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Motivation

• Most applications run at < 10% of the “peak” performance 
of a system

• Peak is the maximum the hardware can physically execute

• Much of this performance is lost on a single processor, i.e., 
the code running on one processor often runs at only 10-
20% of the processor peak

• Most of the single processor performance loss is in the 
memory system

• Moving data takes much longer than arithmetic and logic

• To understand this, we need to look under the hood of 
modern processors

• For today, we will look at only a single “core” processor
• These issues will exist on processors within any parallel computer
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Possible conclusions to draw from today’s lecture

• “Computer architectures are fascinating, and I really 
want to understand why apparently simple programs can 
behave in such complex ways!”

• “I want to learn how to design algorithms that run really 
fast no matter how complicated the underlying computer 
architecture.”

• “I hope that most of the time I can use fast software that 
someone else has written and hidden all these details 
from me so I don’t have to worry about them!”

• All of the above, at different points in time

3
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Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication
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Idealized Uniprocessor Model
• Processor names bytes, words, etc. in its address space

• These represent integers, floats, pointers, arrays, etc.
• Operations include

• Read and write into very fast memory called registers
• Arithmetic and other logical operations on registers

• Order specified by program
• Read returns the most recently written data
• Compiler and architecture translate high level expressions into 

“obvious” lower level instructions

• Hardware executes instructions in order specified by compiler
• Idealized Cost

• Each operation has roughly the same cost
(read, write, add, multiply, etc.)

A = B + C ⇒
Read address(B) to R1
Read address(C) to R2
R3 = R1 + R2
Write R3 to Address(A)
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Uniprocessors in the Real World

• Real processors have
• registers and caches

• small amounts of fast memory
• store values of recently used or nearby data
• different memory ops can have very different costs

• parallelism
• multiple “functional units” that can run in parallel
• different orders, instruction mixes have different costs

• pipelining
• a form of parallelism, like an assembly line in a factory

• Why is this your problem?
• In theory, compilers and hardware “understand” all this 

and can optimize your program; in practice they don’t.
• They won’t know about a different algorithm that might 

be a much better “match” to the processor

In theory there is no difference between theory and practice.  
But in practice there is.              -J. van de Snepscheut
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Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Temporal and spatial locality
• Basics of caches
• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication
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Memory Hierarchy

• Most programs have a high degree of locality in their accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average
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Processor-DRAM Gap (latency)
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• Memory hierarchies are getting deeper
• Processors get faster more quickly than memory
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Approaches to Handling Memory Latency

• Bandwidth has improved more than latency
• 23% per year vs 7% per year 

• Approach to address the memory latency problem
• Eliminate memory operations by saving values in small, fast 

memory (cache) and reusing them 
• need temporal locality in program

• Take advantage of better bandwidth by getting a chunk of 
memory and saving it in small fast memory (cache) and using 
whole chunk 

• need spatial locality in program

• Take advantage of better bandwidth by allowing processor to 
issue multiple reads to the memory system at once 

• concurrency in the instruction stream, e.g. load whole array, 
as in vector processors; or prefetching

• Overlap computation & memory operations
• prefetching
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Cache Basics

• Cache is fast (expensive) memory which keeps copy of data 
in main memory; it is hidden from software

• Simplest example: data at memory address xxxxx1101 is 
stored at cache location 1101

• Cache hit: in-cache memory access—cheap
• Cache miss: non-cached memory access—expensive

• Need to access next, slower level of cache
• Cache line length: # of bytes loaded together in one entry

• Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are
• Associativity

• direct-mapped: only 1 address (line) in a given range in cache
• Data stored at address xxxxx1101 stored at cache location 

1101, in 16 word cache 
• n-way: n ≥  2 lines with different addresses can be stored

• Up to n ≤  16 words with addresses xxxxx1101 can be 
stored at cache location 1101 (so cache can store 16n 
words)
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Why Have Multiple Levels of Cache?

• On-chip vs. off-chip
• On-chip caches are faster, but limited in size

• A large cache has delays
• Hardware to check longer addresses in cache takes more time
• Associativity, which gives a more general set of data in cache, 

also takes more time

• Some examples:
• Cray T3E eliminated one cache to speed up misses
• IBM uses a level of cache as a “victim cache” which is cheaper

• There are other levels of the memory hierarchy
• Register, pages (TLB, virtual memory), …
• And it isn’t always a hierarchy
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Experimental Study of Memory (Membench)

• Microbenchmark for memory system performance

                   time the following loop 
                   (repeat many times and average)

              for i from 0 to L
                                load A[i] from memory (4 Bytes)

•        for array A of length L from 4KB to 8MB by 2x
             for stride s from 4 Bytes (1 word) to L/2 by 2x
                   time the following loop 
                   (repeat many times and average)

              for i from 0 to L by s
                                load A[i] from memory (4 Bytes)

s

1 experiment
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Membench: What to Expect

• Consider the average cost per load
• Plot one line for each array length, time vs. stride
• Small stride is best: if cache line holds 4 words, at most ¼ miss
• If array is smaller than a given cache, all those accesses will hit 

(after the first run, which is negligible for large enough runs)
• Picture assumes only one level of cache
• Values have gotten more difficult to measure on modern procs

s = stride

average cost per access

total size < L1cache 
hit time

memory 
time

size > L1
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Memory Hierarchy on a Sun Ultra-2i

L1: 
16 KB
2 cycles (6ns)

Sun Ultra-2i, 333 MHz

L2: 64 byte line

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

L2: 2 MB, 
12 cycles (36 ns)

Mem: 396 ns

(132 cycles)

8 K pages,    
32 TLB entries

L1: 16 B line

Array length
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Memory Hierarchy on an Intel Core 2 Duo 

17



01/19/2012 CS267 - Lecture 2 18

Memory Hierarchy on a Power3 (Seaborg)
Power3, 375 MHz

L2: 8 MB
128 B line
9 cycles

L1: 32 KB
128B line
.5-2 cycles

Array size

Mem: 396 ns
(132 cycles)
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Stanza Triad

• Even smaller benchmark for prefetching
• Derived from STREAM Triad
• Stanza (L) is the length of a unit stride run

while i < arraylength
for each L element stanza
A[i] = scalar * X[i] + Y[i]

skip k elements

1) do L triads 3) do L triads2) skip k 
elements

. . .
. . .

stanzastanza

Source: Kamil et al, MSP05
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Stanza Triad 
Results

• This graph (x-axis) starts at a cache line size (>=16 Bytes)
• If cache locality was the only thing that mattered, we would expect

• Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
• Prefetching gets the next cache line (pipelining) while using the current one

• This does not “kick in” immediately, so performance depends on L
• http://crd-legacy.lbl.gov/~oliker/papers/msp_2005.pdf 

http://crd-legacy.lbl.gov/~oliker/papers/msp_2005.pdf
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Lessons

• Actual performance of a simple program can be a 
complicated function of the architecture

• Slight changes in the architecture or program change the 
performance significantly

• To write fast programs, need to consider architecture
• True on sequential or parallel processor

• We would like simple models to help us design efficient 
algorithms

• We will illustrate with a common technique for improving 
cache performance, called blocking or tiling

• Idea: used divide-and-conquer to define a problem that fits in 
register/L1-cache/L2-cache
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Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Hidden from software (sort of)
• Pipelining
• SIMD units

• Case study: Matrix Multiplication
• Use of performance models to understand performance
• Attainable lower bounds on communication
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What is Pipelining? 

• In this example:
• Sequential execution takes    

4 * 90min = 6 hours
• Pipelined execution takes 

30+4*40+20 = 3.5 hours
• Bandwidth = loads/hour
• BW = 4/6 l/h w/o pipelining
• BW = 4/3.5  l/h w pipelining
• BW <= 1.5 l/h w pipelining, 

more total loads
• Pipelining helps bandwidth 

but not latency (90 min)
• Bandwidth limited by slowest 

pipeline stage
• Potential speedup = Number 

pipe stages
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Dave Patterson’s Laundry example: 4 people doing laundry

           wash (30 min) + dry (40 min) + fold (20 min) = 90 min

Latency
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Example: 5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy
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SIMD: Single Instruction, Multiple 
Data

++

• Scalar processing
• traditional mode
• one operation produces

one result

• SIMD processing
• with SSE / SSE2
• SSE = streaming SIMD extensions
• one operation produces

multiple results 

XX

YY

X + YX + Y

++

x3x3 x2x2 x1x1 x0x0

y3y3 y2y2 y1y1 y0y0

x3+y3x3+y3 x2+y2x2+y2 x1+y1x1+y1 x0+y0x0+y0

XX

YY

X + YX + Y

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation
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SSE / SSE2 SIMD on Intel

16x bytes

4x floats

2x doubles

• SSE2 data types: anything that fits into 16 bytes, e.g.,

• Instructions perform add, multiply etc. on all the data in 
this 16-byte register in parallel

• Challenges:
• Need to be contiguous in memory and aligned
• Some instructions to move data around from one part of 

register to another
• Similar on GPUs, vector processors (but many more simultaneous 

operations)
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What does this mean to you?
• In addition to SIMD extensions, the processor may have 

other special instructions
• Fused Multiply-Add (FMA) instructions: 
             x = y + c * z
   is so common some processor execute the multiply/add as a 

single instruction, at the same rate (bandwidth) as + or * alone

• In theory, the compiler understands all of this
• When compiling, it will rearrange instructions to get a good 

“schedule” that maximizes pipelining, uses FMAs and SIMD
• It works with the mix of instructions inside an inner loop or other 

block of code

• But in practice the compiler may need your help
• Choose a different compiler, optimization flags, etc.
• Rearrange your code to make things more obvious
• Using special functions (“intrinsics”) or write in assembly 
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Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication
• Simple cache model
• Warm-up: Matrix-vector multiplication
• Naïve vs optimized Matrix-Matrix Multiply

• Minimizing data movement
• Beating O(n3) operations
• Practical optimizations (continued next time)
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Why Matrix Multiplication?

• An important kernel in many problems

• Appears in many linear algebra algorithms

• Bottleneck for dense linear algebra

• One of the 7 dwarfs / 13 motifs of parallel computing

• Closely related to other algorithms, e.g., transitive closure on a 
graph using Floyd-Warshall

• Optimization ideas can be used in other problems

• The best case for optimization payoffs

• The most-studied algorithm in high performance computing
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Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)
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1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common?
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Matrix-multiply, optimized several 
ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory 
addresses are “1-D”

• Conventions for matrix layout
• by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
• by row, or “row major” (C default) A(i,j) at A+i*n+j
• recursive (later)

• Column major (for now)
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Column major matrix in memory
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Computational 
Intensity: Key to 
algorithm efficiency

Machine 
Balance: 
Key to 
machine 
efficiency 

 Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory

• m = number of memory elements (words) moved between fast 
and slow memory 

• tm = time per slow memory operation

• f = number of arithmetic operations

• tf = time per arithmetic operation << tm

• q = f / m  average number of flops per slow memory access

• Minimum possible time = f* tf when all data in fast memory

• Actual time 
• f * tf + m * tm = f * tf * (1 + tm/tf  * 1/q) 

• Larger q means time closer to minimum f * tf 
• q ≥  tm/tf  needed to get at least half of peak speed
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Warm up: Matrix-vector multiplication

{implements y = y + A*x}
for i = 1:n

for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)
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Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

    {read row i of A into fast memory}
    for j = 1:n

   y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f   = number of arithmetic operations = 2n2

• q  = f / m ≈  2

• Matrix-vector multiplication limited by slow memory speed
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 Modeling Matrix-Vector Multiplication

• Compute time for nxn = 1000x1000 matrix
• Time 

• f * tf + m * tm = f * tf * (1 + tm/tf  * 1/q) 

•                        = 2*n2 * tf * (1 +  tm/tf * 1/2)

• For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)
• http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

• For tm use minimum-memory-latency / words-per-cache-line 
Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max) 
cycles machine

balance
(q must 
be at least
this for 
½ peak 
speed)

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
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Simplifying Assumptions

• What simplifying assumptions did we make in this 
analysis?

• Ignored parallelism in processor between memory and 
arithmetic within the processor

• Sometimes drop arithmetic term in this type of analysis

• Assumed fast memory was large enough to hold three vectors
• Reasonable if we are talking about any level of cache
• Not if we are talking about registers (~32 words)

• Assumed the cost of a fast memory access is 0
• Reasonable if we are talking about registers
• Not necessarily if we are talking about cache (1-2 cycles for L1)

• Memory latency is constant

• Could simplify even further by ignoring memory 
operations in X and Y vectors

• Mflop rate/element = 2 / (2* tf  + tm)
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Validating the Model

• How well does the model predict actual performance? 
• Actual DGEMV: Most highly optimized code for the platform

• Model sufficient to compare across machines
• But under-predicting on most recent ones due to latency estimate
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Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
       for j = 1 to n

for k = 1 to n
           C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and 
operates on 3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)
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Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
  {read row i of A into fast memory}
   for j = 1 to n
       {read C(i,j) into fast memory}
       {read column j of B into fast memory}
       for k = 1 to n
           C(i,j) = C(i,j) + A(i,k) * B(k,j)
       {write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)
C(i,j)
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Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3       to read each column of B  n  times

         + n2     to read each row of A once 
         + 2n2   to read and write each element of C once
        = n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
        ≈  2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)
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Matrix-multiply, optimized several 
ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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Naïve Matrix Multiply on RS/6000 
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1095 years

Slide source: Larry Carter, UCSD
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Naïve Matrix Multiply on RS/6000 

Slide source: Larry Carter, UCSD
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Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where           
b=n / N is called the block size 
   for i = 1 to N

       for j = 1 to N
       {read block C(i,j) into fast memory}
       for k = 1 to N
                  {read block A(i,k) into fast memory}
                  {read block B(k,j) into fast memory}
                  C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
       {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)
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Blocked (Tiled) Matrix Multiply

Recall:
   m is amount memory traffic between slow and fast memory
   matrix has nxn elements, and NxN blocks each of size bxb
   f is number of floating point operations, 2n3 for this problem
   q = f / m is our measure of algorithm efficiency in the memory system
So:

m =  N*n2    read each block of B  N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
         + N*n2   read each block of A  N3 times
         + 2n2     read and write each block of C once
        =  (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
                                               ≈  n / N = b  for large n
So we can improve performance by increasing the blocksize b 
Can be much faster than matrix-vector multiply (q=2)
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Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ≈  b
• The larger the block size, the more efficient our algorithm will be
• Limit:   All three blocks from A,B,C must fit in fast memory (cache), so 

we cannot make these blocks arbitrarily large 

• Assume your fast memory has size Mfast

                  3b2 ≤  Mfast,   so   q ≈  b ≤  (Mfast/3)1/2

required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

• To build a machine to run matrix 
multiply at 1/2 peak arithmetic speed 
of the machine, we need a fast 
memory of size 

       Mfast ≥  3b2 ≈  3q2 = 3(tm/tf)2 

• This size is reasonable for L1 cache, 
but not for register sets

• Note: analysis assumes it is possible 
to schedule the instructions perfectly
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Limits to Optimizing Matrix Multiply

• The blocked algorithm changes the order in which values are  
accumulated into each C[i,j] by applying commutativity and associativity

• Get slightly different answers from naïve code, because of roundoff - OK

• The previous analysis showed that the blocked algorithm has 
computational intensity:

q ≈  b ≤  (Mfast/3)1/2

• There is a lower bound result that says we cannot do any better than this 
(using only associativity)

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm 
(that uses only associativity) is limited to q = O( (Mfast)

1/2 )

• #words moved between fast and slow memory =  (nΩ 3 / (Mfast)1/2 )
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Review of lecture 2 so far (and a look ahead)

49

• Hardware
• Even simple programs have complicated behaviors
• “Small” changes make execution time vary by orders 

of magnitude

• Algorithms (matmul as example)
• Need simple model of hardware to guide design, 

analysis:  minimize accesses to slow memory
• If lucky, theory describing “best algorithm”

• Applications
• How to decompose into well-understood algorithms 

(and their implementations)

• Software tools
• How do I implement my applications and algorithms 

in most efficient and productive way?

L
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Communication lower bounds for Matmul

• Hong/Kung theorem is a lower bound on amount of data 
communicated by matmul

• Number of words moved between fast and slow memory (cache 

and DRAM, or DRAM and disk, or …) = Ω (n3 / Mfast
1/2)

• Cost of moving data may also depend on the number of 
“messages” into which data is packed

• Eg: number of cache lines, disk accesses, …

• #messages = Ω (n3 / Mfast
3/2)

• Lower bounds extend to anything “similar enough” to          
3 nested loops

• Rest of linear algebra (solving linear systems, least squares…)
• Dense and sparse matrices
• Sequential and parallel algorithms, …

• Need (more) new algorithms to attain these lower 
bounds… 50
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Basic Linear Algebra Subroutines (BLAS)
• Industry standard interface (evolving)

• www.netlib.org/blas,    www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations
• History

• BLAS1 (1970s): 
• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q = f/m = computational intensity ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead 
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is 

potentially much faster than BLAS2

• Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
• See www.netlib.org/{lapack,scalapack}
• More later in course
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BLAS speeds on an IBM RS6000/590

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs 
BLAS 2 (n-by-n matrix vector multiply) vs 
BLAS 1 (saxpy of  n vectors)

Peak speed = 266 Mflops

Peak
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Dense Linear Algebra: BLAS2 vs. BLAS3

• BLAS2 and BLAS3 have very different computational 
intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)
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What if there are more than 2 levels of memory?

• Need to minimize communication between all levels
• Between L1 and L2 cache, cache and DRAM, DRAM and disk…

• The tiled algorithm requires finding a good block size
• Machine dependent
• Need to “block” b x b matrix multiply in inner most loop

• 1 level   of memory ⇒ 3 nested loops (naïve algorithm)
• 2 levels of memory ⇒ 6 nested loops
• 3 levels of memory ⇒ 9 nested loops …

• Cache Oblivious Algorithms offer an alternative
• Treat nxn matrix multiply as a set of smaller problems
• Eventually, these will fit in cache
• Will minimize # words moved between every level of memory 

hierarchy – at least asymptotically



01/19/2012 CS267 - Lecture 2

Recursive Matrix Multiplication (RMM) (1/2)
• C =           = A · B =          ·           

      =

• True when each Aij etc   1x1   or   n/2  x  n/2

•  For simplicity: square matrices with n = 2m

55

A11  A12 

A21  A22

B11  B12 

B21  B22

C11  C12 

C21  C22

A11·B11 +  A12·B21    A11·B12 +  A12·B22 

A21·B11 +  A22·B21    A21·B12 +  A22·B22

  func C = RMM (A, B, n)
      if n = 1, C = A * B, else
         {  C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
            C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
            C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
            C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2)  } 
      return         
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Recursive Matrix Multiplication (2/2)

56

  func C = RMM (A, B, n)
      if n=1, C = A * B, else
         {  C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
            C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
            C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
            C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2)  } 
      return         

A(n)  = # arithmetic operations in RMM( . , . , n)

         = 8 · A(n/2) + 4(n/2)2  if  n > 1,   else 1

         = 2n3   … same operations as usual, in different order

M(n) = # words moved between fast, slow memory by RMM( . , . , n)

         = 8 · M(n/2) + 4(n/2)2  if  3n2 > Mfast  ,  else 3n2 

         = O( n3 / (Mfast )
1/2 + n2 )    … same as blocked matmul

Don’t need to know Mfast for this to work!
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Recursion: Cache Oblivious Algorithms

• The tiled algorithm requires finding a good block size
• Cache Oblivious Algorithms offer an alternative

• Treat nxn matrix multiply set of smaller problems
• Eventually, these will fit in cache

• Cases for A (nxm) * B (mxp)
• Case1: m>= max{n,p}: split A horizontally:
• Case 2 : n>= max{m,p}: split A vertically and B horizontally 
• Case 3: p>= max{m,n}: split B vertically

• Attains lower bound in O() sense
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Experience with Cache-Oblivious Algorithms

• In practice, need to cut off recursion well before 1x1 blocks
• Call “micro-kernel” on small blocks

• Implementing a high-performance Cache-Oblivious code is 
not easy

• Careful attention to micro-kernel is needed

• Using fully recursive approach with highly optimized 
recursive micro-kernel, Pingali et al report that they never 
got more than 2/3 of peak.

• Issues with Cache Oblivious (recursive) approach
• Recursive Micro-Kernels yield less performance than iterative 

ones using same scheduling techniques
• Pre-fetching is needed to compete with best code: not well-

understood in the context of Cache-Oblivious codes

Unpublished work, presented at LACSI 2006
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Recursive Data Layouts

• A related idea is to use a recursive structure for the matrix
• Improve locality with machine-independent data structure
• Can minimize latency with multiple levels of memory hierarchy

• There are several possible recursive decompositions depending on 
the order of the sub-blocks

• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

• Gustavson, Kagstrom, et al, SIAM Review, 2004

Advantages: 
• the recursive layout works well 

for any cache size
Disadvantages:
• The index calculations to find 

A[i,j] are expensive
• Implementations switch to 

column-major for small sizes
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Strassen’s Matrix 
Multiply

• The traditional algorithm (with or without tiling) has O(n3) flops
• Strassen discovered an algorithm with asymptotically lower flops

• O(n2.81)

• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
• Strassen does it with 7 multiplies and 18 adds

Let M =  m11 m12  =  a11 a12     b11 b12

              m21 m22 =   a21 a22     b21 b22

Let p1 = (a12 - a22) * (b21 + b22)                               p5 = a11 * (b12 - b22)

      p2 = (a11 + a22) * (b11 + b22)                              p6 = a22 * (b21 - b11)

      p3 = (a11 - a21) * (b11 + b12)                               p7 = (a21 + a22) * b11

      p4 = (a11 + a12) * b22

Then  m11 = p1 + p2 - p4 + p6

          m12 = p4 + p5

          m21 = p6 + p7

          m22 = p2 - p3 + p5 - p7

Extends to nxn by divide&conquer
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Strassen (continued)

T(n)      = Cost of multiplying nxn matrices 
             = 7*T(n/2) + 18*(n/2)2 

             =   O(n log2 7) 
             = O(n 2.81) 

 

 

• Asymptotically faster 
• Several times faster for large n in practice
• Cross-over depends on machine
• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, 

M. S. Thottethodi, S. Chatterjee, and A. Lebeck,  in Proceedings 
of Supercomputing '98

• Possible to extend communication lower bound to Strassen
• #words moved between fast and slow memory                            

= Ω(nlog2 7 / M(log2 7)/2 – 1 ) ~  Ω(n2.81 / M0.4 )                             (Ballard, 
D., Holtz, Schwartz, 2011)

• Attainable too 
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Other Fast Matrix Multiplication Algorithms

• World’s record was O(n 2.376... )
• Coppersmith & Winograd, 1987

• New Record! 2.376 reduced to 2.373
• Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011

• Lower bound on #words moved can be extended 
to (some) of these algorithms

• Possibility of O(n2+ε) algorithm! 
• Cohn, Umans, Kleinberg, 2003

• Can show they all can be made numerically stable 
• D., Dumitriu, Holtz, Kleinberg, 2007

• Can do rest of linear algebra (solve Ax=b, Ax=λx, 
etc) as fast , and numerically stably

• D., Dumitriu, Holtz, 2008

• Fast methods (besides Strassen) may need 
unrealistically large n
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Tuning Code in Practice

• Tuning code can be tedious
• Lots of code variations to try besides blocking
• Machine hardware performance hard to predict
• Compiler behavior hard to predict

• Response: “Autotuning”
• Let computer generate large set of possible code variations, 

and search them for the fastest ones
• Field started with CS267 homework assignment in mid 1990s

• PHiPAC, leading to ATLAS, incorporated in Matlab
• We still use the same assignment

• We (and others) are extending autotuning to other dwarfs / 
motifs

• Still need to understand how to do it by hand
• Not every code will have an autotuner
• Need to know if you want to build autotuners

63



01/19/2012 CS267 - Lecture 2 64

Search Over Block 
Sizes

• Performance models are useful for high level algorithms
• Helps in developing a blocked algorithm
• Models have not proven very useful for block size selection

• too complicated to be useful
– See work by Sid Chatterjee for detailed model

• too simple to be accurate
– Multiple multidimensional arrays, virtual memory, etc.

• Speed depends on matrix dimensions, details of code, compiler, 
processor
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What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)
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ATLAS (DGEMM n = 500)

• ATLAS is faster than all other portable BLAS implementations and it is 
comparable with machine-specific libraries provided by the vendor.
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Optimizing in Practice

• Tiling for registers
• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache and TLB
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining

• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area 

• ParLab: parlab.eecs.berkeley.edu
• BeBOP: bebop.cs.berkeley.edu 

• Weekly group meeting Tuesdays 12:30pm

• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
          in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas
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Removing False Dependencies

• Using local variables, reorder operations to remove false 
dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

false read-after-write hazard
between a[i] and b[i+1]

With some compilers, you can declare a and b unaliased.
• Done via “restrict pointers,” compiler flag, or pragma)



01/19/2012 CS267 - Lecture 2 69

Exploit Multiple Registers

• Reduce demands on memory bandwidth by pre-loading 
into local variables

while( … ) {
   *res++ = filter[0]*signal[0]
            + filter[1]*signal[1]
            + filter[2]*signal[2];
   signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( … ) {
   *res++ = f0*signal[0]
            + f1*signal[1]
            + f2*signal[2];
   signal++;
}

also: register float f0 = …;

Example is a convolution
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Loop Unrolling

• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
   signal += 3;
   s0 = signal[0];
   res[0] = f0*s1 + f1*s2 + f2*s0;

   s1 = signal[1];
   res[1] = f0*s2 + f1*s0 + f2*s1;

   s2 = signal[2];
   res[2] = f0*s0 + f1*s1 + f2*s2;

   res += 3;
} while( … );
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Expose Independent Operations

• Hide instruction latency
• Use local variables to expose independent operations that can 

execute in parallel or in a pipelined fashion
• Balance the instruction mix (what functional units are 

available?)

f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
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Copy optimization

• Copy input operands or blocks
• Reduce cache conflicts
• Constant array offsets for fixed size blocks
• Expose page-level locality
• Alternative: use different data structures from start (if users willing)

• Recall recursive data layouts
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Locality in Other Algorithms

• The performance of any algorithm is limited by q
• q = “computational intensity” = #arithmetic_ops / #words_moved

• In matrix multiply, we increase q by changing 
computation order

• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• Lots of open problems, class projects
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Summary of Lecture 2

• Details of machine are important for performance
• Processor and memory system (not just parallelism)
• Before you parallelize, make sure you’re getting good serial 

performance
• What to expect?  Use understanding of hardware limits

• There is parallelism hidden within processors
• Pipelining, SIMD, etc

• Machines have memory hierarchies
• 100s of cycles to read from DRAM (main memory)
• Caches are fast (small) memory that optimize average case

• Locality is at least as important as computation
• Temporal: re-use of data recently used
• Spatial: using data nearby that recently used

• Can rearrange code/data to improve locality
• Goal: minimize communication = data movement
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Class Logistics

• Homework 0 posted on web site
• Find and describe interesting application of parallelism
• Due Feb 2
• Could even be your intended class project

• Homework 1 posted on web site
• Tuning matrix multiply
• Due Feb 14

• Please fill in on-line class survey
• We need this to assign teams for Homework 1

75
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Some reading for today (see website)

• Sourcebook Chapter 3, (note that chapters 2 and 3 cover the 
material of lecture 2 and lecture 3, but not in the same order). 

• "Performance Optimization of Numerically Intensive Codes", by 
Stefan Goedecker and Adolfy Hoisie, SIAM 2001. 

• Web pages for reference:
• BeBOP Homepage 
• ATLAS Homepage 
• BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) 

implementations of the BLAS, with documentation. 
• LAPACK (Linear Algebra PACKage), a standard linear algebra library 

optimized to use the BLAS effectively on uniprocessors and shared 
memory machines (software, documentation and reports) 

• ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for 
distributed memory machines (software, documentation and reports) 

• Tuning Strassen's Matrix Multiplication for Memory Efficiency 
Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck 
in Proceedings of Supercomputing '98, November 1998 postscript

• Recursive Array Layouts and Fast Parallel Matrix Multiplication” by 
Chatterjee et al. IEEE TPDS November 2002.

http://www.siam.org/catalog/mcc12/se12.htm
http://bebop.cs.berkeley.edu/
http://www.netlib.org/atlas/index.html
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
http://www.cs.duke.edu/ari/arch/papers/sc98.ps
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Extra Slides

77
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Memory Performance on Itanium 2 (CITRIS)
Itanium2, 900 MHz

L2: 256 KB
128 B line
.5-4 cycles

L1: 32 KB
64B line
.34-1 cycles

Array size

Mem: 
11-60 cycles

L3: 2 MB
128 B line
3-20 cycles

Uses MAPS Benchmark: http://www.sdsc.edu/PMaC/MAPs/maps.html
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Proof of Communication Lower Bound on C = A*B (1/6) 

• Proof from Irony/Tishkin/Toledo (2004)
• We’ll need it for the communication lower bound on parallel matmul

• Think of instruction stream being executed
• Looks like “ …  add,  load, multiply, store, load, add, …”
• We want to count the number of loads and stores, given that we 

are multiplying n-by-n matrices C = A*B using the usual 2*n3 flops, 
possibly reordered assuming addition is commutative/associative

• It actually isn’t associative in floating point, but close enough

• Assuming that at most M words can be stored in fast memory

• Outline:
• Break instruction stream into segments, each containing M loads 

and stores
• Somehow bound the maximum number of adds and multiplies that 

could be done in each segment, call it F
• So    F · # segments ≥  2·n3 ,   and     # segments ≥  2·n3 / F
• So    # loads & stores = M · #segments  ≥  M ·2 ·n3 / F 79
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Proof of Communication Lower Bound on C = A*B (2/6) 

• Given segment of instruction stream with M loads & stores, 
how many adds & multiplies (F) can we do?

•   At most 2M entries of C, 2M entries of A and/or 2M entries of B  
can be accessed

• Use geometry:
• Represent 2·n3 operations by n x n x n cube
• One n x n face represents A 

• each 1 x 1 subsquare represents one A(i,k)

• One n x n face represents B
• each 1 x 1 subsquare represents one B(k,j)

• One n x n face represents C 
• each 1 x 1 subsquare represents one C(i,j)

• Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)

80
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Proof of Communication Lower Bound on C = A*B (3/6) 

81
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Proof of Communication Lower Bound on C = A*B (4/6) 

• Given segment of instruction stream with M load & stores, 
how many adds & multiplies (F) can we do?

•   At most 2M entries of C, and/or of A and/or of B  can be accessed

• Use geometry:
• Represent 2·n3 operations by n x n x n cube
• One n x n face represents A 

• each 1 x 1 subsquare represents one A(i,k)

• One n x n face represents B
• each 1 x 1 subsquare represents one B(k,j)

• One n x n face represents C 
• each 1 x 1 subsquare represents one C(i,j)

• Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)

82

• If we have at most 2M “A squares”, 2M “B squares”, and  
2M “C squares” on faces, how many cubes can we have?
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Proof of Communication Lower Bound on C = A*B (5/6) 

83
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Proof of Communication Lower Bound on C = A*B (6/6) 

• Consider one “segment” of instructions with M loads and 
stores

• There can be at most 2M entries of A, B, C available in one 
segment

• Volume of set of cubes representing possible multiply/adds ≤ 
(2M · 2M · 2M)1/2 = (2M) 3/2 ≡ F

• # Segments ≥   2n3 / F 

• # Loads & Stores = M · #Segments ≥  M · 2n3 / F = n3 / (2M)1/2

84

• Parallel Case: apply reasoning to one processor out of P

• # Adds and Muls = 2n3 / P  (assuming load balanced)

• M= n2 / P (each processor gets equal fraction of matrix)

• # “Load & Stores” = # words communicated with other 
procs ≥  M · (2n3 /P) / F= M · (2n3 /P) / (2M) 3/2  = n2 / (2P)1/2
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Experiments on Search vs. Modeling

Study compares search (Atlas) to 
optimization selection based on 
performance models

•Ten modern architectures
•  Model did well on most cases

• Better on UltraSparc
• Worse on Itanium

• Eliminating performance gaps: 
think globally, search locally

-small performance gaps: 
local search

-large performance gaps:
refine model

•  Substantial gap between   
ATLAS CGw/S and ATLAS 
Unleashed on some machines

Source: K. Pingali.  Results from IEEE ’05 paper by K Yotov, X Li, G Ren, M Garzarán, D Padua, K 
Pingali, P Stodghill. 
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Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code on Itanium 2

• Searched all block sizes to find best, b=56
• Starting point for next homework
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Minimize Pointer Updates

• Replace pointer updates for strided memory addressing 
with constant array offsets

f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;

Pointer vs. array expression costs may differ.
• Some compilers do a better job at analyzing one than the other
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Summary
• Performance programming on uniprocessors requires

• understanding of memory system
• understanding of fine-grained parallelism in processor 

• Simple performance models can aid in understanding

• Two ratios are key to efficiency (relative to peak)

1.computational intensity of the algorithm: 

• q = f/m = # floating point operations / # slow memory references

1.machine balance in the memory system: 

• tm/tf = time for slow memory reference / time for floating point operation

• Want q > tm/tf   to get half machine peak

• Blocking (tiling) is a basic approach to increase q
• Techniques apply generally, but the details (e.g., block size) are 

architecture dependent
• Similar techniques are possible on other data structures and algorithms

• Now it’s your turn: Homework 1 
1.Work in teams of 2 or 3 (assigned this time)
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Questions You Should Be Able to Answer

1. What is the key to understand algorithm efficiency in 
our simple memory model? 

2. What is the key to understand machine efficiency in 
our simple memory model? 

3. What is tiling? 
4. Why does block matrix multiply reduce the number of 

memory references? 
5. What are the BLAS? 
6. Why does loop unrolling improve uniprocessor 

performance? 
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Recursive Data Layouts

• Blocking seems to require knowing cache sizes – portable?
• A related (recent) idea is to use a recursive structure for the matrix
• There are several possible recursive decompositions depending on 

the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

Advantages: 
• the recursive layout works well 

for any cache size
Disadvantages:
• The index calculations to find 

A[i,j] are expensive
• Implementations switch to 

column-major for small sizes
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