
CS267 Lecture 3 1

CS 267:
Introduction to Parallel Machines

and Programming Models
Lecture 3

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr12/

http://www.cs.berkeley.edu/~demmel/cs267_Spr10/

01/24/2012 CS267 Lecture 3 2

Outline

• Overview of parallel machines (~hardware) and
programming models (~software)

• Shared memory
• Shared address space
• Message passing
• Data parallel
• Clusters of SMPs or GPUs
• Grid

• Note: Parallel machine may or may not be tightly
coupled to programming model

• Historically, tight coupling
• Today, portability is important

01/24/2012 CS267 Lecture 3 3

A
ge
ne
ric
pa
ral
lel
ar
ch
ite
ct
ur
e

Proc

Interconnection Network

• Where is the memory physically located?
• Is it connect directly to processors?
• What is the connectivity of the network?

Memory

Proc
Proc

Proc

Proc Proc

Memory
Memory

Memory Memory

01/24/2012 CS267 Lecture 3 4

Parallel Programming Models

• Programming model is made up of the languages and
libraries that create an abstract view of the machine

• Control
• How is parallelism created?
• What orderings exist between operations?

• Data
• What data is private vs. shared?
• How is logically shared data accessed or communicated?

• Synchronization
• What operations can be used to coordinate parallelism?
• What are the atomic (indivisible) operations?

• Cost
• How do we account for the cost of each of the above?

01/24/2012 CS267 Lecture 3 5

Simple Example

• Consider applying a function f to the elements
of an array A and then computing its sum:

• Questions:
• Where does A live? All in single memory?

Partitioned?
• What work will be done by each processors?
• They need to coordinate to get a single result, how?

∑
−

=

1

0

])[(
n

i

iAf

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

01/24/2012 CS267 Lecture 3 6

Programming Model 1: Shared Memory

• Program is a collection of threads of control.
• Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables
• Also a set of shared variables, e.g., static variables, shared common

blocks, or global heap.
• Threads communicate implicitly by writing and reading shared

variables.
• Threads coordinate by synchronizing on shared variables

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

01/24/2012 CS267 Lecture 3 7

Simple Example

• Shared memory strategy:
• small number p << n=size(A) processors
• attached to single memory

• Parallel Decomposition:
• Each evaluation and each partial sum is a task.

• Assign n/p numbers to each of p procs
• Each computes independent “private” results and partial sum.
• Collect the p partial sums and compute a global sum.

Two Classes of Data:
• Logically Shared

• The original n numbers, the global sum.

• Logically Private
• The individual function evaluations.
• What about the individual partial sums?

∑
−

=

1

0

])[(
n

i

iAf

01/24/2012 CS267 Lecture 3 8

Shared Memory “Code” for Computing a Sum

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

• What is the problem with this program?

• A race condition or data race occurs when:
- Two processors (or two threads) access the same

variable, and at least one does a write.
- The accesses are concurrent (not synchronized) so

they could happen simultaneously

fork(sum,a[0:n/2-1]);
sum(a[n/2,n-1]);

01/24/2012 CS267 Lecture 3 9

Shared Memory “Code” for Computing a Sum

Thread 1
 ….
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

Thread 2
 …
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

static int s = 0;

• Assume A = [3,5], f(x) = x2, and s=0 initially

• For this program to work, s should be 32 + 52 = 34 at the end
• but it may be 34,9, or 25

• The atomic operations are reads and writes
• Never see ½ of one number, but += operation is not atomic
• All computations happen in (private) registers

9 25
0 0
9 25

259

3 5A= f (x) = x2

01/24/2012 CS267 Lecture 3 10

Improved Code for Computing a Sum

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])

 s = s +local_s2

static int s = 0;

• Since addition is associative, it’s OK to rearrange order
• Most computation is on private variables

- Sharing frequency is also reduced, which might improve speed
- But there is still a race condition on the update of shared s
- The race condition can be fixed by adding locks (only one

thread can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Why not do lock
Inside loop?

01/24/2012 CS267 Lecture 3 11

Machine Model 1a: Shared Memory

P1

bus

$

memory

• Processors all connected to a large shared memory.
• Typically called Symmetric Multiprocessors (SMPs)
• SGI, Sun, HP, Intel, IBM SMPs (nodes of Millennium, SP)
• Multicore chips, except that all caches are shared

• Difficulty scaling to large numbers of processors
• <= 32 processors typical

• Advantage: uniform memory access (UMA)
• Cost: much cheaper to access data in cache than main memory.

P2

$

Pn

$

Note: $ = cache

shared $

01/24/2012 CS267 Lecture 3 12

Problems Scaling Shared Memory Hardware

• Why not put more processors on (with larger memory?)
• The memory bus becomes a bottleneck
• Caches need to be kept coherent

• Example from a Parallel Spectral Transform Shallow
Water Model (PSTSWM) demonstrates the problem

• Experimental results (and slide) from Pat Worley at ORNL
• This is an important kernel in atmospheric models

• 99% of the floating point operations are multiplies or adds,
which generally run well on all processors

• But it does sweeps through memory with little reuse of
operands, so uses bus and shared memory frequently

• These experiments show performance per processor, with
one “copy” of the code running independently on varying
numbers of procs

• The best case for shared memory: no sharing
• But the data doesn’t all fit in the registers/cache

01/24/2012 CS267 Lecture 3 13From Pat Worley, ORNL

Example: Problem in Scaling Shared Memory

• Performance degradation
is a “smooth” function of
the number of processes.

• No shared data between
them, so there should be
perfect parallelism.

• (Code was run for a 18
vertical levels with a
range of horizontal
sizes.)

01/24/2012 CS267 Lecture 3 14

Machine Model 1b: Multithreaded Processor

• Multiple thread “contexts” without full processors
• Memory and some other state is shared
• Sun Niagra processor (for servers)

• Up to 64 threads all running simultaneously (8 threads x 8 cores)
• In addition to sharing memory, they share floating point units
• Why? Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

01/24/2012 CS267 Lecture 3 15

Eldorado Processor (logical view)

Source: John Feo, Cray

i = n

i = 3

i = 2

i = 1

.
 .
 .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

.
 .
 .

Su b-
problem

B
Subproblem A

Serial
Code

Programs
running in
para lle l

Concurrent
threads o f
computation

Multithreaded
across
multip le
processors

.

01/24/2012 CS267 Lecture 3 16

Machine Model 1c: Distributed Shared Memory

• Memory is logically shared, but physically distributed
• Any processor can access any address in memory
• Cache lines (or pages) are passed around machine

• SGI is canonical example (+ research machines)
• Scales to 512 (SGI Altix (Columbia) at NASA/Ames)
• Limitation is cache coherency protocols – how to

keep cached copies of the same address consistent

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages)
must be large to
amortize overhead

 locality still critical
to performance

01/24/2012

Review so far and plan for Lecture 3

Programming Models Machine Models

CS267 Lecture 3 17

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

01/24/2012

Review so far and plan for Lecture 3

Programming Models Machine Models

CS267 Lecture 3 18

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

01/24/2012 CS267 Lecture 3 19

Programming Model 2: Message Passing
• Program consists of a collection of named processes.

• Usually fixed at program startup time
• Thread of control plus local address space -- NO shared data.
• Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs
• Coordination is implicit in every communication event.
• MPI (Message Passing Interface) is the most commonly used SW

PnP1P0

y = ..s ...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

01/24/2012 CS267 Lecture 3 20

Computing s = A[1]+A[2] on each processor
° First possible solution – what could go wrong?

Processor 1
 xlocal = A[1]
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xlocal = A[2]
 receive xremote, proc1
 send xlocal, proc1
 s = xlocal + xremote

° Second possible solution

Processor 1
 xlocal = A[1]
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xlocal = A[2]
 send xlocal, proc1
 receive xremote, proc1
 s = xlocal + xremote

° If send/receive acts like the telephone system? The post office?

° What if there are more than 2 processors?

01/24/2012 CS267 Lecture 3 21

MPI has become the de facto standard for parallel
computing using message passing
Pros and Cons of standards

• MPI created finally a standard for applications
development in the HPC community → portability

• The MPI standard is a least common denominator
building on mid-80s technology, so may discourage
innovation

Programming Model reflects hardware!

“I am not sure how I will program a Petaflops computer,
but I am sure that I will need MPI somewhere” – HDS 2001

MPI – the de facto standard

01/24/2012 CS267 Lecture 3 22

Machine Model 2a: Distributed Memory

• Cray XT4, XT 5
• PC Clusters (Berkeley NOW, Beowulf)
• Hopper, Franklin, IBM SP-3, Millennium, CITRIS are

distributed memory machines, but the nodes are SMPs.
• Each processor has its own memory and cache but

cannot directly access another processor’s memory.
• Each “node” has a Network Interface (NI) for all

communication and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

01/24/2012 CS267 Lecture 3 23

PC Clusters: Contributions of Beowulf

• An experiment in parallel computing systems (1994)

• Established vision of low cost, high end computing

• Demonstrated effectiveness of PC clusters for
some (not all) classes of applications

• Provided networking software

• Conveyed findings to broad community (great PR)

• Tutorials and book
• Design standard to rally
 community!

• Standards beget:
 books, trained people,
 software … virtuous cycle

Adapted from Gordon Bell, presentation at Salishan 2000

01/24/2012 CS267 Lecture 3 24

Tflop/s and Pflop/s Clusters (2009 data)

The following are examples of clusters configured out of
separate networks and processor components

• About 82% of Top 500 are clusters (Nov 2009, up from
72% in 2005),

• 4 of top 10

• IBM Cell cluster at Los Alamos (Roadrunner) is #2
• 12,960 Cell chips + 6,948 dual-core AMD Opterons;

• 129600 cores altogether

• 1.45 PFlops peak, 1.1PFlops Linpack, 2.5MWatts
• Infiniband connection network

• For more details use “database/sublist generator” at www.top500.org

01/24/2012 CS267 Lecture 4 25

Machine Model 2b: Internet/Grid Computing
• SETI@Home: Running on 500,000 PCs

• ~1000 CPU Years per Day
• 485,821 CPU Years so far

• Sophisticated Data & Signal Processing Analysis
• Distributes Datasets from Arecibo Radio Telescope

Next Step-
Allen Telescope Array

Google
 “volunteer computing”
 or “BOINC”

mailto:SETI@Home

01/24/2012 CS267 Lecture 3 26

Programming Model 2a: Global Address Space

• Program consists of a collection of named threads.
• Usually fixed at program startup time
• Local and shared data, as in shared memory model
• But, shared data is partitioned over local processes
• Cost models says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran
• Global Address Space programming is an intermediate

point between message passing and shared memory

PnP1P0 s[myThread] = ...

y = ..s[i] ...
i: 1 i: 5 Private

memory

Shared memory

i: 8

s[0]: 26 s[1]: 32 s[n]: 27

01/24/2012 CS267 Lecture 3 27

Machine Model 2c: Global Address Space
• Cray T3D, T3E, X1, and HP Alphaserver cluster
• Clusters built with Quadrics, Myrinet, or Infiniband
• The network interface supports RDMA (Remote Direct

Memory Access)
• NI can directly access memory without interrupting the CPU
• One processor can read/write memory with one-sided

operations (put/get)
• Not just a load/store as on a shared memory machine

• Continue computing while waiting for memory op to finish

• Remote data is typically not cached locally

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
Global address
space may be
supported in
varying degrees

01/24/2012

Review so far and plan for Lecture 3

Programming Models Machine Models

CS267 Lecture 3 28

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

01/24/2012 CS267 Lecture 3 29

Programming Model 3: Data Parallel

• Single thread of control consisting of parallel operations.
• A = B+C could mean add two arrays in parallel

• Parallel operations applied to all (or a defined subset) of a
data structure, usually an array

• Communication is implicit in parallel operators
• Elegant and easy to understand and reason about
• Coordination is implicit – statements executed

synchronously
• Similar to Matlab language for array operations

• Drawbacks:
• Not all problems fit this model
• Difficult to map onto coarse-grained machinesA:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

01/24/2012 CS267 Lecture 3 30

Machine Model 3a: SIMD System
• A large number of (usually) small processors.

• A single “control processor” issues each instruction.
• Each processor executes the same instruction.
• Some processors may be turned off on some instructions.

• Originally machines were specialized to scientific computing,
few made (CM2, Maspar)

• Programming model can be implemented in the compiler
• mapping n-fold parallelism to p processors, n >> p, but it’s hard

(e.g., HPF)

interconnect

P1

memory

NI
. . .

control processor

P1

memory

NI P1

memory

NI P1

memory

NI P1

memory

NI

01/24/2012 CS267 Lecture 3 31

Machine Model 3b: Vector Machines

• Vector architectures are based on a single processor
• Multiple functional units
• All performing the same operation
• Instructions may specific large amounts of parallelism (e.g., 64-

way) but hardware executes only a subset in parallel

• Historically important
• Overtaken by MPPs in the 90s

• Re-emerging in recent years
• At a large scale in the Earth Simulator (NEC SX6) and Cray X1
• At a small scale in SIMD media extensions to microprocessors

• SSE, SSE2 (Intel: Pentium/IA64)
• Altivec (IBM/Motorola/Apple: PowerPC)
• VIS (Sun: Sparc)

• At a larger scale in GPUs

• Key idea: Compiler does some of the difficult work of finding
parallelism, so the hardware doesn’t have to

01/24/2012 CS267 Lecture 3 32

Vector Processors

• Vector instructions operate on a vector of elements
• These are specified as operations on vector registers

• A supercomputer vector register holds ~32-64 elts
• The number of elements is larger than the amount of parallel

hardware, called vector pipes or lanes, say 2-4

• The hardware performs a full vector operation in
• #elements-per-vector-register / #pipes

r1 r2

r3

+ +

 … vr2 … vr1

 … vr3

(logically, performs # elts
adds in parallel)

 … vr2 … vr1

(actually, performs
#pipes adds in parallel)

++ ++ ++

01/24/2012 CS267 Lecture 3 33

Cray X1: Parallel Vector
Architecture
Cray combines several technologies in the X1
• 12.8 Gflop/s Vector processors (MSP)
• Shared caches (unusual on earlier vector machines)
• 4 processor nodes sharing up to 64 GB of memory
• Single System Image to 4096 Processors
• Remote put/get between nodes (faster than MPI)

01/24/2012 CS267 Lecture 3 34

Earth Simulator Architecture

Parallel Vector
Architecture

• High speed (vector)
processors

• High memory
bandwidth (vector
architecture)

• Fast network (new
crossbar switch)

Rearranging commodity
parts can’t match this
performance

01/24/2012

Review so far and plan for Lecture 3

Programming Models Machine Models

CS267 Lecture 3 35

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

01/24/2012 CS267 Lecture 3 36

Machine Model 4: Hybrid machines

• Multicore/SMPs are a building block for a larger machine
with a network

• Common names:
• CLUMP = Cluster of SMPs

• Many modern machines look like this:
• Millennium, IBM SPs, NERSC Franklin, Hopper

• What is an appropriate programming model #4 ???
• Treat machine as “flat”, always use message

passing, even within SMP (simple, but ignores an
important part of memory hierarchy).

• Shared memory within one SMP, but message
passing outside of an SMP.

• Graphics or game processors may also be building block

01/24/2012 CS267 Lecture 3 37

Programming Model 4: Hybrids

• Programming models can be mixed
• Message passing (MPI) at the top level with shared

memory within a node is common
• New DARPA HPCS languages mix data parallel and

threads in a global address space
• Global address space models can (often) call

message passing libraries or vice verse
• Global address space models can be used in a

hybrid mode
• Shared memory when it exists in hardware
• Communication (done by the runtime system) otherwise

• For better or worse
• Supercomputers often programmed this way for peak

performance

01/24/2012

Review so far and plan for Lecture 3

Programming Models Machine Models

CS267 Lecture 3 38

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/24/2012

What about GPU and Cloud?

• GPU’s big performance opportunity is data parallelism
• Most programs have a mixture of highly parallel operations, and

some not so parallel
• GPUs provide a threaded programming model (CUDA) for data

parallelism to accommodate both
• Current research attempting to generalize programming model

to other architectures, for portability (OpenCL)
• Guest lecture later in the semester

• Cloud computing lets large numbers of people easily
share O(105) machines

• MapReduce was first programming model: data parallel on
distributed memory

• More flexible models (Hadoop…) invented since then
• Guest lecture later in the semester

CS267 Lecture 3 39

01/24/2012 CS267 Lecture 3 40

Lessons from Lecture 3

• Three basic conceptual models
• Shared memory
• Distributed memory
• Data parallel
and hybrids of these machines

• All of these machines rely on dividing up work into
parts that are:

• Mostly independent (little synchronization)
• Have good locality (little communication)

• Next Lecture: How to identify parallelism and
locality in applications

01/24/2012

Class Update (2011)

• Class makeup is very diverse
• 10 CS Grad students
• 13 Application areas: 4 Nuclear, 3 EECS, 1 each for IEOR,

ChemE, Civil, Physics, Chem, Biostat, MechEng, Materials
• Undergrad: 7 (not all majors shown, mostly CS)
• Concurrent enrollment: 6 (majors not shown)

• Everyone is an expert different parts of course
• Some lectures are broad (lecture 1)
• Some go into details (lecture 2)

• Lecture plan change:
• Reorder lectures 4+5 with lectures 6+7
• After today: 2 lectures on “Sources of Parallelism” in various

science engineering simulations, Jim will lecture
• Today: finish practicalities of tuning code (slide 66 of lecture 2

slides) followed by high level overview of parallel machines

CS267 Lecture 3 41

01/24/2012 CS267 Lecture 3 42

12.8 Gflops (64 bit)

S

VV

S

VV

S

VV

S

VV

0.5 MB
$

0.5 MB
$

0.5 MB
$

0.5 MB
$

25.6 Gflops (32 bit)

To local memory and network:

2 MB Ecache

At frequency of
400/800 MHz

51 GB/s

25-41 GB/s

25.6 GB/s
12.8 - 20.5 GB/s

custom
blocks

Cray X1 Node

Figure source J. Levesque, Cray

• Cray X1 builds a larger “virtual vector”, called an MSP
• 4 SSPs (each a 2-pipe vector processor) make up an MSP
• Compiler will (try to) vectorize/parallelize across the MSP

	CS 267: Introduction to Parallel Machines and Programming Models Lecture 3
	Outline
	A generic parallel architecture
	Parallel Programming Models
	Simple Example
	Programming Model 1: Shared Memory
	Slide 7
	Shared Memory “Code” for Computing a Sum
	Slide 9
	Improved Code for Computing a Sum
	Machine Model 1a: Shared Memory
	Problems Scaling Shared Memory Hardware
	PowerPoint Presentation
	Machine Model 1b: Multithreaded Processor
	Eldorado Processor (logical view)
	Machine Model 1c: Distributed Shared Memory
	Review so far and plan for Lecture 3
	Slide 18
	Programming Model 2: Message Passing
	Computing s = A[1]+A[2] on each processor
	MPI – the de facto standard
	Machine Model 2a: Distributed Memory
	PC Clusters: Contributions of Beowulf
	Tflop/s and Pflop/s Clusters (2009 data)
	Machine Model 2b: Internet/Grid Computing
	Programming Model 2a: Global Address Space
	Machine Model 2c: Global Address Space
	Slide 28
	Programming Model 3: Data Parallel
	Machine Model 3a: SIMD System
	Machine Model 3b: Vector Machines
	Vector Processors
	Cray X1: Parallel Vector Architecture
	Earth Simulator Architecture
	Slide 35
	Machine Model 4: Hybrid machines
	Programming Model 4: Hybrids
	Slide 38
	What about GPU and Cloud?
	Lessons from Lecture 3
	Class Update (2011)
	Slide 42

