CS267 Lecture 2 Single Processor Machines: Memory Hierarchies and Processor Features

Case Study: Tuning Matrix Multiply

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/

Motivation

- Most applications run at < 10% of the "peak" performance of a system
 - Peak is the maximum the hardware can physically execute
- Much of this performance is lost on a single processor, i.e., the code running on one processor often runs at only 10-20% of the processor peak
- Most of the single processor performance loss is in the memory system
 - Moving data takes much longer than arithmetic and logic
- To understand this, we need to look under the hood of modern processors
 - For today, we will look at only a single "core" processor
 - These issues will exist on processors within any parallel computer

Possible conclusions to draw from today's lecture

- "Computer architectures are fascinating, and I really want to understand why apparently simple programs can behave in such complex ways!"
- "I want to learn how to design algorithms that run really fast no matter how complicated the underlying computer architecture."
- "I hope that most of the time I can use fast software that someone else has written and hidden all these details from me so I don't have to worry about them!"
- All of the above, at different points in time

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

<u>Idealized Uniprocessor Model</u>

- Processor names bytes, words, etc. in its address space
 - These represent integers, floats, pointers, arrays, etc.
- Operations include
 - Read and write into very fast memory called registers
 - Arithmetic and other logical operations on registers
- Order specified by program
 - Read returns the most recently written data
 - Compiler and architecture translate high level expressions into "obvious" lower level instructions

- Hardware executes instructions in order specified by compiler
- Idealized Cost
 - Each operation has roughly the same cost (read, write, add, multiply, etc.)

01/19/2012 CS267 - Lecture 2

Uniprocessors in the Real World

Real processors have

- registers and caches
 - small amounts of fast memory
 - store values of recently used or nearby data
 - different memory ops can have very different costs
- parallelism
 - multiple "functional units" that can run in parallel
 - different orders, instruction mixes have different costs
- pipelining
 - a form of parallelism, like an assembly line in a factory
- Why is this your problem?
 - In theory, compilers and hardware "understand" all this and can optimize your program; in practice they don't.
 - They won't know about a different algorithm that might be a much better "match" to the processor

In theory there is no difference between theory and practice.

But in practice there is.

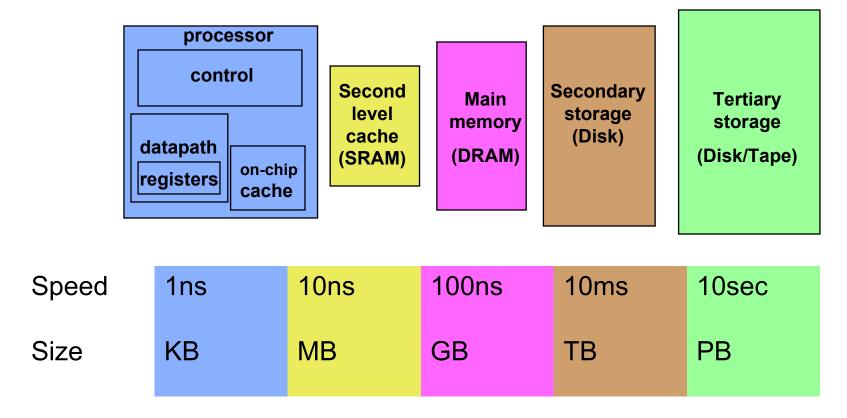
-J. van de Snepscheut

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Temporal and spatial locality
 - Basics of caches
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

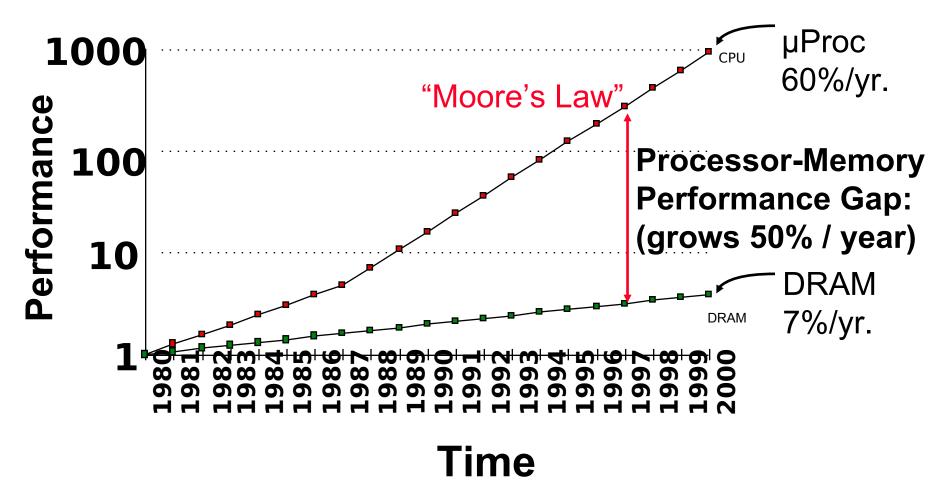
Memory Hierarchy

- Most programs have a high degree of locality in their accesses
 - spatial locality: accessing things nearby previous accesses
 - temporal locality: reusing an item that was previously accessed
- Memory hierarchy tries to exploit locality to improve average



Processor-DRAM Gap (latency)

- Memory hierarchies are getting deeper
 - Processors get faster more quickly than memory



Approaches to Handling Memory Latency

- Bandwidth has improved more than latency
 - 23% per year vs 7% per year
- Approach to address the memory latency problem
 - Eliminate memory operations by saving values in small, fast memory (cache) and reusing them
 - need temporal locality in program
 - Take advantage of better bandwidth by getting a chunk of memory and saving it in small fast memory (cache) and using whole chunk
 - need spatial locality in program
 - Take advantage of better bandwidth by allowing processor to issue multiple reads to the memory system at once
 - concurrency in the instruction stream, e.g. load whole array, as in vector processors; or prefetching
 - Overlap computation & memory operations
 - prefetching

Cache Basics

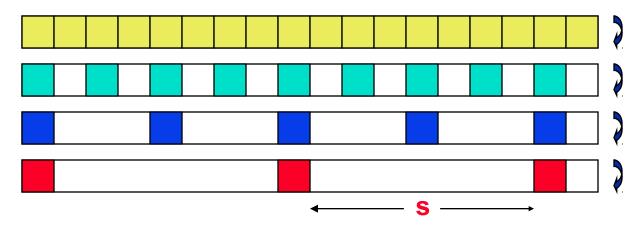
- Cache is fast (expensive) memory which keeps copy of data in main memory; it is hidden from software
 - Simplest example: data at memory address xxxxx1101 is stored at cache location 1101
- Cache hit: in-cache memory access—cheap
- Cache miss: non-cached memory access—expensive
 - Need to access next, slower level of cache
- Cache line length: # of bytes loaded together in one entry
 - Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are
- Associativity
 - direct-mapped: only 1 address (line) in a given range in cache
 - Data stored at address xxxxx1101 stored at cache location 1101, in 16 word cache
 - n-way: $n \ge 2$ lines with different addresses can be stored
 - Up to n ≤ 16 words with addresses xxxxx1101 can be stored at cache location 1101 (so cache can store 16n words)

Why Have Multiple Levels of Cache?

- On-chip vs. off-chip
 - On-chip caches are faster, but limited in size
- A large cache has delays
 - Hardware to check longer addresses in cache takes more time
 - Associativity, which gives a more general set of data in cache, also takes more time
- Some examples:
 - Cray T3E eliminated one cache to speed up misses
 - · IBM uses a level of cache as a "victim cache" which is cheaper
- There are other levels of the memory hierarchy
 - Register, pages (TLB, virtual memory), ...
 - And it isn't always a hierarchy

Experimental Study of Memory (Membench)

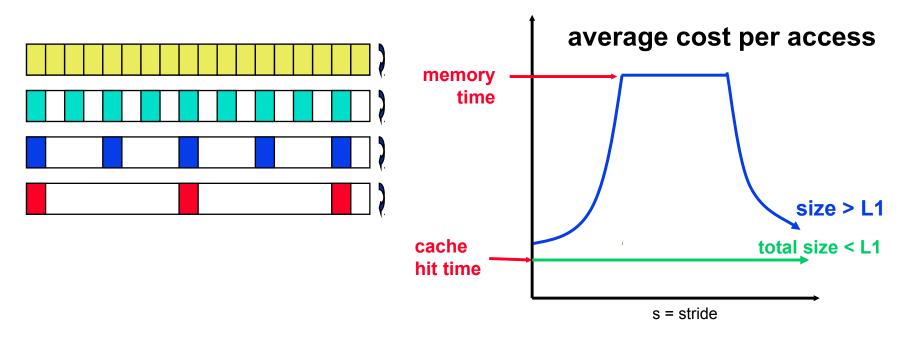
Microbenchmark for memory system performance



for array A of length L from 4KB to 8MB by 2x for stride s from 4 Bytes (1 word) to L/2 by 2x time the following loop (repeat many times and average) for i from 0 to L by s load A[i] from memory (4 Bytes)

1 experiment

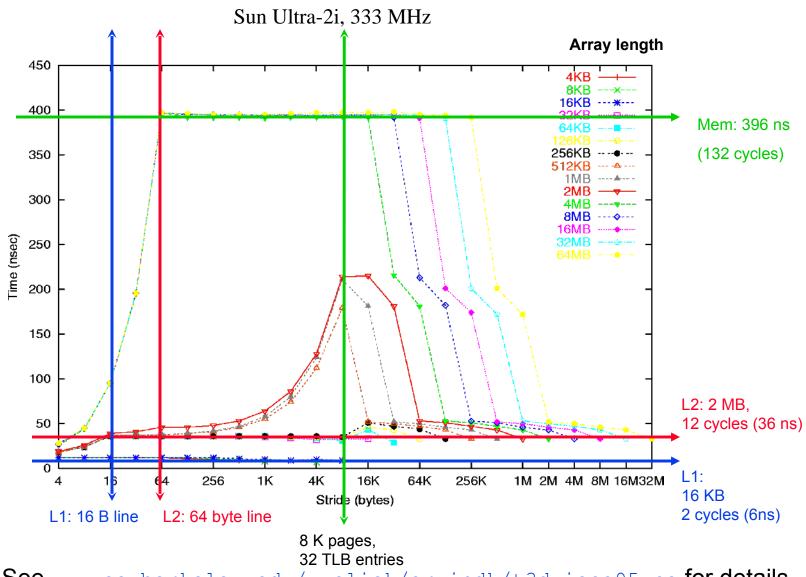
Membench: What to Expect



- Consider the average cost per load
 - Plot one line for each array length, time vs. stride
 - Small stride is best: if cache line holds 4 words, at most ¼ miss
 - If array is smaller than a given cache, all those accesses will hit (after the first run, which is negligible for large enough runs)
 - Picture assumes only one level of cache
 - Values have gotten more difficult to measure on modern procs

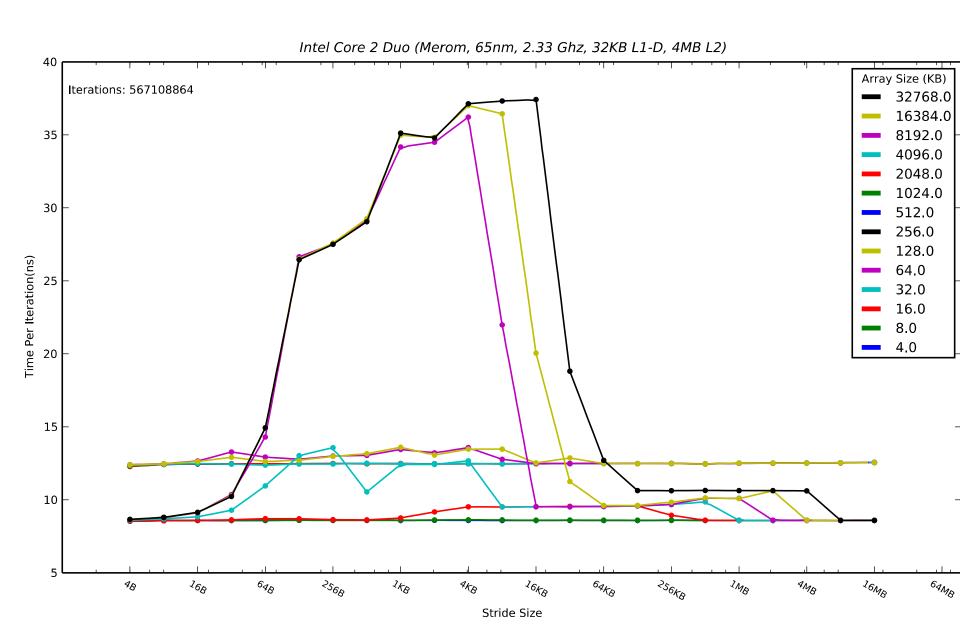
01/19/2012 CS267 - Lecture 2

Memory Hierarchy on a Sun Ultra-2i

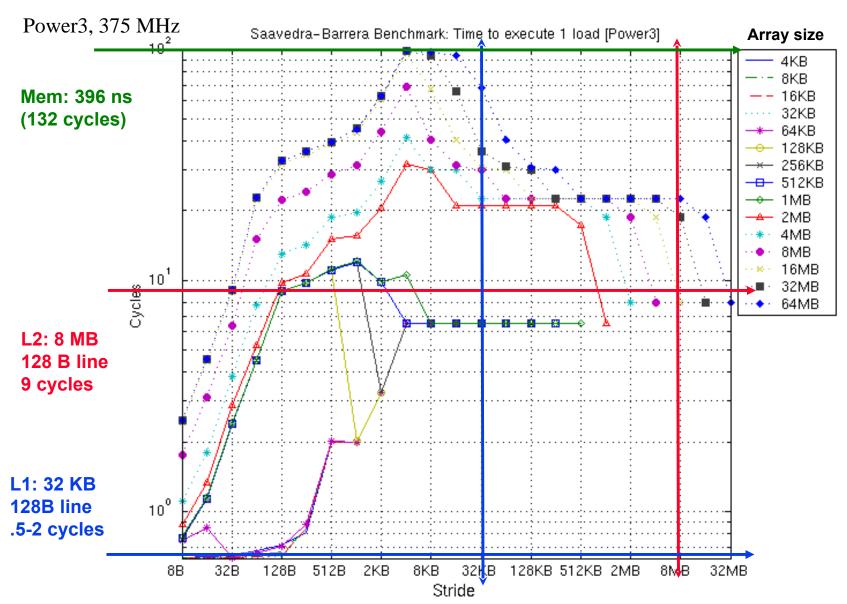


See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details 01/19/2012 CS267-Lecture 2

Memory Hierarchy on an Intel Core 2 Duo



Memory Hierarchy on a Power3 (Seaborg)



Stanza Triad

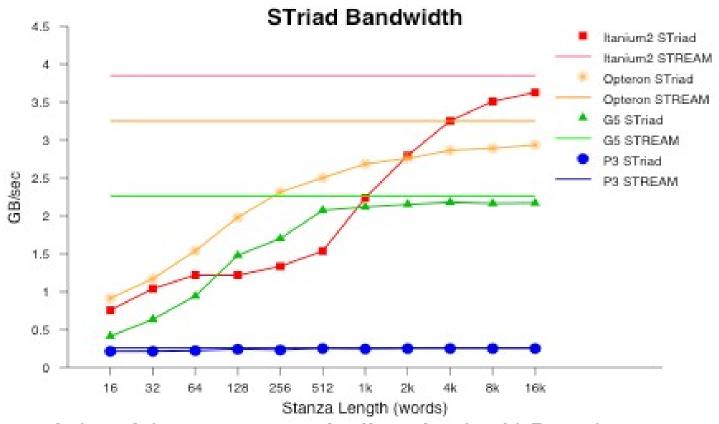
- Even smaller benchmark for prefetching
- Derived from STREAM Triad
- Stanza (L) is the length of a unit stride run

```
while i < arraylength
  for each L element stanza
   A[i] = scalar * X[i] + Y[i]
  skip k elements</pre>
```



Stanza Triad

F



- This graph (x-axis) starts at a cache line size (>=16 Bytes)
- If cache locality was the only thing that mattered, we would expect
 - Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
- Prefetching gets the next cache line (pipelining) while using the current one
 - This does not "kick in" immediately, so performance depends on L
 - http://crd-legacy.lbl.gov/~oliker/papers/msp_2005.pdf

Lessons

- Actual performance of a simple program can be a complicated function of the architecture
 - Slight changes in the architecture or program change the performance significantly
 - To write fast programs, need to consider architecture
 - True on sequential or parallel processor
 - We would like simple models to help us design efficient algorithms
- We will illustrate with a common technique for improving cache performance, called blocking or tiling
 - Idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache

Outline

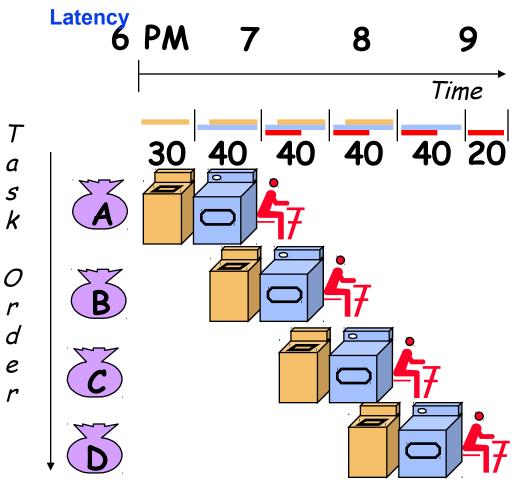
- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
 - Hidden from software (sort of)
 - Pipelining
 - SIMD units
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

01/19/2012 CS267 - Lecture 2 22

What is Pipelining?

Dave Patterson's Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min) = 90 min



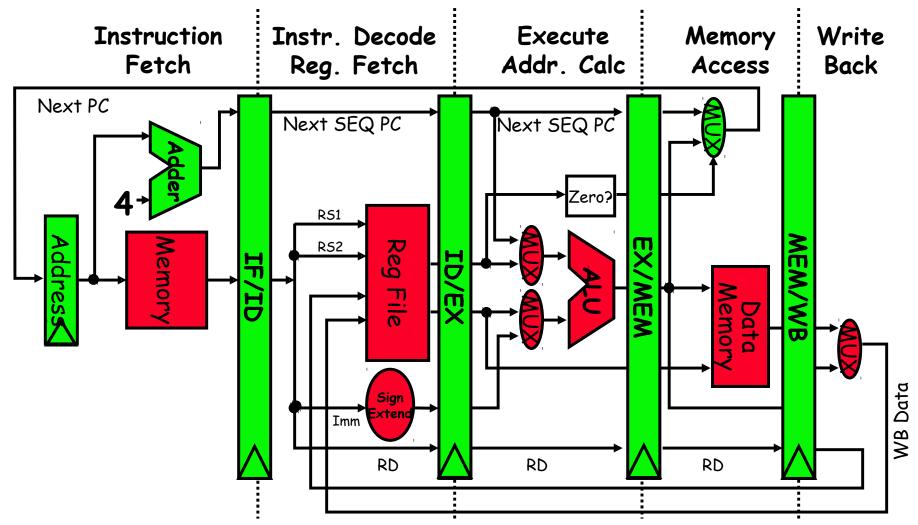
- In this example:
 - Sequential execution takes
 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.5 hours
- Bandwidth = loads/hour
- BW = 4/6 I/h w/o pipelining
- BW = 4/3.5 I/h w pipelining
- BW <= 1.5 l/h w pipelining, more total loads
- Pipelining helps bandwidth but not latency (90 min)
- Bandwidth limited by slowest pipeline stage
- Potential speedup = Number pipe stages

01/19/2012

CS267 - Lecture 2

Example: 5 Steps of MIPS Datapath

Figure 3.4, Page 134, CA:AQA 2e by Patterson and Hennessy



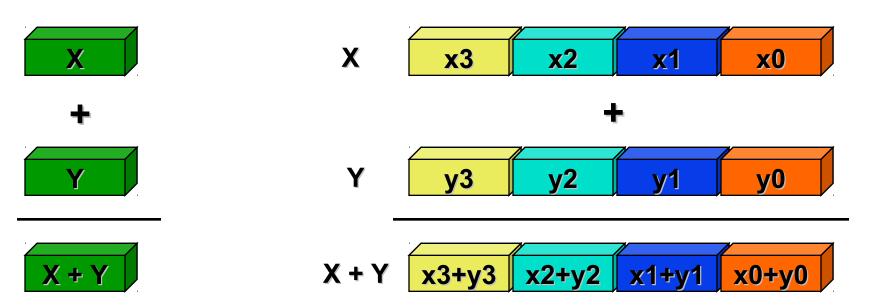
- Pipelining is also used within arithmetic units
 - a fp multiply may have latency 10 cycles, but throughput of 1/cycle

SIMD: Single Instruction, Multiple

Data

- Scalar processing
 - traditional mode
 - one operation produces one result

- with SSE / SSE2
- SSE = streaming SIMD extensions
- one operation produces multiple results

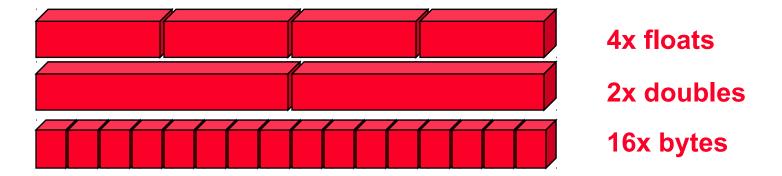


Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

CS267 - Lecture 2 25

SSE / SSE2 SIMD on Intel

SSE2 data types: anything that fits into 16 bytes, e.g.,



- Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel
- Challenges:
 - Need to be contiguous in memory and aligned
 - Some instructions to move data around from one part of register to another
- Similar on GPUs, vector processors (but many more simultaneous operations)

01/19/2012 CS267 - Lecture 2 26

What does this mean to you?

- In addition to SIMD extensions, the processor may have other special instructions
 - Fused Multiply-Add (FMA) instructions:

$$x = y + c * z$$

is so common some processor execute the multiply/add as a single instruction, at the same rate (bandwidth) as + or * alone

- In theory, the compiler understands all of this
 - When compiling, it will rearrange instructions to get a good "schedule" that maximizes pipelining, uses FMAs and SIMD
 - It works with the mix of instructions inside an inner loop or other block of code
- But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions ("intrinsics") or write in assembly $\ensuremath{\mathfrak{S}}$

Outline

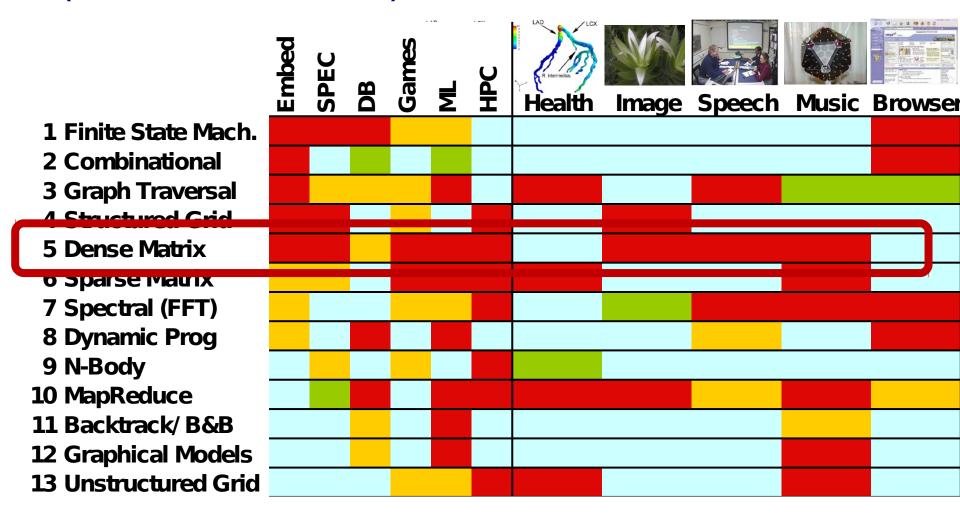
- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication
 - Simple cache model
 - Warm-up: Matrix-vector multiplication
 - Naïve vs optimized Matrix-Matrix Multiply
 - Minimizing data movement
 - Beating O(n³) operations
 - Practical optimizations (continued next time)

Why Matrix Multiplication?

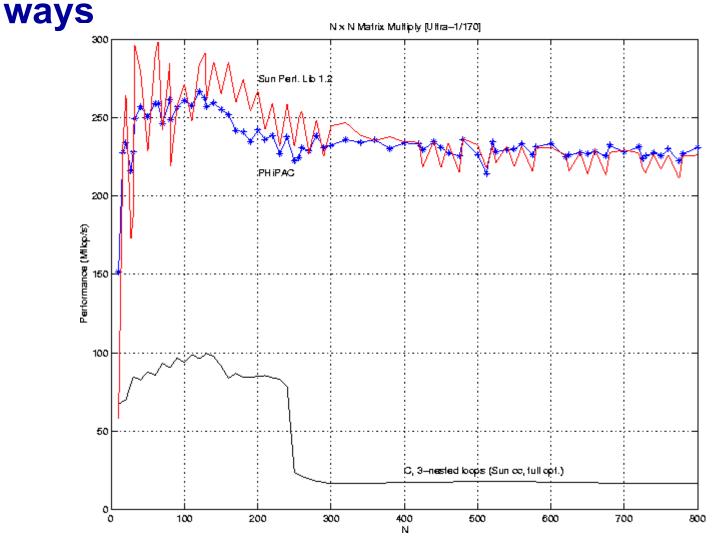
- An important kernel in many problems
 - Appears in many linear algebra algorithms
 - Bottleneck for dense linear algebra
 - One of the 7 dwarfs / 13 motifs of parallel computing
 - Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
- Optimization ideas can be used in other problems
- The best case for optimization payoffs
- The most-studied algorithm in high performance computing

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods (Red Hot → Blue Cool)



Matrix-multiply, optimized several



Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are "1-D"
- Conventions for matrix layout
 - by column, or "column major" (Fortran default); A(i,j) at A+i+j*n
 - by row, or "row major" (C default) A(i,j) at A+i*n+j

recursive (later)

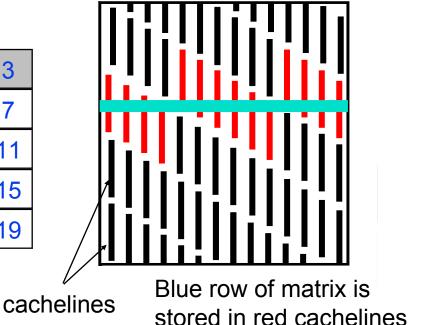
Column major

	0	5 10		15	
	1	6	11	16	
\downarrow	2	7	12	17	
	3	8	13	18	
	4	9	14	19	

Row major

0	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14	15	
16	17	18	19	

Column major matrix in memory



Column major (for now)

Figure source: Larry Carter, UCSD2

<u>Using a Simple Model of Memory to Optimize</u>

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory

 Computational
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m
 - q = f/m average number of flops per slow memory access
- Minimum possible time = f* t_f when all data in fast memory
- Actual time

•
$$f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$$

- \bullet Larger q means time closer to minimum f * $t_{\!\scriptscriptstyle f}$
 - q ≥ t_m/t_f needed to get at least half of peak speed

Machine
Balance:
Key to
machine
efficiency

Intensity: Key to

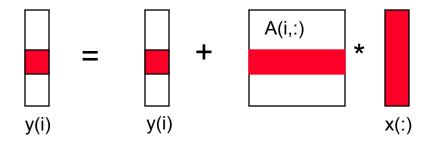
algorithm efficiency

01/19/2012 CS267 - Lecture 2 33

Warm up: Matrix-vector multiplication

{implements
$$y = y + A*x$$
}
for $i = 1:n$
for $j = 1:n$

$$y(i) = y(i) + A(i,j)*x(j)$$



Warm up: Matrix-vector multiplication

- m = number of slow memory refs = $3n + n^2$
- f = number of arithmetic operations = $2n^2$
- q = $f/m \approx 2$

Matrix-vector multiplication limited by slow memory speed

Modeling Matrix-Vector Multiplication

- Compute time for nxn = 1000x1000 matrix
- Time

•
$$f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$$

$$= 2*n^2 * t_f * (1 + t_m/t_f * 1/2)$$

- For t_f and t_m, using data from R. Vuduc's PhD (pp 351-3)
 - http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
 - For t_muse minimum-memory-latency / words-per-cache-line

	Clock	Peak	Mem Lat (Min,Max)	Linesize	t_m/t_f
	MHz	Mflop/s	cycles		Bytes	
Ultra 2i	333	667	38	66	16	24.8
Ultra 3	900	1800	28	200	32	14.0
Pentium 3	500	500	25	60	32	6.3
Pentium3N	800	800	40	60	32	10.0
Power3	375	1500	35	139	128	8.8
Power4	1300	5200	60	10000	128	15.0
Itanium1	800	3200	36	85	32	36.0
Itanium2	900	3600	11	60	64	5.5

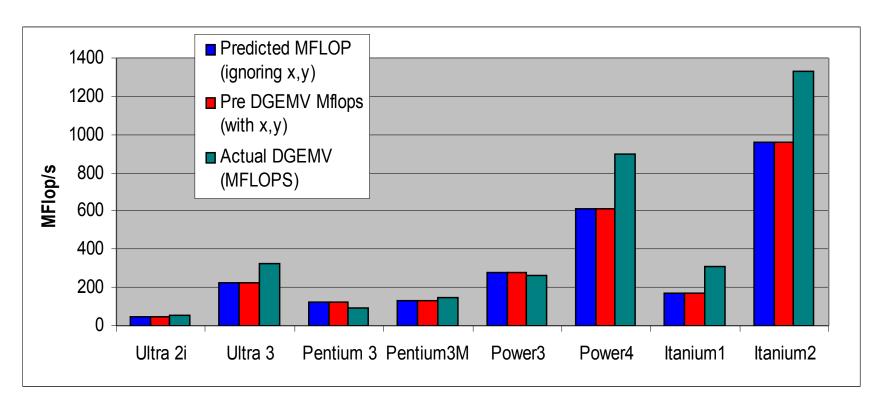
machine
balance
(q must
be at least
this for
½ peak
speed)

Simplifying Assumptions

- What simplifying assumptions did we make in this analysis?
 - Ignored parallelism in processor between memory and arithmetic within the processor
 - Sometimes drop arithmetic term in this type of analysis
 - Assumed fast memory was large enough to hold three vectors
 - Reasonable if we are talking about any level of cache
 - Not if we are talking about registers (~32 words)
 - Assumed the cost of a fast memory access is 0
 - Reasonable if we are talking about registers
 - Not necessarily if we are talking about cache (1-2 cycles for L1)
 - Memory latency is constant
- Could simplify even further by ignoring memory operations in X and Y vectors
 - Mflop rate/element = $2 / (2^* t_f + t_m)$

Validating the Model

- How well does the model predict actual performance?
 - Actual DGEMV: Most highly optimized code for the platform
- Model sufficient to compare across machines
- But under-predicting on most recent ones due to latency estimate



Naïve Matrix Multiply

```
{implements C = C + A*B}

for i = 1 to n

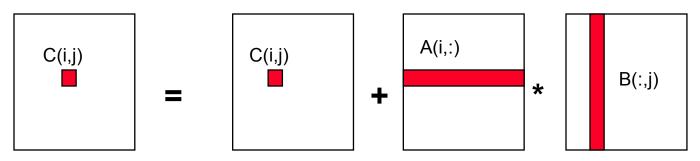
for j = 1 to n

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
```

Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

q potentially as large as $2*n^3 / 3*n^2 = O(n)$

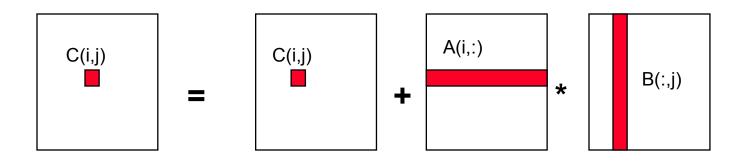


39

Naïve Matrix Multiply

01/19/2012

```
{implements C = C + A*B}
for i = 1 to n
  {read row i of A into fast memory}
  for j = 1 to n
      {read C(i,j) into fast memory}
      {read column j of B into fast memory}
      for k = 1 to n
            C(i,j) = C(i,j) + A(i,k) * B(k,j)
      {write C(i,j) back to slow memory}
```



CS267 - Lecture 2 40

Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

$$m = n^3$$
 to read each column of B n times

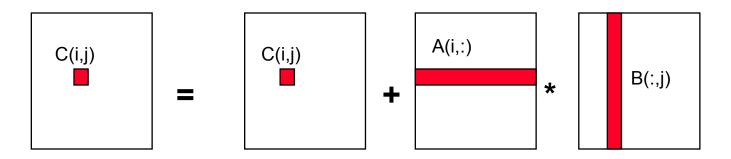
- + n² to read each row of A once
- + 2n² to read and write each element of C once

$$= n^3 + 3n^2$$

So
$$q = f/m = 2n^3/(n^3 + 3n^2)$$

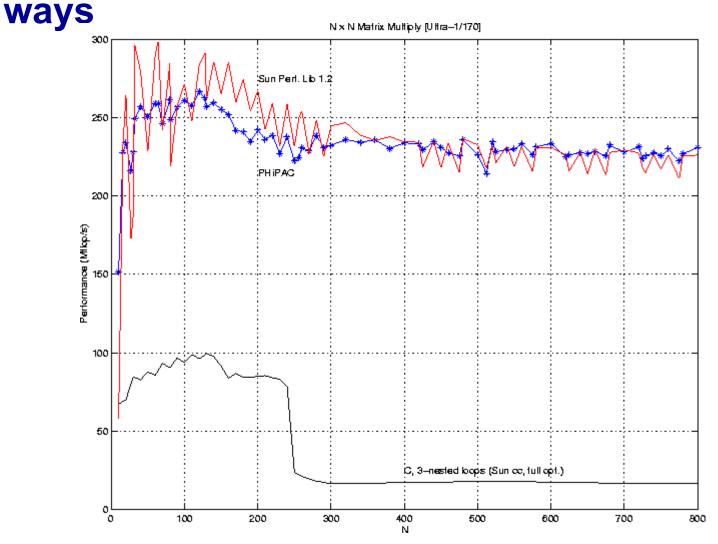
 ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B Similar for any other order of 3 loops



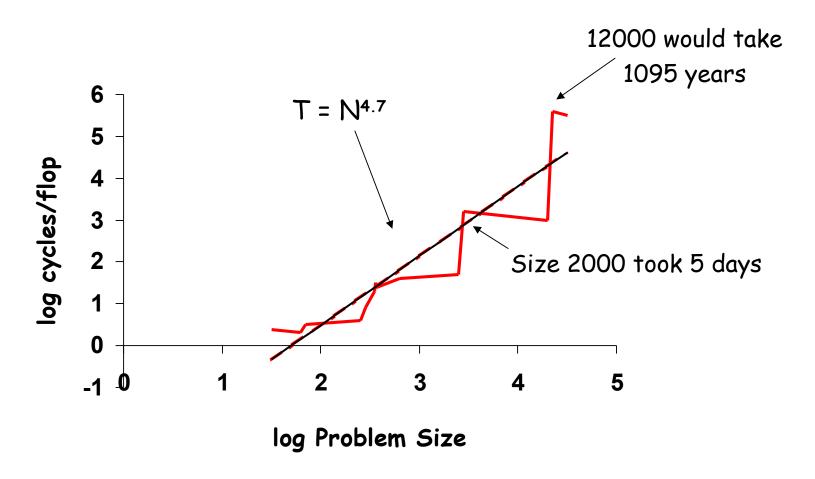
41

Matrix-multiply, optimized several



Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

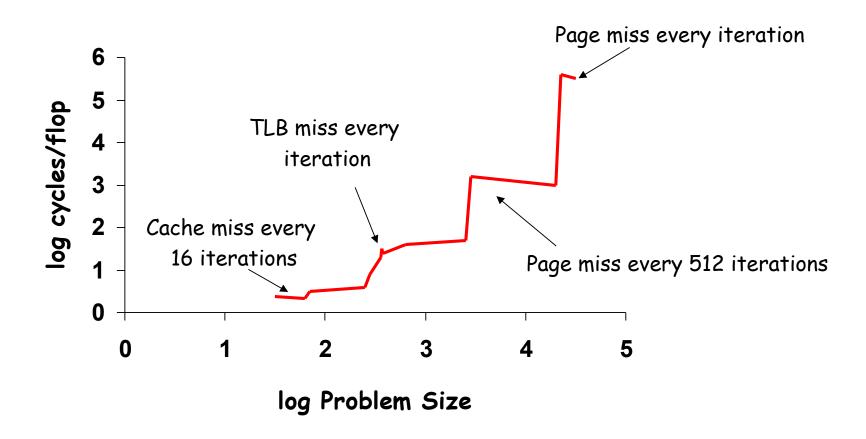
Naïve Matrix Multiply on RS/6000



O(N³) performance would have constant cycles/flop Performance looks like O(N⁴.7)

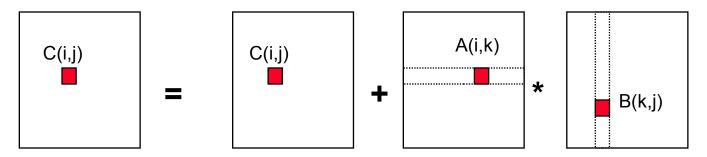
Slide source: Larry Carter, UCSD 43

Naïve Matrix Multiply on RS/6000



Blocked (Tiled) Matrix Multiply

```
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
 b=n / N is called the block size
   for i = 1 to N
     for j = 1 to N
        {read block C(i,j) into fast memory}
        for k = 1 to N
             {read block A(i,k) into fast memory}
             {read block B(k,j) into fast memory}
             C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
         {write block C(i,j) back to slow memory}
```



45

Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system So:

```
m = N*n² read each block of B N³ times (N³ * b² = N³ * (n/N)² = N*n²)

+ N*n² read each block of A N³ times

+ 2n^2 read and write each block of C once

= (2N + 2) * n^2
```

```
So computational intensity q = f / m = 2n^3 / ((2N + 2) * n^2)

\approx n / N = b for large n
```

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ≈ b

- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size M_{fast}

$$3b^2 \le M_{fast}$$
, so $q \approx b \le (M_{fast}/3)^{1/2}$

 To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

$$M_{fast} \ge 3b^2 \approx 3q^2 = 3(t_m/t_f)^2$$

- This size is reasonable for L1 cache, but not for register sets
- Note: analysis assumes it is possible to schedule the instructions perfectly

	required	
	t_m/t_f	KB
Ultra 2i	24.8	14.8
Ultra 3	14	4.7
Pentium 3	6.25	0.9
Pentium3M	10	2.4
Power3	8.75	1.8
Power4	15	5.4
Itanium1	36	31.1
Itanium2	5.5	0.7

Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each C[i,j] by applying commutativity and associativity
 - Get slightly different answers from naïve code, because of roundoff OK
- The previous analysis showed that the blocked algorithm has computational intensity:

$$q \approx b \leq (M_{fast}/3)^{1/2}$$

- There is a lower bound result that says we cannot do any better than this (using only associativity)
- Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to $q = O((M_{fast})^{1/2})$
 - #words moved between fast and slow memory = Ω (n³ / (M_{fast})^{1/2})

01/19/2012

Review of lecture 2 so far (and a look ahead)

- Applications
 - How to decompose into well-understood algorithms (and their implementations)
- Algorithms (matmul as example)
 - Need simple model of hardware to guide design, analysis: minimize accesses to slow memory
 - If lucky, theory describing "best algorithm"
- Software tools
 - How do I implement my applications and algorithms in most efficient and productive way?
- Hardware
 - Even simple programs have complicated behaviors
 - "Small" changes make execution time vary by orders of magnitude CS267 - Lecture 2

Communication lower bounds for Matmul

- Hong/Kung theorem is a lower bound on amount of data communicated by matmul
 - Number of words moved between fast and slow memory (cache and DRAM, or DRAM and disk, or ...) = Ω (n³ / M_{fast} 1/2)
- Cost of moving data may also depend on the number of "messages" into which data is packed
 - Eg: number of cache lines, disk accesses, ...
 - #messages = Ω (n³ / M_{fast} ^{3/2})
- Lower bounds extend to anything "similar enough" to 3 nested loops
 - Rest of linear algebra (solving linear systems, least squares...)
 - Dense and sparse matrices
 - Sequential and parallel algorithms, ...
- Need (more) new algorithms to attain these lower

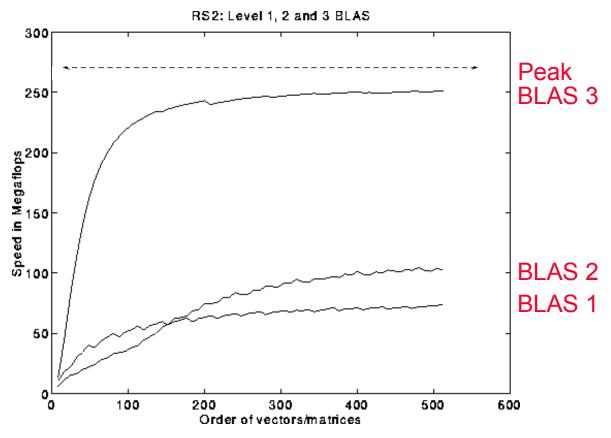
50

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s):
 - vector operations: dot product, saxpy ($y=\alpha^*x+y$), etc
 - m=2*n, f=2*n, q = f/m = computational intensity ~1 or less
 - BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - m=n^2, f=2*n^2, q~2, less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s)
 - matrix-matrix operations: matrix matrix multiply, etc
 - m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
 - See www.netlib.org/{lapack,scalapack}
 - More later in course

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops



BLAS 3 (n-by-n matrix matrix multiply) vs

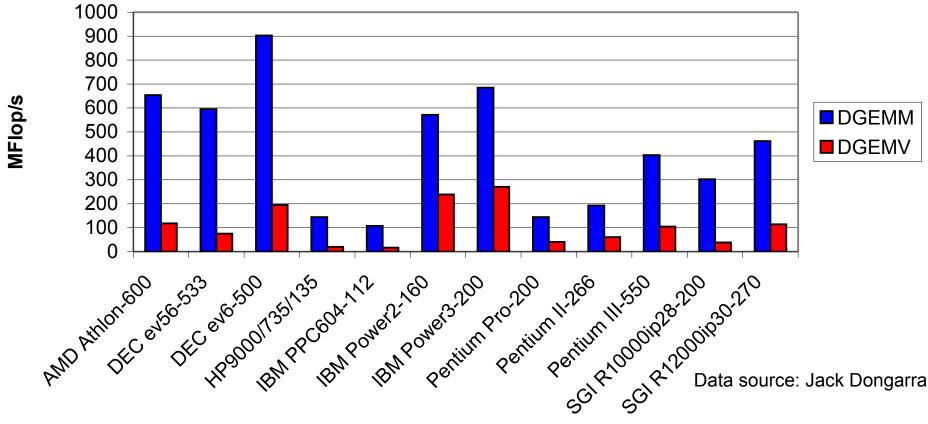
BLAS 2 (n-by-n matrix vector multiply) vs

BLAS 1 (saxpy of n vectors)

Dense Linear Algebra: BLAS2 vs. BLAS3

 BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)



01/19/2012

What if there are more than 2 levels of memory?

- Need to minimize communication between all levels
 - Between L1 and L2 cache, cache and DRAM, DRAM and disk...
- The tiled algorithm requires finding a good block size
 - Machine dependent
 - Need to "block" b x b matrix multiply in inner most loop
 - 1 level of memory ⇒3 nested loops (naïve algorithm)
 - 2 levels of memory ⇒6 nested loops
 - 3 levels of memory ⇒9 nested loops ...
- Cache Oblivious Algorithms offer an alternative
 - Treat nxn matrix multiply as a set of smaller problems
 - Eventually, these will fit in cache
 - Will minimize # words moved between every level of memory hierarchy – at least asymptotically

Recursive Matrix Multiplication (RMM) (1/2)

• C =
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$
 = A · B = $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ · $\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$
= $\begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$

- True when each A_{ij} etc 1x1 or n/2 x n/2
- For simplicity: square matrices with n = 2^m

```
func C = RMM (A, B, n)

if n = 1, C = A * B, else

{ C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2)

C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2)

C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2)

C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) }

return
```

55

Recursive Matrix Multiplication (2/2)

```
func C = RMM (A, B, n)

if n=1, C = A * B, else

{ C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2)

C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2)

C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2)

C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) }

return
```

```
A(n) = # arithmetic operations in RMM(.,.,n)

= 8 \cdot A(n/2) + 4(n/2)^2 if n > 1, else 1

= 2n^3 ... same operations as usual, in different order

M(n) = # words moved between fast, slow memory by RMM(.,.,n)

= 8 \cdot M(n/2) + 4(n/2)^2 if 3n^2 > M_{fast}, else 3n^2

= O(n^3 / (M_{fast})^{1/2} + n^2) ... same as blocked matmul

O(1/19/201)Don't need to know M_{fast} for this to work!
```

Recursion: Cache Oblivious Algorithms

- The tiled algorithm requires finding a good block size
- Cache Oblivious Algorithms offer an alternative
 - Treat nxn matrix multiply set of smaller problems
 - Eventually, these will fit in cache
- Cases for A (nxm) * B (mxp)
 - Case1: m>= max{n,p}: split A horizontally:
 - Case 2 : n>= max{m,p}: split A vertically and B horizontally
 - Case 3: p>= max{m,n}: split B vertically

$$\begin{pmatrix} A_1 \\ A_2 \\ \hline \end{bmatrix} B = \begin{pmatrix} A_1 B \\ A_2 B \\ \hline \end{bmatrix}$$
Case 1

$$(A_{1}, A_{2}) \begin{pmatrix} B_{1} \\ B_{2} \\ \dot{J} \end{pmatrix} = (A_{1}B_{1} + A_{2}B_{2})$$
Case 2
$$A(B_{1}, B_{2}) = (A_{1}B_{1}, A_{2}B_{2})$$
Case 3

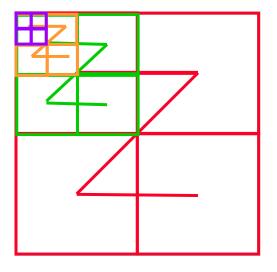
Experience with Cache-Oblivious Algorithms

- In practice, need to cut off recursion well before 1x1 blocks
 - Call "micro-kernel" on small blocks
- Implementing a high-performance Cache-Oblivious code is not easy
 - Careful attention to micro-kernel is needed
- Using fully recursive approach with highly optimized recursive micro-kernel, Pingali et al report that they never got more than 2/3 of peak.
- Issues with Cache Oblivious (recursive) approach
 - Recursive Micro-Kernels yield less performance than iterative ones using same scheduling techniques
 - Pre-fetching is needed to compete with best code: not wellunderstood in the context of Cache-Oblivious codes

Unpublished work, presented at LACSI 2006

Recursive Data Layouts

- A related idea is to use a recursive structure for the matrix
 - Improve locality with machine-independent data structure
 - Can minimize latency with multiple levels of memory hierarchy
- There are several possible recursive decompositions depending on the order of the sub-blocks
- This figure shows Z-Morton Ordering ("space filling curve")
- See papers on "cache oblivious algorithms" and "recursive layouts"
 - Gustavson, Kagstrom, et al, SIAM Review, 2004



Advantages:

 the recursive layout works well for any cache size

Disadvantages:

- The index calculations to find A[i,j] are expensive
- Implementations switch to column-major for small sizes

CS267 - Lecture 2

Strassen's Matrix

Multiply

- The traditional algorithm (with or without tiling) has O(n³) flops
- Strassen discovered an algorithm with asymptotically lower flops
 - $O(n^{2.81})$
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

```
Let M = m11 m12 all a12 b11 b12 b21 b22

Let p1 = (a12 - a22) * (b21 + b22) p5 = a11 * (b12 - b22)

p2 = (a11 + a22) * (b11 + b22) p6 = a22 * (b21 - b11)

p3 = (a11 - a21) * (b11 + b12) p7 = (a21 + a22) * b11

p4 = (a11 + a12) * b22

Then m11 = p1 + p2 - p4 + p6

m12 = p4 + p5 Extends to nxn by divide&conquer

m21 = p6 + p7

m22 = p2 - p3 + p5 - p7
```

Strassen (continued)

T(n) = Cost of multiplying nxn matrices
=
$$7*T(n/2) + 18*(n/2)^2$$

= $O(n log_2 7)$
= $O(n 2.81)$

- Asymptotically faster
 - Several times faster for large n in practice
 - Cross-over depends on machine
 - "Tuning Strassen's Matrix Multiplication for Memory Efficiency",
 M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98
- Possible to extend communication lower bound to Strassen
 - #words moved between fast and slow memory = $\Omega(n^{\log_2 7} / M^{(\log_2 7)/2 1}) \sim \Omega(n^{2.81} / M^{0.4})$ (Ballard, D., Holtz, Schwartz, 2011)
 - Attainable too

Other Fast Matrix Multiplication Algorithms

- World's record was O(n ^{2.376...})
 - Coppersmith & Winograd, 1987
- New Record! 2.376 reduced to 2.373
 - Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011
- Lower bound on #words moved can be extended to (some) of these algorithms
- Possibility of O(n^{2+ε}) algorithm!
 - Cohn, Umans, Kleinberg, 2003
- Can show they all can be made numerically stable
 - D., Dumitriu, Holtz, Kleinberg, 2007
- Can do rest of linear algebra (solve Ax=b, Ax=λx, etc) as fast, and numerically stably
 - D., Dumitriu, Holtz, 2008
- Fast methods (besides Strassen) may need

Tuning Code in Practice

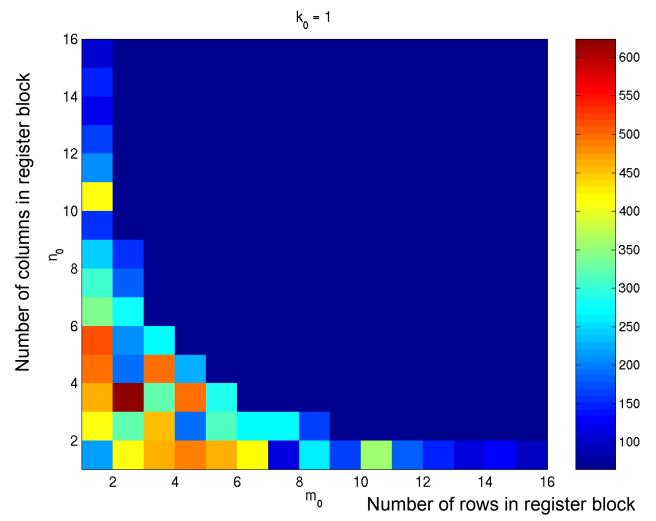
- Tuning code can be tedious
 - Lots of code variations to try besides blocking
 - Machine hardware performance hard to predict
 - Compiler behavior hard to predict
- Response: "Autotuning"
 - Let computer generate large set of possible code variations, and search them for the fastest ones
 - Field started with CS267 homework assignment in mid 1990s
 - PHiPAC, leading to ATLAS, incorporated in Matlab
 - We still use the same assignment
 - We (and others) are extending autotuning to other dwarfs / motifs
- Still need to understand how to do it by hand
 - Not every code will have an autotuner
 - Need to know if you want to build autotuners

Search Over Block

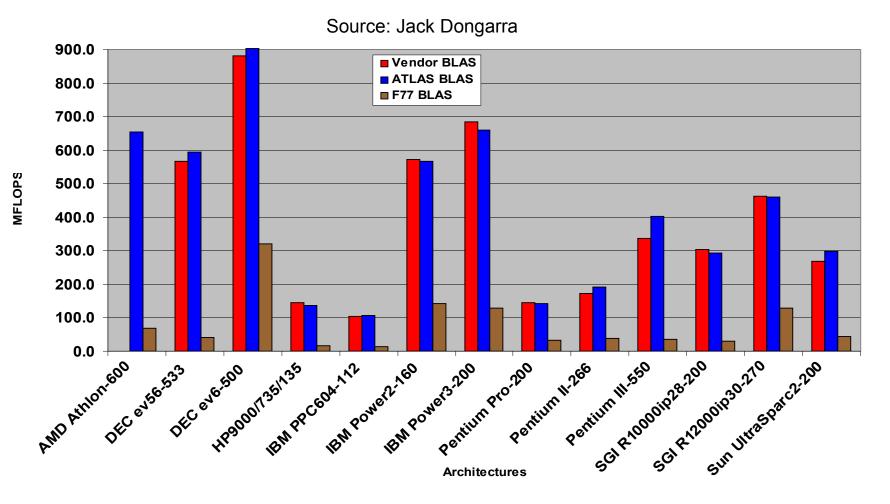
Sizes

- Performance models are useful for high level algorithms
 - Helps in developing a blocked algorithm
 - Models have not proven very useful for block size selection
 - too complicated to be useful
 - See work by Sid Chatterjee for detailed model
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.
 - Speed depends on matrix dimensions, details of code, compiler, processor

What the Search Space Looks Like



A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. (Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)



 ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions
- Hard to do by hand (but you'll try)
- Automatic optimization an active research area
 - ParLab: parlab.eecs.berkeley.edu
 - BeBOP: bebop.cs.berkeley.edu
 - Weekly group meeting Tuesdays 12:30pm
 - PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas

Removing False Dependencies

 Using local variables, reorder operations to remove false dependencies

With some compilers, you can declare a and b unaliased.

Done via "restrict pointers," compiler flag, or pragma)

Exploit Multiple Registers

 Reduce demands on memory bandwidth by pre-loading into local variables

```
while( ... ) {
   *res++ = filter[0]*signal[0]
             + filter[1]*signal[1]
             + filter[2]*signal[2];
   signal++;
}
                            also: register float f0 = ...;
float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ... ) {
                               Example is a convolution
    *res++ = f0*signal[0]
              + f1*signal[1]
              + f2*signal[2];
    signal++;
                                                   69
```

Loop Unrolling

Expose instruction-level parallelism

```
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
   signal += 3;
   s0 = signal[0];
   res[0] = f0*s1 + f1*s2 + f2*s0;
   s1 = signal[1];
   res[1] = f0*s2 + f1*s0 + f2*s1;
   s2 = signal[2];
   res[2] = f0*s0 + f1*s1 + f2*s2;
   res += 3;
} while( ... );
```

Expose Independent Operations

- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (what functional units are available?)

```
f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
```

Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality
 - Alternative: use different data structures from start (if users willing)
 - Recall recursive data layouts

Original matrix (numbers are addresses)

	0	4	8	12
	1	5	9	13
\downarrow	2	6	10	14
	3	7	11	15

Reorganized into 2x2 blocks

0	2	8	10
1	3	9	11
4	6	12	13
5	7	14	15

Locality in Other Algorithms

- The performance of any algorithm is limited by q
 - q = "computational intensity" = #arithmetic_ops / #words_moved
- In matrix multiply, we increase q by changing computation order
 - increased temporal locality
- For other algorithms and data structures, even handtransformations are still an open problem
 - Lots of open problems, class projects

Summary of Lecture 2

- Details of machine are important for performance
 - Processor and memory system (not just parallelism)
 - Before you parallelize, make sure you're getting good serial performance
 - What to expect? Use understanding of hardware limits
- There is parallelism hidden within processors
 - Pipelining, SIMD, etc
- Machines have memory hierarchies
 - 100s of cycles to read from DRAM (main memory)
 - Caches are fast (small) memory that optimize average case
- Locality is at least as important as computation
 - Temporal: re-use of data recently used
 - Spatial: using data nearby that recently used
- Can rearrange code/data to improve locality
- Goal: minimize communication = data movement

 CS267 Lecture 2

Class Logistics

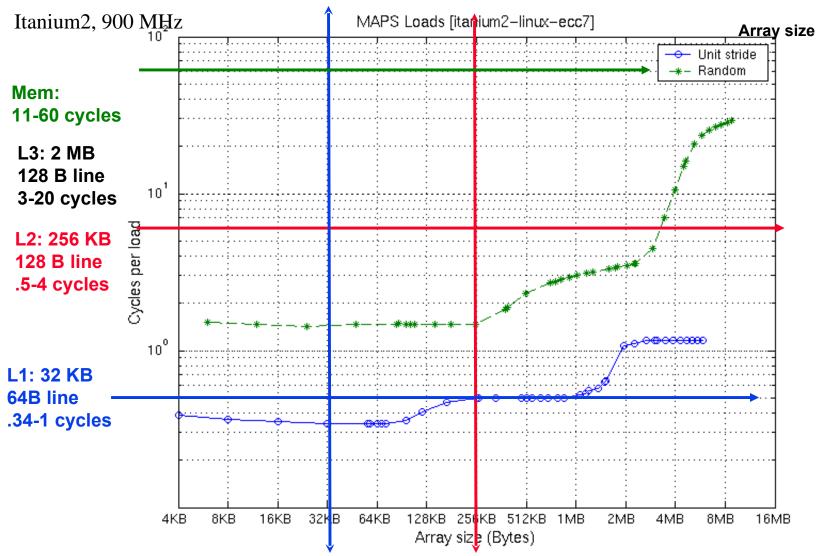
- Homework 0 posted on web site
 - Find and describe interesting application of parallelism
 - Due Feb 2
 - Could even be your intended class project
- Homework 1 posted on web site
 - Tuning matrix multiply
 - Due Feb 14
- Please fill in on-line class survey
 - We need this to assign teams for Homework 1

Some reading for today (see website)

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- "Performance Optimization of Numerically Intensive Codes", by Stefan Goedecker and Adolfy Hoisie, SIAM 2001.
- Web pages for reference:
 - BeBOP Homepage
 - ATLAS Homepage
 - BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - LAPACK (Linear Algebra PACKage), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
- Tuning Strassen's Matrix Multiplication for Memory Efficiency Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck in Proceedings of Supercomputing '98, November 1998 postscript
- Recursive Array Layouts and Fast Parallel Matrix Multiplication" by Chatterjee et al. IEEE TPDS November 2002.

Extra Slides

Memory Performance on Itanium 2 (CITRIS)



Uses MAPS Benchmark: http://www.sdsc.edu/PMaC/MAPs/maps.html

Proof of Communication Lower Bound on C = A*B (1/6)

- Proof from Irony/Tishkin/Toledo (2004)
 - We'll need it for the communication lower bound on parallel matmul
- Think of instruction stream being executed
 - Looks like " ... add, load, multiply, store, load, add, ..."
 - We want to count the number of loads and stores, given that we are multiplying n-by-n matrices C = A*B using the usual 2*n³ flops, possibly reordered assuming addition is commutative/associative
 - It actually isn't associative in floating point, but close enough
 - Assuming that at most M words can be stored in fast memory

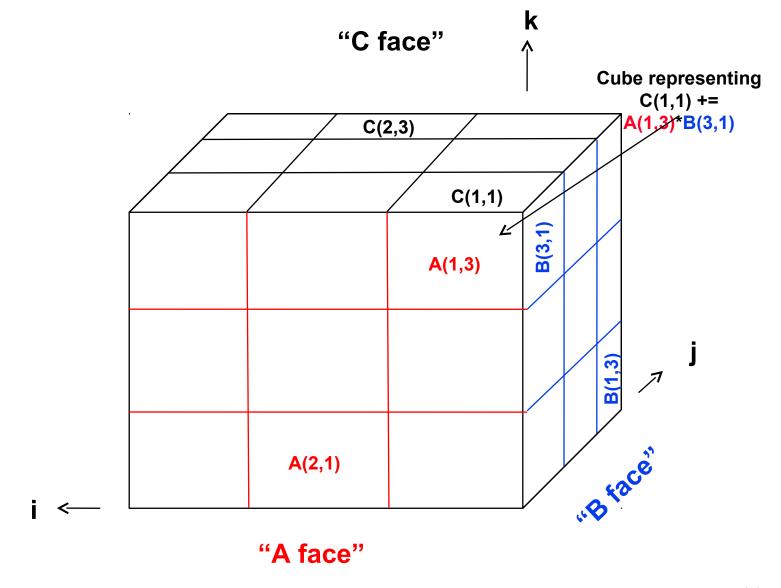
Outline:

- Break instruction stream into segments, each containing M loads and stores
- Somehow bound the maximum number of adds and multiplies that could be done in each segment, call it F
- So $F \cdot \#$ segments $\geq 2 \cdot n^3$, and # segments $\geq 2 \cdot n^3 / F$
- $_{01/19/20}$ So # loads & stores $= M \cdot \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$

Proof of Communication Lower Bound on C = A*B (2/6)

- Given segment of instruction stream with M loads & stores, how many adds & multiplies (F) can we do?
 - At most 2M entries of C, 2M entries of A and/or 2M entries of B can be accessed
- Use geometry:
 - Represent 2·n³ operations by n x n x n cube
 - One n x n face represents A
 - each 1 x 1 subsquare represents one A(i,k)
 - One n x n face represents B
 - each 1 x 1 subsquare represents one B(k,j)
 - One n x n face represents C
 - each 1 x 1 subsquare represents one C(i,j)
 - Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)

Proof of Communication Lower Bound on C = A*B (3/6)

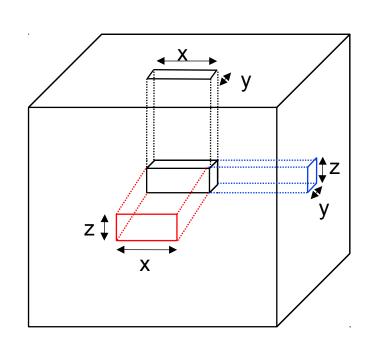


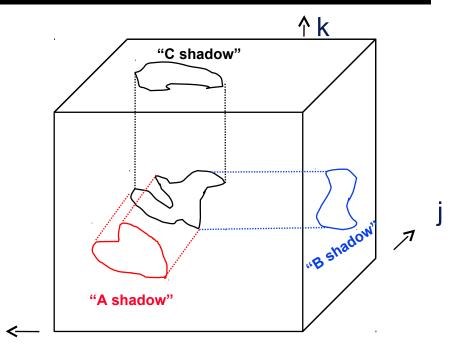
81

Proof of Communication Lower Bound on C = A*B (4/6)

- Given segment of instruction stream with M load & stores, how many adds & multiplies (F) can we do?
 - At most 2M entries of C, and/or of A and/or of B can be accessed
- Use geometry:
 - Represent 2·n³ operations by n x n x n cube
 - One n x n face represents A
 - each 1 x 1 subsquare represents one A(i,k)
 - One n x n face represents B
 - each 1 x 1 subsquare represents one B(k,j)
 - One n x n face represents C
 - each 1 x 1 subsquare represents one C(i,j)
 - Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)
- If we have at most 2M "A squares", 2M "B squares", and 2M "C squares" on faces, how many cubes can we have?

Proof of Communication Lower Bound on C = A*B (5/6)





cubes in black box with side lengths x, y and z

= Volume of black box

$$= x*y*z$$

$$= (xz * zy * yx)^{1/2}$$

(i,k) is in "A shadow" if (i,j,k) in 3D set (j,k) is in "B shadow" if (i,j,k) in 3D set (i,j) is in "C shadow" if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
≤ (area(A shadow) * area(B shadow) *
area(C shadow)) 1/2

Proof of Communication Lower Bound on C = A*B (6/6)

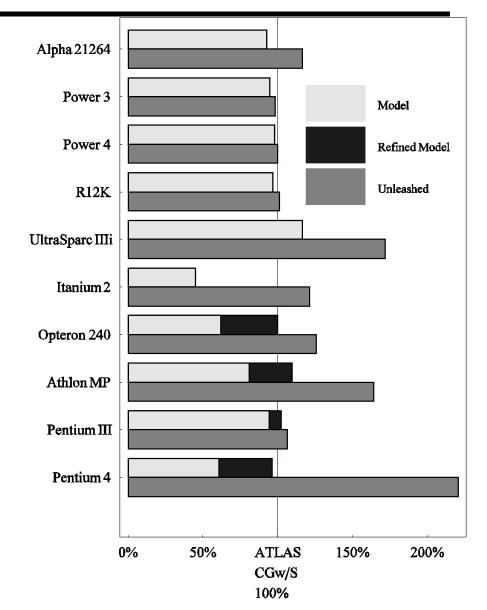
- Consider one "segment" of instructions with M loads and stores
- There can be at most 2M entries of A, B, C available in one segment
- Volume of set of cubes representing possible multiply/adds ≤ (2M · 2M · 2M)^{1/2} = (2M) ^{3/2} ≡ F
- # Segments $\geq 2n^3 / F$
- # Loads & Stores = $M \cdot \#Segments \ge M \cdot 2n^3 / F = n^3 / (2M)^{1/2}$
- Parallel Case: apply reasoning to one processor out of P
 - # Adds and Muls = 2n³ / P (assuming load balanced)
 - M= n² / P (each processor gets equal fraction of matrix)
 - # "Load & Stores" = # words communicated with other

$$procs \ge M \cdot (2n^3 / P) / F = M \cdot (2n^3 / P) / (2M)^{3/2} = n^2 / (2P)^{1/2}$$

Experiments on Search vs. Modeling

Study compares search (Atlas) to optimization selection based on performance models

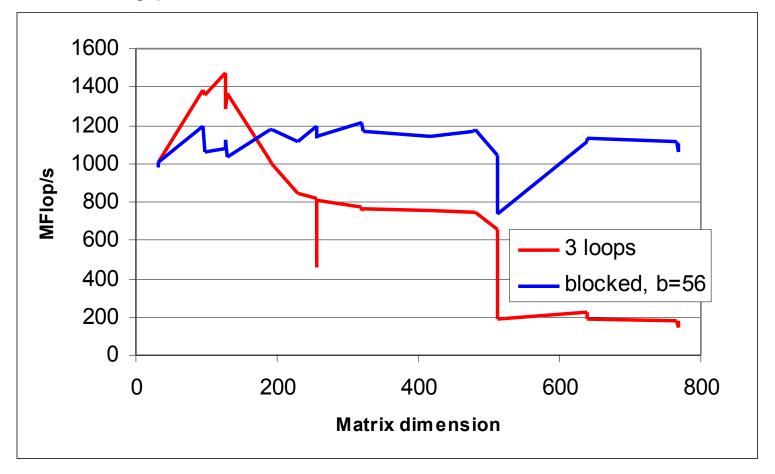
- Ten modern architectures
- Model did well on most cases
 - Better on UltraSparc
 - Worse on Itanium
- Eliminating performance gaps: think globally, search locally
 - -small performance gaps: local search
 - -large performance gaps: refine model
- Substantial gap between ATLAS CGw/S and ATLAS Unleashed on some machines



Source: K. Pingali. Results from IEEE '05 paper by K Yotov, X Li, G Ren, M Garzarán, D Padua, K Pingali, P Stodghill.

Tiling Alone Might Not Be Enough

- Naïve and a "naïvely tiled" code on Itanium 2
 - Searched all block sizes to find best, b=56
 - Starting point for next homework



Minimize Pointer Updates

 Replace pointer updates for strided memory addressing with constant array offsets

```
f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;
```

Pointer vs. array expression costs may differ.

Some compilers do a better job at analyzing one than the other

Summary

- Performance programming on uniprocessors requires
 - understanding of memory system
 - understanding of fine-grained parallelism in processor
- Simple performance models can aid in understanding
 - Two ratios are key to efficiency (relative to peak)
 - 1.computational intensity of the algorithm:
 - q = f/m = # floating point operations / # slow memory references
 - 1.machine balance in the memory system:
 - t_m/t_f = time for slow memory reference / time for floating point operation
- Want q > t_m/t_f to get half machine peak
- Blocking (tiling) is a basic approach to increase q
 - Techniques apply generally, but the details (e.g., block size) are architecture dependent
 - Similar techniques are possible on other data structures and algorithms
- Now it's your turn: Homework 1

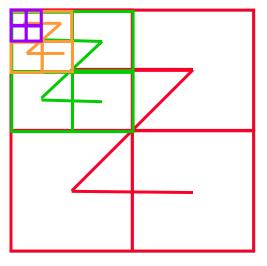
Questions You Should Be Able to Answer

- 1. What is the key to understand algorithm efficiency in our simple memory model?
- 2. What is the key to understand machine efficiency in our simple memory model?
- 3. What is tiling?
- 4. Why does block matrix multiply reduce the number of memory references?
- 5. What are the BLAS?
- 6. Why does loop unrolling improve uniprocessor performance?

89

Recursive Data Layouts

- Blocking seems to require knowing cache sizes portable?
- A related (recent) idea is to use a recursive structure for the matrix
- There are several possible recursive decompositions depending on the order of the sub-blocks
- This figure shows Z-Morton Ordering ("space filling curve")
- See papers on "cache oblivious algorithms" and "recursive layouts"



Advantages:

 the recursive layout works well for any cache size

Disadvantages:

- The index calculations to find A[i,j] are expensive
- Implementations switch to column-major for small sizes