
1

CS267
Lecture 2

Single Processor Machines:
Memory Hierarchies

and Processor Features

Case Study: Tuning Matrix Multiply

James Demmel
http://www.cs.berkeley.edu/~demmel/cs267_Spr12/

01/19/2012 CS267 - Lecture 2 2

Motivation

• Most applications run at < 10% of the “peak” performance
of a system

• Peak is the maximum the hardware can physically execute

• Much of this performance is lost on a single processor, i.e.,
the code running on one processor often runs at only 10-
20% of the processor peak

• Most of the single processor performance loss is in the
memory system

• Moving data takes much longer than arithmetic and logic

• To understand this, we need to look under the hood of
modern processors

• For today, we will look at only a single “core” processor
• These issues will exist on processors within any parallel computer

01/19/2012 CS267 - Lecture 2

Possible conclusions to draw from today’s lecture

• “Computer architectures are fascinating, and I really
want to understand why apparently simple programs can
behave in such complex ways!”

• “I want to learn how to design algorithms that run really
fast no matter how complicated the underlying computer
architecture.”

• “I hope that most of the time I can use fast software that
someone else has written and hidden all these details
from me so I don’t have to worry about them!”

• All of the above, at different points in time

3

01/19/2012 CS267 - Lecture 2 4

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication

01/19/2012 CS267 - Lecture 2 5

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication

01/19/2012 CS267 - Lecture 2 6

Idealized Uniprocessor Model
• Processor names bytes, words, etc. in its address space

• These represent integers, floats, pointers, arrays, etc.
• Operations include

• Read and write into very fast memory called registers
• Arithmetic and other logical operations on registers

• Order specified by program
• Read returns the most recently written data
• Compiler and architecture translate high level expressions into

“obvious” lower level instructions

• Hardware executes instructions in order specified by compiler
• Idealized Cost

• Each operation has roughly the same cost
(read, write, add, multiply, etc.)

A = B + C ⇒
Read address(B) to R1
Read address(C) to R2
R3 = R1 + R2
Write R3 to Address(A)

01/19/2012 CS267 - Lecture 2 7

Uniprocessors in the Real World

• Real processors have
• registers and caches

• small amounts of fast memory
• store values of recently used or nearby data
• different memory ops can have very different costs

• parallelism
• multiple “functional units” that can run in parallel
• different orders, instruction mixes have different costs

• pipelining
• a form of parallelism, like an assembly line in a factory

• Why is this your problem?
• In theory, compilers and hardware “understand” all this

and can optimize your program; in practice they don’t.
• They won’t know about a different algorithm that might

be a much better “match” to the processor

In theory there is no difference between theory and practice.
But in practice there is. -J. van de Snepscheut

01/19/2012 CS267 - Lecture 2 8

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Temporal and spatial locality
• Basics of caches
• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication

01/19/2012 CS267 - Lecture 2 9

Memory Hierarchy

• Most programs have a high degree of locality in their accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

on-chip
cache

registers

datapath

control

processor

Second
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

01/19/2012 CS267 - Lecture 2 10

Processor-DRAM Gap (latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

• Memory hierarchies are getting deeper
• Processors get faster more quickly than memory

01/19/2012 CS267 - Lecture 2 11

Approaches to Handling Memory Latency

• Bandwidth has improved more than latency
• 23% per year vs 7% per year

• Approach to address the memory latency problem
• Eliminate memory operations by saving values in small, fast

memory (cache) and reusing them
• need temporal locality in program

• Take advantage of better bandwidth by getting a chunk of
memory and saving it in small fast memory (cache) and using
whole chunk

• need spatial locality in program

• Take advantage of better bandwidth by allowing processor to
issue multiple reads to the memory system at once

• concurrency in the instruction stream, e.g. load whole array,
as in vector processors; or prefetching

• Overlap computation & memory operations
• prefetching

01/19/2012 CS267 - Lecture 2 12

Cache Basics

• Cache is fast (expensive) memory which keeps copy of data
in main memory; it is hidden from software

• Simplest example: data at memory address xxxxx1101 is
stored at cache location 1101

• Cache hit: in-cache memory access—cheap
• Cache miss: non-cached memory access—expensive

• Need to access next, slower level of cache
• Cache line length: # of bytes loaded together in one entry

• Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are
• Associativity

• direct-mapped: only 1 address (line) in a given range in cache
• Data stored at address xxxxx1101 stored at cache location

1101, in 16 word cache
• n-way: n ≥ 2 lines with different addresses can be stored

• Up to n ≤ 16 words with addresses xxxxx1101 can be
stored at cache location 1101 (so cache can store 16n
words)

01/19/2012 CS267 - Lecture 2 13

Why Have Multiple Levels of Cache?

• On-chip vs. off-chip
• On-chip caches are faster, but limited in size

• A large cache has delays
• Hardware to check longer addresses in cache takes more time
• Associativity, which gives a more general set of data in cache,

also takes more time

• Some examples:
• Cray T3E eliminated one cache to speed up misses
• IBM uses a level of cache as a “victim cache” which is cheaper

• There are other levels of the memory hierarchy
• Register, pages (TLB, virtual memory), …
• And it isn’t always a hierarchy

01/19/2012 CS267 - Lecture 2 14

Experimental Study of Memory (Membench)

• Microbenchmark for memory system performance

 time the following loop
 (repeat many times and average)

 for i from 0 to L
 load A[i] from memory (4 Bytes)

• for array A of length L from 4KB to 8MB by 2x
 for stride s from 4 Bytes (1 word) to L/2 by 2x
 time the following loop
 (repeat many times and average)

 for i from 0 to L by s
 load A[i] from memory (4 Bytes)

s

1 experiment

01/19/2012 CS267 - Lecture 2 15

Membench: What to Expect

• Consider the average cost per load
• Plot one line for each array length, time vs. stride
• Small stride is best: if cache line holds 4 words, at most ¼ miss
• If array is smaller than a given cache, all those accesses will hit

(after the first run, which is negligible for large enough runs)
• Picture assumes only one level of cache
• Values have gotten more difficult to measure on modern procs

s = stride

average cost per access

total size < L1cache
hit time

memory
time

size > L1

01/19/2012 CS267 - Lecture 2 16

Memory Hierarchy on a Sun Ultra-2i

L1:
16 KB
2 cycles (6ns)

Sun Ultra-2i, 333 MHz

L2: 64 byte line

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

L2: 2 MB,
12 cycles (36 ns)

Mem: 396 ns

(132 cycles)

8 K pages,
32 TLB entries

L1: 16 B line

Array length

01/19/2012 CS267 - Lecture 2

Memory Hierarchy on an Intel Core 2 Duo

17

01/19/2012 CS267 - Lecture 2 18

Memory Hierarchy on a Power3 (Seaborg)
Power3, 375 MHz

L2: 8 MB
128 B line
9 cycles

L1: 32 KB
128B line
.5-2 cycles

Array size

Mem: 396 ns
(132 cycles)

01/19/2012 CS267 - Lecture 2 19

Stanza Triad

• Even smaller benchmark for prefetching
• Derived from STREAM Triad
• Stanza (L) is the length of a unit stride run

while i < arraylength
for each L element stanza
A[i] = scalar * X[i] + Y[i]

skip k elements

1) do L triads 3) do L triads2) skip k
elements

. . .
. . .

stanzastanza

Source: Kamil et al, MSP05

01/19/2012 CS267 - Lecture 2 20

Stanza Triad
Results

• This graph (x-axis) starts at a cache line size (>=16 Bytes)
• If cache locality was the only thing that mattered, we would expect

• Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
• Prefetching gets the next cache line (pipelining) while using the current one

• This does not “kick in” immediately, so performance depends on L
• http://crd-legacy.lbl.gov/~oliker/papers/msp_2005.pdf

http://crd-legacy.lbl.gov/~oliker/papers/msp_2005.pdf

01/19/2012 CS267 - Lecture 2 21

Lessons

• Actual performance of a simple program can be a
complicated function of the architecture

• Slight changes in the architecture or program change the
performance significantly

• To write fast programs, need to consider architecture
• True on sequential or parallel processor

• We would like simple models to help us design efficient
algorithms

• We will illustrate with a common technique for improving
cache performance, called blocking or tiling

• Idea: used divide-and-conquer to define a problem that fits in
register/L1-cache/L2-cache

01/19/2012 CS267 - Lecture 2 22

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Hidden from software (sort of)
• Pipelining
• SIMD units

• Case study: Matrix Multiplication
• Use of performance models to understand performance
• Attainable lower bounds on communication

01/19/2012 CS267 - Lecture 2 23

What is Pipelining?

• In this example:
• Sequential execution takes

4 * 90min = 6 hours
• Pipelined execution takes

30+4*40+20 = 3.5 hours
• Bandwidth = loads/hour
• BW = 4/6 l/h w/o pipelining
• BW = 4/3.5 l/h w pipelining
• BW <= 1.5 l/h w pipelining,

more total loads
• Pipelining helps bandwidth

but not latency (90 min)
• Bandwidth limited by slowest

pipeline stage
• Potential speedup = Number

pipe stages

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

 wash (30 min) + dry (40 min) + fold (20 min) = 90 min

Latency

01/19/2012 CS267 - Lecture 2 24

Example: 5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Pipelining is also used within arithmetic units
– a fp multiply may have latency 10 cycles, but throughput of 1/cycle

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

01/19/2012 CS267 - Lecture 2 25

SIMD: Single Instruction, Multiple
Data

++

• Scalar processing
• traditional mode
• one operation produces

one result

• SIMD processing
• with SSE / SSE2
• SSE = streaming SIMD extensions
• one operation produces

multiple results

XX

YY

X + YX + Y

++

x3x3 x2x2 x1x1 x0x0

y3y3 y2y2 y1y1 y0y0

x3+y3x3+y3 x2+y2x2+y2 x1+y1x1+y1 x0+y0x0+y0

XX

YY

X + YX + Y

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

01/19/2012 CS267 - Lecture 2 26

SSE / SSE2 SIMD on Intel

16x bytes

4x floats

2x doubles

• SSE2 data types: anything that fits into 16 bytes, e.g.,

• Instructions perform add, multiply etc. on all the data in
this 16-byte register in parallel

• Challenges:
• Need to be contiguous in memory and aligned
• Some instructions to move data around from one part of

register to another
• Similar on GPUs, vector processors (but many more simultaneous

operations)

01/19/2012 CS267 - Lecture 2 27

What does this mean to you?
• In addition to SIMD extensions, the processor may have

other special instructions
• Fused Multiply-Add (FMA) instructions:
 x = y + c * z
 is so common some processor execute the multiply/add as a

single instruction, at the same rate (bandwidth) as + or * alone

• In theory, the compiler understands all of this
• When compiling, it will rearrange instructions to get a good

“schedule” that maximizes pipelining, uses FMAs and SIMD
• It works with the mix of instructions inside an inner loop or other

block of code

• But in practice the compiler may need your help
• Choose a different compiler, optimization flags, etc.
• Rearrange your code to make things more obvious
• Using special functions (“intrinsics”) or write in assembly 

01/19/2012 CS267 - Lecture 2 28

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies

• Use of microbenchmarks to characterized performance

• Parallelism within single processors
• Case study: Matrix Multiplication

• Use of performance models to understand performance
• Attainable lower bounds on communication
• Simple cache model
• Warm-up: Matrix-vector multiplication
• Naïve vs optimized Matrix-Matrix Multiply

• Minimizing data movement
• Beating O(n3) operations
• Practical optimizations (continued next time)

01/19/2012 CS267 - Lecture 2 29

Why Matrix Multiplication?

• An important kernel in many problems

• Appears in many linear algebra algorithms

• Bottleneck for dense linear algebra

• One of the 7 dwarfs / 13 motifs of parallel computing

• Closely related to other algorithms, e.g., transitive closure on a
graph using Floyd-Warshall

• Optimization ideas can be used in other problems

• The best case for optimization payoffs

• The most-studied algorithm in high performance computing

01/19/2012 CS267 - Lecture 2

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

E
m

b
ed

S
P
E
C

D
B

G
am

es

M
L

H
P
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

01/19/2012 CS267 - Lecture 2 31

Matrix-multiply, optimized several
ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

01/19/2012 CS267 - Lecture 2 32

Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory
addresses are “1-D”

• Conventions for matrix layout
• by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
• by row, or “row major” (C default) A(i,j) at A+i*n+j
• recursive (later)

• Column major (for now)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

cachelines
Blue row of matrix is
stored in red cachelines

Figure source: Larry Carter, UCSD

Column major matrix in memory

01/19/2012 CS267 - Lecture 2 33

Computational
Intensity: Key to
algorithm efficiency

Machine
Balance:
Key to
machine
efficiency

 Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory

• m = number of memory elements (words) moved between fast
and slow memory

• tm = time per slow memory operation

• f = number of arithmetic operations

• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow memory access

• Minimum possible time = f* tf when all data in fast memory

• Actual time
• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

• Larger q means time closer to minimum f * tf
• q ≥ tm/tf needed to get at least half of peak speed

01/19/2012 CS267 - Lecture 2 34

Warm up: Matrix-vector multiplication

{implements y = y + A*x}
for i = 1:n

for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

01/19/2012 CS267 - Lecture 2 35

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

 {read row i of A into fast memory}
 for j = 1:n

 y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ≈ 2

• Matrix-vector multiplication limited by slow memory speed

01/19/2012 CS267 - Lecture 2 36

 Modeling Matrix-Vector Multiplication

• Compute time for nxn = 1000x1000 matrix
• Time

• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

• = 2*n2 * tf * (1 + tm/tf * 1/2)

• For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)
• http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

• For tm use minimum-memory-latency / words-per-cache-line
Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max)
cycles machine

balance
(q must
be at least
this for
½ peak
speed)

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

01/19/2012 CS267 - Lecture 2 37

Simplifying Assumptions

• What simplifying assumptions did we make in this
analysis?

• Ignored parallelism in processor between memory and
arithmetic within the processor

• Sometimes drop arithmetic term in this type of analysis

• Assumed fast memory was large enough to hold three vectors
• Reasonable if we are talking about any level of cache
• Not if we are talking about registers (~32 words)

• Assumed the cost of a fast memory access is 0
• Reasonable if we are talking about registers
• Not necessarily if we are talking about cache (1-2 cycles for L1)

• Memory latency is constant

• Could simplify even further by ignoring memory
operations in X and Y vectors

• Mflop rate/element = 2 / (2* tf + tm)

01/19/2012 CS267 - Lecture 2 38

Validating the Model

• How well does the model predict actual performance?
• Actual DGEMV: Most highly optimized code for the platform

• Model sufficient to compare across machines
• But under-predicting on most recent ones due to latency estimate

0

200

400

600

800

1000

1200

1400

Ultra 2i Ultra 3 Pentium 3 Pentium3M Power3 Power4 Itanium1 Itanium2

M
Fl

op
/s

Predicted MFLOP
(ignoring x,y)

Pre DGEMV Mflops
(with x,y)

Actual DGEMV
(MFLOPS)

01/19/2012 CS267 - Lecture 2 39

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
 for j = 1 to n

for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and
operates on 3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

01/19/2012 CS267 - Lecture 2 40

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
 {read C(i,j) into fast memory}
 {read column j of B into fast memory}
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 {write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)
C(i,j)

01/19/2012 CS267 - Lecture 2 41

Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 to read each column of B n times

 + n2 to read each row of A once
 + 2n2 to read and write each element of C once
 = n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
 ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

01/19/2012 CS267 - Lecture 2 42

Matrix-multiply, optimized several
ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

01/19/2012 CS267 - Lecture 2 43

Naïve Matrix Multiply on RS/6000

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

log Problem Size

lo
g

cy
cl
es

/f
lo
p

T = N4.7

O(N3) performance would have constant cycles/flop
Performance looks like O(N4.7)

Size 2000 took 5 days

12000 would take
1095 years

Slide source: Larry Carter, UCSD

01/19/2012 CS267 - Lecture 2 44

Naïve Matrix Multiply on RS/6000

Slide source: Larry Carter, UCSD

0

1

2

3

4

5

6

0 1 2 3 4 5

log Problem Size

lo
g

cy
cl
es

/f
lo
p

Page miss every iteration

TLB miss every
iteration

Cache miss every
16 iterations Page miss every 512 iterations

01/19/2012 CS267 - Lecture 2 45

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
b=n / N is called the block size
 for i = 1 to N

 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

01/19/2012 CS267 - Lecture 2 46

Blocked (Tiled) Matrix Multiply

Recall:
 m is amount memory traffic between slow and fast memory
 matrix has nxn elements, and NxN blocks each of size bxb
 f is number of floating point operations, 2n3 for this problem
 q = f / m is our measure of algorithm efficiency in the memory system
So:

m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
 + N*n2 read each block of A N3 times
 + 2n2 read and write each block of C once
 = (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
 ≈ n / N = b for large n
So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

01/19/2012 CS267 - Lecture 2 47

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ≈ b
• The larger the block size, the more efficient our algorithm will be
• Limit: All three blocks from A,B,C must fit in fast memory (cache), so

we cannot make these blocks arbitrarily large

• Assume your fast memory has size Mfast

 3b2 ≤ Mfast, so q ≈ b ≤ (Mfast/3)1/2

required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

• To build a machine to run matrix
multiply at 1/2 peak arithmetic speed
of the machine, we need a fast
memory of size

 Mfast ≥ 3b2 ≈ 3q2 = 3(tm/tf)2

• This size is reasonable for L1 cache,
but not for register sets

• Note: analysis assumes it is possible
to schedule the instructions perfectly

01/19/2012 CS267 - Lecture 2 48

Limits to Optimizing Matrix Multiply

• The blocked algorithm changes the order in which values are
accumulated into each C[i,j] by applying commutativity and associativity

• Get slightly different answers from naïve code, because of roundoff - OK

• The previous analysis showed that the blocked algorithm has
computational intensity:

q ≈ b ≤ (Mfast/3)1/2

• There is a lower bound result that says we cannot do any better than this
(using only associativity)

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(that uses only associativity) is limited to q = O((Mfast)

1/2)

• #words moved between fast and slow memory = (nΩ 3 / (Mfast)1/2)

01/19/2012 CS267 - Lecture 2

Review of lecture 2 so far (and a look ahead)

49

• Hardware
• Even simple programs have complicated behaviors
• “Small” changes make execution time vary by orders

of magnitude

• Algorithms (matmul as example)
• Need simple model of hardware to guide design,

analysis: minimize accesses to slow memory
• If lucky, theory describing “best algorithm”

• Applications
• How to decompose into well-understood algorithms

(and their implementations)

• Software tools
• How do I implement my applications and algorithms

in most efficient and productive way?

L
ay

er
s

01/19/2012 CS267 - Lecture 2

Communication lower bounds for Matmul

• Hong/Kung theorem is a lower bound on amount of data
communicated by matmul

• Number of words moved between fast and slow memory (cache

and DRAM, or DRAM and disk, or …) = Ω (n3 / Mfast
1/2)

• Cost of moving data may also depend on the number of
“messages” into which data is packed

• Eg: number of cache lines, disk accesses, …

• #messages = Ω (n3 / Mfast
3/2)

• Lower bounds extend to anything “similar enough” to
3 nested loops

• Rest of linear algebra (solving linear systems, least squares…)
• Dense and sparse matrices
• Sequential and parallel algorithms, …

• Need (more) new algorithms to attain these lower
bounds… 50

01/19/2012 CS267 - Lecture 2 51

Basic Linear Algebra Subroutines (BLAS)
• Industry standard interface (evolving)

• www.netlib.org/blas, www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations
• History

• BLAS1 (1970s):
• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q = f/m = computational intensity ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

• Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
• See www.netlib.org/{lapack,scalapack}
• More later in course

01/19/2012 CS267 - Lecture 2 52

BLAS speeds on an IBM RS6000/590

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Peak

01/19/2012 CS267 - Lecture 2 53

Dense Linear Algebra: BLAS2 vs. BLAS3

• BLAS2 and BLAS3 have very different computational
intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

0
100
200
300
400
500
600
700
800
900

1000

AM
D A

th
lon

-6
00

DEC e
v5

6-
53

3

DEC e
v6

-5
00

HP90
00

/7
35

/1
35

IB
M

 P
PC60

4-
11

2

IB
M

 P
ow

er
2-

16
0

IB
M

 P
ow

er
3-

20
0

Pen
tiu

m
 P

ro
-2

00

Pen
tiu

m
 II

-2
66

Pen
tiu

m
 II

I-5
50

SGI R
10

00
0ip

28
-2

00

SGI R
12

00
0ip

30
-2

70

M
F

lo
p

/s

DGEMM

DGEMV

Data source: Jack Dongarra

01/19/2012 CS267 - Lecture 2 54

What if there are more than 2 levels of memory?

• Need to minimize communication between all levels
• Between L1 and L2 cache, cache and DRAM, DRAM and disk…

• The tiled algorithm requires finding a good block size
• Machine dependent
• Need to “block” b x b matrix multiply in inner most loop

• 1 level of memory ⇒ 3 nested loops (naïve algorithm)
• 2 levels of memory ⇒ 6 nested loops
• 3 levels of memory ⇒ 9 nested loops …

• Cache Oblivious Algorithms offer an alternative
• Treat nxn matrix multiply as a set of smaller problems
• Eventually, these will fit in cache
• Will minimize # words moved between every level of memory

hierarchy – at least asymptotically

01/19/2012 CS267 - Lecture 2

Recursive Matrix Multiplication (RMM) (1/2)
• C = = A · B = ·

 =

• True when each Aij etc 1x1 or n/2 x n/2

• For simplicity: square matrices with n = 2m

55

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

A11·B11 + A12·B21 A11·B12 + A12·B22

A21·B11 + A22·B21 A21·B12 + A22·B22

 func C = RMM (A, B, n)
 if n = 1, C = A * B, else
 { C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
 C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
 C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
 C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2) }
 return

01/19/2012 CS267 - Lecture 2

Recursive Matrix Multiplication (2/2)

56

 func C = RMM (A, B, n)
 if n=1, C = A * B, else
 { C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
 C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
 C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
 C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2) }
 return

A(n) = # arithmetic operations in RMM(. , . , n)

 = 8 · A(n/2) + 4(n/2)2 if n > 1, else 1

 = 2n3 … same operations as usual, in different order

M(n) = # words moved between fast, slow memory by RMM(. , . , n)

 = 8 · M(n/2) + 4(n/2)2 if 3n2 > Mfast , else 3n2

 = O(n3 / (Mfast)
1/2 + n2) … same as blocked matmul

Don’t need to know Mfast for this to work!

01/19/2012 CS267 - Lecture 2 57

Recursion: Cache Oblivious Algorithms

• The tiled algorithm requires finding a good block size
• Cache Oblivious Algorithms offer an alternative

• Treat nxn matrix multiply set of smaller problems
• Eventually, these will fit in cache

• Cases for A (nxm) * B (mxp)
• Case1: m>= max{n,p}: split A horizontally:
• Case 2 : n>= max{m,p}: split A vertically and B horizontally
• Case 3: p>= max{m,n}: split B vertically

• Attains lower bound in O() sense

÷÷





=÷÷





BA

BA
B

A

A

2

1

2

1

() ()2121 ,, BABABBA = Case 1

Case 3

() ()BABA
B

B
AA 21

2

1
21, +=÷÷






Case 2

1 2

01/19/2012 CS267 - Lecture 2

Experience with Cache-Oblivious Algorithms

• In practice, need to cut off recursion well before 1x1 blocks
• Call “micro-kernel” on small blocks

• Implementing a high-performance Cache-Oblivious code is
not easy

• Careful attention to micro-kernel is needed

• Using fully recursive approach with highly optimized
recursive micro-kernel, Pingali et al report that they never
got more than 2/3 of peak.

• Issues with Cache Oblivious (recursive) approach
• Recursive Micro-Kernels yield less performance than iterative

ones using same scheduling techniques
• Pre-fetching is needed to compete with best code: not well-

understood in the context of Cache-Oblivious codes

Unpublished work, presented at LACSI 2006

01/19/2012 CS267 - Lecture 259

Recursive Data Layouts

• A related idea is to use a recursive structure for the matrix
• Improve locality with machine-independent data structure
• Can minimize latency with multiple levels of memory hierarchy

• There are several possible recursive decompositions depending on
the order of the sub-blocks

• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

• Gustavson, Kagstrom, et al, SIAM Review, 2004

Advantages:
• the recursive layout works well

for any cache size
Disadvantages:
• The index calculations to find

A[i,j] are expensive
• Implementations switch to

column-major for small sizes

01/19/2012 CS267 - Lecture 2 60

Strassen’s Matrix
Multiply

• The traditional algorithm (with or without tiling) has O(n3) flops
• Strassen discovered an algorithm with asymptotically lower flops

• O(n2.81)

• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
• Strassen does it with 7 multiplies and 18 adds

Let M = m11 m12 = a11 a12 b11 b12

 m21 m22 = a21 a22 b21 b22

Let p1 = (a12 - a22) * (b21 + b22) p5 = a11 * (b12 - b22)

 p2 = (a11 + a22) * (b11 + b22) p6 = a22 * (b21 - b11)

 p3 = (a11 - a21) * (b11 + b12) p7 = (a21 + a22) * b11

 p4 = (a11 + a12) * b22

Then m11 = p1 + p2 - p4 + p6

 m12 = p4 + p5

 m21 = p6 + p7

 m22 = p2 - p3 + p5 - p7

Extends to nxn by divide&conquer

01/19/2012 CS267 - Lecture 2 61

Strassen (continued)

T(n) = Cost of multiplying nxn matrices
 = 7*T(n/2) + 18*(n/2)2

 = O(n log2 7)
 = O(n 2.81)

• Asymptotically faster
• Several times faster for large n in practice
• Cross-over depends on machine
• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”,

M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings
of Supercomputing '98

• Possible to extend communication lower bound to Strassen
• #words moved between fast and slow memory

= Ω(nlog2 7 / M(log2 7)/2 – 1) ~ Ω(n2.81 / M0.4) (Ballard,
D., Holtz, Schwartz, 2011)

• Attainable too

01/19/2012 CS267 - Lecture 2 62

Other Fast Matrix Multiplication Algorithms

• World’s record was O(n 2.376...)
• Coppersmith & Winograd, 1987

• New Record! 2.376 reduced to 2.373
• Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011

• Lower bound on #words moved can be extended
to (some) of these algorithms

• Possibility of O(n2+ε) algorithm!
• Cohn, Umans, Kleinberg, 2003

• Can show they all can be made numerically stable
• D., Dumitriu, Holtz, Kleinberg, 2007

• Can do rest of linear algebra (solve Ax=b, Ax=λx,
etc) as fast , and numerically stably

• D., Dumitriu, Holtz, 2008

• Fast methods (besides Strassen) may need
unrealistically large n

01/19/2012 CS267 - Lecture 2

Tuning Code in Practice

• Tuning code can be tedious
• Lots of code variations to try besides blocking
• Machine hardware performance hard to predict
• Compiler behavior hard to predict

• Response: “Autotuning”
• Let computer generate large set of possible code variations,

and search them for the fastest ones
• Field started with CS267 homework assignment in mid 1990s

• PHiPAC, leading to ATLAS, incorporated in Matlab
• We still use the same assignment

• We (and others) are extending autotuning to other dwarfs /
motifs

• Still need to understand how to do it by hand
• Not every code will have an autotuner
• Need to know if you want to build autotuners

63

01/19/2012 CS267 - Lecture 2 64

Search Over Block
Sizes

• Performance models are useful for high level algorithms
• Helps in developing a blocked algorithm
• Models have not proven very useful for block size selection

• too complicated to be useful
– See work by Sid Chatterjee for detailed model

• too simple to be accurate
– Multiple multidimensional arrays, virtual memory, etc.

• Speed depends on matrix dimensions, details of code, compiler,
processor

01/19/2012 CS267 - Lecture 2 65

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

N
um

be
r

o f
 c

ol
um

n s
 in

 r
eg

is
t e

r
bl

oc
k

Number of rows in register block

01/19/2012 CS267 - Lecture 2 66

ATLAS (DGEMM n = 500)

• ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

A
M

D A
th

lo
n-

60
0

D
EC

 e
v5

6-
53

3

D
EC

 e
v6

-5
00

H
P90

00
/7

35
/1

35

IB
M

 P
PC

60
4-

11
2

IB
M

 P
ow

er
2-

16
0

IB
M

 P
ow

er
3-

20
0

Pen
tiu

m
 P

ro
-2

00

Pen
tiu

m
 II

-2
66

Pen
tiu

m
 II

I-5
50

SG
I R

10
00

0i
p28

-2
00

SG
I R

12
00

0i
p30

-2
70

Sun
 U

ltr
aS

par
c2

-2
00

Architectures

M
F

L
O

P
S

Vendor BLAS
ATLAS BLAS
F77 BLAS

Source: Jack Dongarra

01/19/2012 CS267 - Lecture 2 67

Optimizing in Practice

• Tiling for registers
• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache and TLB
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining

• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area

• ParLab: parlab.eecs.berkeley.edu
• BeBOP: bebop.cs.berkeley.edu

• Weekly group meeting Tuesdays 12:30pm

• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
 in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas

01/19/2012 CS267 - Lecture 2 68

Removing False Dependencies

• Using local variables, reorder operations to remove false
dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

false read-after-write hazard
between a[i] and b[i+1]

With some compilers, you can declare a and b unaliased.
• Done via “restrict pointers,” compiler flag, or pragma)

01/19/2012 CS267 - Lecture 2 69

Exploit Multiple Registers

• Reduce demands on memory bandwidth by pre-loading
into local variables

while(…) {
 *res++ = filter[0]*signal[0]
 + filter[1]*signal[1]
 + filter[2]*signal[2];
 signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while(…) {
 *res++ = f0*signal[0]
 + f1*signal[1]
 + f2*signal[2];
 signal++;
}

also: register float f0 = …;

Example is a convolution

01/19/2012 CS267 - Lecture 2 70

Loop Unrolling

• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
 signal += 3;
 s0 = signal[0];
 res[0] = f0*s1 + f1*s2 + f2*s0;

 s1 = signal[1];
 res[1] = f0*s2 + f1*s0 + f2*s1;

 s2 = signal[2];
 res[2] = f0*s0 + f1*s1 + f2*s2;

 res += 3;
} while(…);

01/19/2012 CS267 - Lecture 2 71

Expose Independent Operations

• Hide instruction latency
• Use local variables to expose independent operations that can

execute in parallel or in a pipelined fashion
• Balance the instruction mix (what functional units are

available?)

f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;

01/19/2012 CS267 - Lecture 2 72

Copy optimization

• Copy input operands or blocks
• Reduce cache conflicts
• Constant array offsets for fixed size blocks
• Expose page-level locality
• Alternative: use different data structures from start (if users willing)

• Recall recursive data layouts

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Original matrix
(numbers are addresses)

0

1

4

5

2

3

6

7

8

9

12

14

10

11

13

15

Reorganized into
2x2 blocks

01/19/2012 CS267 - Lecture 2 73

Locality in Other Algorithms

• The performance of any algorithm is limited by q
• q = “computational intensity” = #arithmetic_ops / #words_moved

• In matrix multiply, we increase q by changing
computation order

• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• Lots of open problems, class projects

01/19/2012 CS267 - Lecture 2 74

Summary of Lecture 2

• Details of machine are important for performance
• Processor and memory system (not just parallelism)
• Before you parallelize, make sure you’re getting good serial

performance
• What to expect? Use understanding of hardware limits

• There is parallelism hidden within processors
• Pipelining, SIMD, etc

• Machines have memory hierarchies
• 100s of cycles to read from DRAM (main memory)
• Caches are fast (small) memory that optimize average case

• Locality is at least as important as computation
• Temporal: re-use of data recently used
• Spatial: using data nearby that recently used

• Can rearrange code/data to improve locality
• Goal: minimize communication = data movement

01/19/2012 CS267 - Lecture 2

Class Logistics

• Homework 0 posted on web site
• Find and describe interesting application of parallelism
• Due Feb 2
• Could even be your intended class project

• Homework 1 posted on web site
• Tuning matrix multiply
• Due Feb 14

• Please fill in on-line class survey
• We need this to assign teams for Homework 1

75

01/19/2012 CS267 - Lecture 2 76

Some reading for today (see website)

• Sourcebook Chapter 3, (note that chapters 2 and 3 cover the
material of lecture 2 and lecture 3, but not in the same order).

• "Performance Optimization of Numerically Intensive Codes", by
Stefan Goedecker and Adolfy Hoisie, SIAM 2001.

• Web pages for reference:
• BeBOP Homepage
• ATLAS Homepage
• BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized)

implementations of the BLAS, with documentation.
• LAPACK (Linear Algebra PACKage), a standard linear algebra library

optimized to use the BLAS effectively on uniprocessors and shared
memory machines (software, documentation and reports)

• ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for
distributed memory machines (software, documentation and reports)

• Tuning Strassen's Matrix Multiplication for Memory Efficiency
Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck
in Proceedings of Supercomputing '98, November 1998 postscript

• Recursive Array Layouts and Fast Parallel Matrix Multiplication” by
Chatterjee et al. IEEE TPDS November 2002.

http://www.siam.org/catalog/mcc12/se12.htm
http://bebop.cs.berkeley.edu/
http://www.netlib.org/atlas/index.html
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
http://www.cs.duke.edu/ari/arch/papers/sc98.ps

01/19/2012 CS267 - Lecture 2

Extra Slides

77

01/19/2012 CS267 - Lecture 2 78

Memory Performance on Itanium 2 (CITRIS)
Itanium2, 900 MHz

L2: 256 KB
128 B line
.5-4 cycles

L1: 32 KB
64B line
.34-1 cycles

Array size

Mem:
11-60 cycles

L3: 2 MB
128 B line
3-20 cycles

Uses MAPS Benchmark: http://www.sdsc.edu/PMaC/MAPs/maps.html

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (1/6)

• Proof from Irony/Tishkin/Toledo (2004)
• We’ll need it for the communication lower bound on parallel matmul

• Think of instruction stream being executed
• Looks like “ … add, load, multiply, store, load, add, …”
• We want to count the number of loads and stores, given that we

are multiplying n-by-n matrices C = A*B using the usual 2*n3 flops,
possibly reordered assuming addition is commutative/associative

• It actually isn’t associative in floating point, but close enough

• Assuming that at most M words can be stored in fast memory

• Outline:
• Break instruction stream into segments, each containing M loads

and stores
• Somehow bound the maximum number of adds and multiplies that

could be done in each segment, call it F
• So F · # segments ≥ 2·n3 , and # segments ≥ 2·n3 / F
• So # loads & stores = M · #segments ≥ M ·2 ·n3 / F 79

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (2/6)

• Given segment of instruction stream with M loads & stores,
how many adds & multiplies (F) can we do?

• At most 2M entries of C, 2M entries of A and/or 2M entries of B
can be accessed

• Use geometry:
• Represent 2·n3 operations by n x n x n cube
• One n x n face represents A

• each 1 x 1 subsquare represents one A(i,k)

• One n x n face represents B
• each 1 x 1 subsquare represents one B(k,j)

• One n x n face represents C
• each 1 x 1 subsquare represents one C(i,j)

• Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)

80

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (3/6)

81

i

j

k

“A face”
“B

 fa
ce

”

“C face”

A(2,1)

A(1,3)

B
(1

,3
)

B
(3

,1
)

C(1,1)

C(2,3)

Cube representing
C(1,1) +=

A(1,3)*B(3,1)

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (4/6)

• Given segment of instruction stream with M load & stores,
how many adds & multiplies (F) can we do?

• At most 2M entries of C, and/or of A and/or of B can be accessed

• Use geometry:
• Represent 2·n3 operations by n x n x n cube
• One n x n face represents A

• each 1 x 1 subsquare represents one A(i,k)

• One n x n face represents B
• each 1 x 1 subsquare represents one B(k,j)

• One n x n face represents C
• each 1 x 1 subsquare represents one C(i,j)

• Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) * B(k,j)

82

• If we have at most 2M “A squares”, 2M “B squares”, and
2M “C squares” on faces, how many cubes can we have?

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (5/6)

83

x

z

z

y

x
y

cubes in black box with
 side lengths x, y and z
= Volume of black box
= x*y*z
= (#A□s * #B□s * #C□s)1/2

= (xz * zy * yx)1/2

k

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) * area(B shadow) *
 area(C shadow)) 1/2

“A shadow”

“B shadow”

“C shadow”

j

i

01/19/2012 CS267 - Lecture 2

Proof of Communication Lower Bound on C = A*B (6/6)

• Consider one “segment” of instructions with M loads and
stores

• There can be at most 2M entries of A, B, C available in one
segment

• Volume of set of cubes representing possible multiply/adds ≤
(2M · 2M · 2M)1/2 = (2M) 3/2 ≡ F

• # Segments ≥ 2n3 / F

• # Loads & Stores = M · #Segments ≥ M · 2n3 / F = n3 / (2M)1/2

84

• Parallel Case: apply reasoning to one processor out of P

• # Adds and Muls = 2n3 / P (assuming load balanced)

• M= n2 / P (each processor gets equal fraction of matrix)

• # “Load & Stores” = # words communicated with other
procs ≥ M · (2n3 /P) / F= M · (2n3 /P) / (2M) 3/2 = n2 / (2P)1/2

01/19/2012 CS267 - Lecture 285

Experiments on Search vs. Modeling

Study compares search (Atlas) to
optimization selection based on
performance models

•Ten modern architectures
• Model did well on most cases

• Better on UltraSparc
• Worse on Itanium

• Eliminating performance gaps:
think globally, search locally

-small performance gaps:
local search

-large performance gaps:
refine model

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some machines

Source: K. Pingali. Results from IEEE ’05 paper by K Yotov, X Li, G Ren, M Garzarán, D Padua, K
Pingali, P Stodghill.

01/19/2012 CS267 - Lecture 2 86

Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code on Itanium 2

• Searched all block sizes to find best, b=56
• Starting point for next homework

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800

Matrix dimension

M
F

lo
p

/s

3 loops

blocked, b=56

01/19/2012 CS267 - Lecture 2 87

Minimize Pointer Updates

• Replace pointer updates for strided memory addressing
with constant array offsets

f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;

Pointer vs. array expression costs may differ.
• Some compilers do a better job at analyzing one than the other

01/19/2012 CS267 - Lecture 2 88

Summary
• Performance programming on uniprocessors requires

• understanding of memory system
• understanding of fine-grained parallelism in processor

• Simple performance models can aid in understanding

• Two ratios are key to efficiency (relative to peak)

1.computational intensity of the algorithm:

• q = f/m = # floating point operations / # slow memory references

1.machine balance in the memory system:

• tm/tf = time for slow memory reference / time for floating point operation

• Want q > tm/tf to get half machine peak

• Blocking (tiling) is a basic approach to increase q
• Techniques apply generally, but the details (e.g., block size) are

architecture dependent
• Similar techniques are possible on other data structures and algorithms

• Now it’s your turn: Homework 1
1.Work in teams of 2 or 3 (assigned this time)

01/19/2012 CS267 - Lecture 2 89

Questions You Should Be Able to Answer

1. What is the key to understand algorithm efficiency in
our simple memory model?

2. What is the key to understand machine efficiency in
our simple memory model?

3. What is tiling?
4. Why does block matrix multiply reduce the number of

memory references?
5. What are the BLAS?
6. Why does loop unrolling improve uniprocessor

performance?

01/19/2012 CS267 - Lecture 2 90

Recursive Data Layouts

• Blocking seems to require knowing cache sizes – portable?
• A related (recent) idea is to use a recursive structure for the matrix
• There are several possible recursive decompositions depending on

the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

Advantages:
• the recursive layout works well

for any cache size
Disadvantages:
• The index calculations to find

A[i,j] are expensive
• Implementations switch to

column-major for small sizes

	CS267 Lecture 2 Single Processor Machines: Memory Hierarchies and Processor Features Case Study: Tuning Matrix Multiply
	Motivation
	Possible conclusions to draw from today’s lecture
	Outline
	Slide 5
	Idealized Uniprocessor Model
	Uniprocessors in the Real World
	Slide 8
	Memory Hierarchy
	Processor-DRAM Gap (latency)
	Approaches to Handling Memory Latency
	Cache Basics
	Why Have Multiple Levels of Cache?
	Experimental Study of Memory (Membench)
	Membench: What to Expect
	Memory Hierarchy on a Sun Ultra-2i
	Memory Hierarchy on an Intel Core 2 Duo
	Memory Hierarchy on a Power3 (Seaborg)
	Stanza Triad
	Stanza Triad Results
	Lessons
	Slide 22
	What is Pipelining?
	Example: 5 Steps of MIPS Datapath Figure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy
	SIMD: Single Instruction, Multiple Data
	SSE / SSE2 SIMD on Intel
	What does this mean to you?
	Slide 28
	Why Matrix Multiplication?
	Motif/Dwarf: Common Computational Methods (Red Hot  Blue Cool)
	Matrix-multiply, optimized several ways
	Note on Matrix Storage
	Using a Simple Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Slide 35
	Modeling Matrix-Vector Multiplication
	Simplifying Assumptions
	Validating the Model
	Naïve Matrix Multiply
	Slide 40
	Slide 41
	Slide 42
	Naïve Matrix Multiply on RS/6000
	Slide 44
	Blocked (Tiled) Matrix Multiply
	Slide 46
	Using Analysis to Understand Machines
	Limits to Optimizing Matrix Multiply
	Review of lecture 2 so far (and a look ahead)
	Communication lower bounds for Matmul
	Basic Linear Algebra Subroutines (BLAS)
	BLAS speeds on an IBM RS6000/590
	Dense Linear Algebra: BLAS2 vs. BLAS3
	What if there are more than 2 levels of memory?
	Recursive Matrix Multiplication (RMM) (1/2)
	Recursive Matrix Multiplication (2/2)
	Recursion: Cache Oblivious Algorithms
	Experience with Cache-Oblivious Algorithms
	Recursive Data Layouts
	Strassen’s Matrix Multiply
	Strassen (continued)
	Other Fast Matrix Multiplication Algorithms
	Tuning Code in Practice
	Search Over Block Sizes
	What the Search Space Looks Like
	ATLAS (DGEMM n = 500)
	Optimizing in Practice
	Removing False Dependencies
	Exploit Multiple Registers
	Loop Unrolling
	Expose Independent Operations
	Copy optimization
	Locality in Other Algorithms
	Summary of Lecture 2
	Class Logistics
	Some reading for today (see website)
	Extra Slides
	Memory Performance on Itanium 2 (CITRIS)
	Proof of Communication Lower Bound on C = A*B (1/6)
	Proof of Communication Lower Bound on C = A*B (2/6)
	Proof of Communication Lower Bound on C = A*B (3/6)
	Proof of Communication Lower Bound on C = A*B (4/6)
	Proof of Communication Lower Bound on C = A*B (5/6)
	Proof of Communication Lower Bound on C = A*B (6/6)
	Experiments on Search vs. Modeling
	Tiling Alone Might Not Be Enough
	Minimize Pointer Updates
	Summary
	Questions You Should Be Able to Answer
	Slide 90

