many cases.

• Many problems exhibit parallelism at multiple levels

01/26/2012
CS267 Lecture 4 3

Basic Kinds of Simulation
• Discrete event systems:

• “Game of Life,” Manufacturing systems, Finance, Circuits, Pacman, …
• Particle systems:

• Billiard balls, Galaxies, Atoms, Circuits, Pinball …
• Lumped variables depending on continuous parameters

• aka Ordinary Differential Equations (ODEs),
• Structural mechanics, Chemical kinetics, Circuits,

Star Wars: The Force Unleashed
• Continuous variables depending on continuous parameters

• aka Partial Differential Equations (PDEs)
• Heat, Elasticity, Electrostatics, Finance, Circuits, Medical Image Analysis,

Terminator 3: Rise of the Machines

• A given phenomenon can be modeled at multiple levels.
• Many simulations combine more than one of these techniques.

• For more on simulation in games, see

• www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

01/26/2012 CS267 Lecture 4 4

Example: Circuit Simulation
• Circuits are simulated at many different levels

Level Primitives Examples

Instruction level Instructions SimOS, SPIM

Cycle level Functional units VIRAM-p

Register Transfer
Level (RTL)

Register, counter,
MUX

VHDL

Gate Level Gate, flip-flop,
memory cell

 Thor

Switch level Ideal transistor Cosmos

Circuit level Resistors,
capacitors, etc.

Spice

Device level Electrons, silicon

Lumped
Systems

Discrete
Event

Continuous
Systems

01/26/2012 CS267 Lecture 4 5

Outline

• Discrete event systems
• Time and space are discrete

• Particle systems
• Important special case of lumped systems

• Lumped systems (ODEs)
• Location/entities are discrete, time is continuous

• Continuous systems (PDEs)
• Time and space are continuous
• Next lecture

• Identify common problems and solutions

discrete

continuous

01/26/2012 CS267 Lecture 4 6

A Model Problem: Sharks and Fish

• Illustration of parallel programming
• Original version (discrete event only) proposed by Geoffrey Fox
• Called WATOR

• Basic idea: sharks and fish living in an ocean
• rules for movement (discrete and continuous)
• breeding, eating, and death
• forces in the ocean
• forces between sea creatures

• 6 problems (S&F1 - S&F6)
• Different sets of rules, to illustrate different phenomena

• Available in many languages (see class web page)
• Matlab, pThreads, MPI, OpenMP, Split-C, Titanium, CMF, CMMD,

pSather (not all problems in all languages)

• Some homework based on these

01/26/2012 CS267 Lecture 4 7

Sharks and Fish
• S&F 1. Fish alone move continuously subject to an

external current and Newton's laws.
• S&F 2. Fish alone move continuously subject to

gravitational attraction and Newton's laws.
• S&F 3. Fish alone play the "Game of Life" on a square

grid.
• S&F 4. Fish alone move randomly on a square grid, with

at most one fish per grid point.
• S&F 5. Sharks and Fish both move randomly on a

square grid, with at most one fish or shark per grid point,
including rules for fish attracting sharks, eating, breeding
and dying.

• S&F 6. Like Sharks and Fish 5, but continuous, subject
to Newton's laws.

CS267 Lecture 4 8

Discrete Event
Systems

01/26/2012 CS267 Lecture 4 9

Discrete Event Systems
• Systems are represented as:

• finite set of variables.
• the set of all variable values at a given time is called the state.
• each variable is updated by computing a transition function

depending on the other variables.

• System may be:
• synchronous: at each discrete timestep evaluate all transition

functions; also called a state machine.
• asynchronous: transition functions are evaluated only if the

inputs change, based on an “event” from another part of the
system; also called event driven simulation.

• Example: The “game of life:”
• Also known as Sharks and Fish #3:
• Space divided into cells, rules govern cell contents at each step

01/26/2012 CS267 Lecture 4 10

Parallelism in Game of Life (S&F 3)

• The simulation is synchronous
• use two copies of the grid (old and new).
• the value of each new grid cell depends only on 9 cells (itself plus 8

neighbors) in old grid.
• simulation proceeds in timesteps-- each cell is updated at every step.

• Easy to parallelize by dividing physical domain: Domain Decomposition

• Locality is achieved by using large patches of the ocean
• Only boundary values from neighboring patches are needed.

• How to pick shapes of domains?

P4

P1 P2 P3

P5 P6

P7 P8 P9

Repeat
 compute locally to update local system
 barrier()
 exchange state info with neighbors
until done simulating

01/26/2012 CS267 Lecture 4 11

Regular Meshes (e.g. Game of Life)

• Suppose graph is nxn mesh with connection NSEW neighbors
• Which partition has less communication? (n=18, p=9)

n*(p-1)
edge crossings

2*n*(p1/2 –1)
edge crossings

• Minimizing communication on mesh ≡
minimizing “surface to volume ratio” of partition

01/26/2012 CS267 Lecture 4 12

Synchronous Circuit Simulation

• Circuit is a graph made up of subcircuits connected by wires
• Component simulations need to interact if they share a wire.
• Data structure is (irregular) graph of subcircuits.
• Parallel algorithm is timing-driven or synchronous:

• Evaluate all components at every timestep (determined by known circuit delay)

• Graph partitioning assigns subgraphs to processors
• Determines parallelism and locality.
• Goal 1 is to evenly distribute subgraphs to nodes (load balance).
• Goal 2 is to minimize edge crossings (minimize communication).
• Easy for meshes, NP-hard in general, so we will approximate (future lecture)

edge crossings = 6 edge crossings = 10

better

01/26/2012 CS267 Lecture 4 13

Sharks & Fish in Loosely Connected Ponds

• Parallelization: each processor gets a set of ponds with
roughly equal total area

•work is proportional to area, not number of creatures
• One pond can affect another (through streams) but
infrequently

01/26/2012 CS267 Lecture 4 14

Asynchronous Simulation

• Synchronous simulations may waste time:
• Simulates even when the inputs do not change,.

• Asynchronous (event-driven) simulations update only when
an event arrives from another component:

• No global time steps, but individual events contain time stamp.
• Example: Game of life in loosely connected ponds (don’t simulate

empty ponds).
• Example: Circuit simulation with delays (events are gates

changing).
• Example: Traffic simulation (events are cars changing lanes, etc.).

• Asynchronous is more efficient, but harder to parallelize
• In MPI, events are naturally implemented as messages, but how

do you know when to execute a “receive”?

01/26/2012 CS267 Lecture 4 15

Scheduling Asynchronous Circuit Simulation

• Conservative:
• Only simulate up to (and including) the minimum time stamp of

inputs.
• Need deadlock detection if there are cycles in graph

• Example on next slide

• Example: Pthor circuit simulator in Splash1 from Stanford.

• Speculative (or Optimistic):
• Assume no new inputs will arrive and keep simulating.
• May need to backup if assumption wrong, using timestamps
• Example: Timewarp [D. Jefferson], Parswec [Wen,Yelick].

• Optimizing load balance and locality is difficult:
• Locality means putting tightly coupled subcircuit on one processor.
• Since “active” part of circuit likely to be in a tightly coupled

subcircuit, this may be bad for load balance.

01/26/2012 CS267 Lecture 4 16

Deadlock in Conservative Asynchronous
Circuit Simulation

• Example: Sharks & Fish 3, with 3 processors simulating
3 ponds connected by streams along which fish can move

• Suppose all ponds simulated up to time t0, but no fish move, so no
messages sent from one proc to another

• So no processor can simulate past time t0

• Fix: After waiting for an incoming message for a while, send out an
“Are you stuck too?” message

• If you ever receive such a message, pass it on
• If you receive such a message that you sent, you have a

deadlock cycle, so just take a step with latest input
• Can be a serial bottleneck

01/26/2012 CS267 Lecture 4 17

Summary of Discrete Event Simulations

• Model of the world is discrete
• Both time and space

• Approaches
• Decompose domain, i.e., set of objects
• Run each component ahead using

• Synchronous: communicate at end of each timestep
• Asynchronous: communicate on-demand

–Conservative scheduling – wait for inputs
• need deadlock detection

–Speculative scheduling – assume no inputs

• roll back if necessary

CS267 Lecture 4 18

Particle Systems

01/26/2012 CS267 Lecture 4 19

Particle Systems

• A particle system has
• a finite number of particles
• moving in space according to Newton’s Laws (i.e. F = ma)
• time is continuous

• Examples
• stars in space with laws of gravity
• electron beam in semiconductor manufacturing
• atoms in a molecule with electrostatic forces
• neutrons in a fission reactor
• cars on a freeway with Newton’s laws plus model of driver and

engine
• balls in a pinball game

• Reminder: many simulations combine techniques such
as particle simulations with some discrete events (Ex
Sharks and Fish)

01/26/2012 CS267 Lecture 4 20

Forces in Particle Systems

• Force on each particle can be subdivided

• External force
• ocean current in sharks and fish world (S&F 1)
• externally imposed electric field in electron beam

• Nearby force
• sharks attracted to eat nearby fish (S&F 5)
• balls on a billiard table bounce off of each other
• Van der Waals forces in fluid (1/r^6) … how Gecko feet

work?

• Far-field force
• fish attract other fish by gravity-like (1/r^2) force (S&F 2)
• gravity, electrostatics, radiosity in graphics
• forces governed by elliptic PDE

force = external_force + nearby_force + far_field_force

01/26/2012 CS267 Lecture 4 21

Example S&F 1: Fish in an External Current

% fishp = array of initial fish positions (stored as complex numbers)
% fishv = array of initial fish velocities (stored as complex numbers)
% fishm = array of masses of fish
% tfinal = final time for simulation (0 = initial time)
% Algorithm: integrate using Euler's method with varying step size
% Initialize time step, iteration count, and array of times
 dt = .01; t = 0;
% loop over time steps
 while t < tfinal,
 t = t + dt;
 fishp = fishp + dt*fishv;
 accel = current(fishp)./fishm; % current depends on position
 fishv = fishv + dt*accel;
% update time step (small enough to be accurate, but not too small)
 dt = min(.1*max(abs(fishv))/max(abs(accel)),1);
 end

01/26/2012 CS267 Lecture 4 22

Parallelism in External Forces

• These are the simplest
• The force on each particle is independent
• Called “embarrassingly parallel”

• Sometimes called “map reduce” by analogy

• Evenly distribute particles on processors
• Any distribution works
• Locality is not an issue, no communication

• For each particle on processor, apply the external force
• May need to “reduce” (eg compute maximum) to compute time

step, other data

01/26/2012 CS267 Lecture 4 23

Parallelism in Nearby Forces
• Nearby forces require interaction and therefore

communication.
• Force may depend on other nearby particles:

• Example: collisions.
• simplest algorithm is O(n2): look at all pairs to see if they collide.

• Usual parallel model is domain decomposition of physical
region in which particles are located

• O(n/p) particles per processor if evenly distributed.

01/26/2012 CS267 Lecture 4 24

Parallelism in Nearby Forces

• Challenge 1: interactions of particles near processor
boundary:

• need to communicate particles near boundary to neighboring
processors.

• Region near boundary called “ghost zone”

• Low surface to volume ratio means low communication.
• Use squares, not slabs, to minimize ghost zone sizes

Communicate particles in
boundary region to neighbors

Need to check for
collisions between
regions

01/26/2012 CS267 Lecture 4 25

Parallelism in Nearby Forces

• Challenge 2: load imbalance, if particles cluster:
• galaxies, electrons hitting a device wall.

• To reduce load imbalance, divide space unevenly.
• Each region contains roughly equal number of particles.
• Quad-tree in 2D, oct-tree in 3D.

Example: each square
contains at most 3
particles

01/26/2012 CS267 Lecture 4 26

Parallelism in Far-Field Forces

• Far-field forces involve all-to-all interaction and therefore
communication.

• Force depends on all other particles:
• Examples: gravity, protein folding
• Simplest algorithm is O(n2) as in S&F 2, 4, 5.
• Just decomposing space does not help since every particle

needs to “visit” every other particle.

• Use more clever algorithms to reduce communication
• Use more clever algorithms to beat O(n2).

Implement by rotating particle sets.

• Keeps processors busy

• All processors eventually see all
particles

01/26/2012 CS267 Lecture 4 27

Far-field Forces: Particle-Mesh Methods
• Based on approximation:

• Superimpose a regular mesh.
• “Move” particles to nearest grid point.

• Exploit fact that the far-field force satisfies a PDE that is easy to
solve on a regular mesh:

• FFT, multigrid (described in future lectures)
• Cost drops to O(n log n) or O(n) instead of O(n2)

• Accuracy depends on the fineness of the grid is and the uniformity
of the particle distribution.

1) Particles are moved to nearby
mesh points (scatter)

2) Solve mesh problem

3) Forces are interpolated at
particles from mesh points
(gather)

01/26/2012 CS267 Lecture 4 28

Far-field forces: Tree Decomposition

• Based on approximation.
• Forces from group of far-away particles “simplified” --

resembles a single large particle.
• Use tree; each node contains an approximation of

descendants.

• Also O(n log n) or O(n) instead of O(n2).
• Several Algorithms

• Barnes-Hut.
• Fast multipole method (FMM)
 of Greengard/Rohklin.
• Anderson’s method.

• Discussed in later lecture.

01/26/2012 CS267 Lecture 4 29

Summary of Particle Methods

• Model contains discrete entities, namely, particles
• Time is continuous – must be discretized to solve

• Simulation follows particles through timesteps
• Force = external _force + nearby_force + far_field_force
• All-pairs algorithm is simple, but inefficient, O(n2)
• Particle-mesh methods approximates by moving particles to a

regular mesh, where it is easier to compute forces
• Tree-based algorithms approximate by treating set of particles

as a group, when far away

• May think of this as a special case of a “lumped” system

CS267 Lecture 4 30

Lumped Systems:
ODEs

01/26/2012 CS267 Lecture 4 31

System of Lumped Variables
• Many systems are approximated by

• System of “lumped” variables.
• Each depends on continuous parameter (usually time).

• Example -- circuit:
• approximate as graph.

• wires are edges.
• nodes are connections between 2 or more wires.
• each edge has resistor, capacitor, inductor or voltage source.

• system is “lumped” because we are not computing the
voltage/current at every point in space along a wire, just
endpoints.

• Variables related by Ohm’s Law, Kirchoff’s Laws, etc.

• Forms a system of ordinary differential equations (ODEs).
• Differentiated with respect to time
• Variant: ODEs with some constraints

• Also called DAEs, Differential Algebraic Equations

01/26/2012 CS267 Lecture 4 32

Circuit Example
• State of the system is represented by

• vn(t) node voltages

• ib(t) branch currents all at time t

• vb(t) branch voltages

• Equations include
• Kirchoff’s current
• Kirchoff’s voltage
• Ohm’s law
• Capacitance
• Inductance

• A is sparse matrix, representing connections in circuit
• One column per branch (edge), one row per node (vertex)

with +1 and -1 in each column at rows indicating end points

• Write as single large system of ODEs or DAEs

0 A 0 vn 0

A’ 0 -I * ib = S

0 R -I vb 0

0 -I C*d/dt 0

0 L*d/dt I 0

01/26/2012 CS267 Lecture 4 33

Structural Analysis Example

• Another example is structural analysis in civil engineering:
• Variables are displacement of points in a building.
• Newton’s and Hook’s (spring) laws apply.
• Static modeling: exert force and determine displacement.
• Dynamic modeling: apply continuous force (earthquake).
• Eigenvalue problem: do the resonant modes of the building match

an earthquake

OpenSees project in CE at Berkeley looks at this section of 880, among others

01/26/2012

Gaming Example

Star Wars – The Force Unleashed …

www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

CS267 Lecture 4 34

http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

01/26/2012 CS267 Lecture 4 35

Solving ODEs

• In these examples, and most others, the matrices are
sparse:

• i.e., most array elements are 0.
• neither store nor compute on these 0’s.
• Sparse because each component only depends on a few

others

• Given a set of ODEs, two kinds of questions are:
• Compute the values of the variables at some time t

• Explicit methods
• Implicit methods

• Compute modes of vibration
• Eigenvalue problems

01/26/2012 CS267 Lecture 4 36

Solving ODEs: Explicit Methods

• Assume ODE is x’(t) = f(x) = A*x(t), where A is a sparse matrix
• Compute x(i*dt) = x[i]
 at i=0,1,2,…
• ODE gives x’(i*dt) = slope
 x[i+1]=x[i] + dt*slope

• Explicit methods, e.g., (Forward) Euler’s method.
• Approximate x’(t)=A*x(t) by (x[i+1] - x[i])/dt = A*x[i].
• x[i+1] = x[i]+dt*A*x[i], i.e. sparse matrix-vector multiplication.

• Tradeoffs:
• Simple algorithm: sparse matrix vector multiply.
• Stability problems: May need to take very small time steps,

especially if system is stiff (i.e. A has some large entries, so x
can change rapidly).

t (i) t+dt (i+1)

Use slope at x[i]

01/26/2012 CS267 Lecture 4 37

Solving ODEs: Implicit Methods

• Assume ODE is x’(t) = f(x) = A*x(t) , where A is a sparse matrix
• Compute x(i*dt) = x[i]
 at i=0,1,2,…
• ODE gives x’((i+1)*dt) = slope
 x[i+1]=x[i] + dt*slope

• Implicit method, e.g., Backward Euler solve:
• Approximate x’(t)=A*x(t) by (x[i+1] - x[i])/dt = A*x[i+1].
• (I - dt*A)*x[i+1] = x[i], i.e. we need to solve a sparse linear

system of equations.

• Trade-offs:
• Larger timestep possible: especially for stiff problems
• More difficult algorithm: need to solve a sparse linear system of

equations at each step

t t+dt
Use slope at x[i+1]

t (i) t + dt (i+1)

01/26/2012 CS267 Lecture 4 38

Solving ODEs: Eigensolvers

• Computing modes of vibration: finding eigenvalues and
eigenvectors.

• Seek solution of d2 x(t)/dt2 = A*x(t) of form
 x(t) = sin(ω*t) * x0, where x0 is a constant vector

∀ ω called the frequency of vibration

• x0 sometimes called a “mode shape”

• Plug in to get -ω2 *x0 = A*x0, so that –ω2 is an
eigenvalue and x0 is an eigenvector of A.

• Solution schemes reduce either to sparse-matrix
multiplication, or solving sparse linear systems.

01/26/2012 CS267 Lecture 4 39

Implicit Methods; Eigenproblems

• Implicit methods for ODEs need to solve linear systems
• Direct methods (Gaussian elimination)

• Called LU Decomposition, because we factor A = L*U.
• Future lectures will consider both dense and sparse cases.
• More complicated than sparse-matrix vector multiplication.

• Iterative solvers
• Will discuss several of these in future.

• Jacobi, Successive over-relaxation (SOR) , Conjugate Gradient (CG),
Multigrid,...

• Most have sparse-matrix-vector multiplication in kernel.

• Eigenproblems
• Future lectures will discuss dense and sparse cases.
• Also depend on sparse-matrix-vector multiplication, direct methods.

01/26/2012 CS267 Lecture 4 40

ODEs and Sparse Matrices

• All these problems reduce to sparse matrix
problems

• Explicit: sparse matrix-vector multiplication (SpMV).
• Implicit: solve a sparse linear system

• direct solvers (Gaussian elimination).
• iterative solvers (use sparse matrix-vector multiplication).

• Eigenvalue/vector algorithms may also be explicit or
implicit.

• Conclusion: SpMV is key to many ODE
problems

• Relatively simple algorithm to study in detail
• Two key problems: locality and load balance

01/26/2012 CS267 Lecture 4 41

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1]-1 do

y[i] = y[i] + val[k]*x[ind[k]]

SpMV in Compressed Sparse Row (CSR) Format

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)⋅ x(j)

for each row i
for k=ptr[i] to ptr[i+1]-1 do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

SpMV: y = y + A*x, only store, do arithmetic, on nonzero entries
CSR format is simplest one of many possible data structures for A

01/26/2012 CS267 Lecture 4 42

Parallel Sparse Matrix-vector multiplication

• y = A*x, where A is a sparse n x n matrix

• Questions
• which processors store

• y[i], x[i], and A[i,j]

• which processors compute
• y[i] = sum (from 1 to n) A[i,j] * x[j]
 = (row i of A) * x … a sparse dot product

• Partitioning
• Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np.
• For all i in Nk, Processor k stores y[i], x[i], and row i of A
• For all i in Nk, Processor k computes y[i] = (row i of A) * x

• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y

P1

P2

P3

P4

May require
communication

01/26/2012 CS267 Lecture 4 43

Matrix Reordering via Graph Partitioning

• “Ideal” matrix structure for parallelism: block diagonal
• p (number of processors) blocks, can all be computed locally.
• If no non-zeros outside these blocks, no communication needed

• Can we reorder the rows/columns to get close to this?
• Most nonzeros in diagonal blocks, few outside

P0

P1

P2

P3

P4

= *

P0 P1 P2 P3 P4

01/26/2012 CS267 Lecture 4 44

Goals of Reordering

• Performance goals
• balance load (how is load measured?).

• Approx equal number of nonzeros (not necessarily rows)

• balance storage (how much does each processor store?).
• Approx equal number of nonzeros

• minimize communication (how much is communicated?).
• Minimize nonzeros outside diagonal blocks
• Related optimization criterion is to move nonzeros near diagonal

• improve register and cache re-use
• Group nonzeros in small vertical blocks so source (x) elements

loaded into cache or registers may be reused (temporal locality)
• Group nonzeros in small horizontal blocks so nearby source (x)

elements in the cache may be used (spatial locality)

• Other algorithms reorder for other reasons
• Reduce # nonzeros in matrix after Gaussian elimination
• Improve numerical stability

01/26/2012 CS267 Lecture 4 45

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix: here the matrix is
symmetric (edges are unordered) and weights are equal (1)

• If divided over 3 procs, there are 14 nonzeros outside the diagonal
blocks, which represent the 7 (bidirectional) edges

4

01/26/2012 CS267 Lecture 4 46

Summary: Common Problems

• Load Balancing
• Dynamically – if load changes significantly during job
• Statically - Graph partitioning

• Discrete systems
• Sparse matrix vector multiplication

• Linear algebra
• Solving linear systems (sparse and dense)
• Eigenvalue problems will use similar techniques

• Fast Particle Methods
• O(n log n) instead of O(n2)

01/26/2012

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

E
m

b
ed

S
P
E
C

D
B

G
am

es

M
L

H
P
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

CS267 Lecture 4 47

	CS 267 Sources of Parallelism and Locality in Simulation
	Parallelism and Locality in Simulation
	Basic Kinds of Simulation
	Example: Circuit Simulation
	Outline
	A Model Problem: Sharks and Fish
	Sharks and Fish
	Discrete Event Systems
	Slide 9
	Parallelism in Game of Life (S&F 3)
	PowerPoint Presentation
	Synchronous Circuit Simulation
	Sharks & Fish in Loosely Connected Ponds
	Asynchronous Simulation
	Scheduling Asynchronous Circuit Simulation
	Deadlock in Conservative Asynchronous Circuit Simulation
	Summary of Discrete Event Simulations
	Particle Systems
	Slide 19
	Forces in Particle Systems
	Example S&F 1: Fish in an External Current
	Parallelism in External Forces
	Parallelism in Nearby Forces
	Slide 24
	Slide 25
	Parallelism in Far-Field Forces
	Far-field Forces: Particle-Mesh Methods
	Far-field forces: Tree Decomposition
	Summary of Particle Methods
	Lumped Systems: ODEs
	System of Lumped Variables
	Circuit Example
	Structural Analysis Example
	Gaming Example
	Solving ODEs
	Solving ODEs: Explicit Methods
	Solving ODEs: Implicit Methods
	Solving ODEs: Eigensolvers
	Implicit Methods; Eigenproblems
	ODEs and Sparse Matrices
	SpMV in Compressed Sparse Row (CSR) Format
	Parallel Sparse Matrix-vector multiplication
	Matrix Reordering via Graph Partitioning
	Goals of Reordering
	Graph Partitioning and Sparse Matrices
	Summary: Common Problems
	Motif/Dwarf: Common Computational Methods (Red Hot  Blue Cool)

