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Introduction

OpenMP is a bridge between yesterday’s programming languages
and tomorrow’s multicore chips.
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Introduction: Where OpenMP is Used

OpenMP runs a user program on shared memory systems:

a single core chip (older PC’s, sequential execution)

a multicore chip (such as your laptop?)

multiple single core chips in a NUMA system

multiple multicore chips in a NUMA system (SGI system)

multiple multicore chips using other schemes (Intel’s Cluster
OpenMP)

OpenMP can be combined with MPI if a distributed system is
made up of multi-processor chips.
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Introduction: Where OpenMP is Used

OpenMP is limited by the shared memory hardware.

An OpenMP program can only handle problems that fit on the
chip or the coupled chips, over which memory can be shared.

An MPI program running on 5 chips, which needs more memory,
can easily be run on 100 chips, getting 20 times more memory.

An OpenMP program usually runs on a single chip, with a fixed
amount of memory. If multiple chip OpenMP is available, the
number of chips that can participate is limited, and there is a
noticeable performance cost.

So MPI is better when big memory is needed.
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Introduction: How OpenMP is Used

The user inserts OpenMP “directives” in a program.

The user compiles the program with OpenMP directives enabled.

The number of “threads” is chosen by an environment variable or
a function call.

(Usually set the number of threads to the number of processors)

The user runs the program.
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Introduction: Compiler Support

Compiler writers support OpenMP:

Gnu gcc/g++ 4.2, gfortran 2.0;

IBM xlc, xlf

Intel icc, icpc, ifort

Microsoft Visual C++ (2005 Professional edition)

Portland C/C++/Fortran, pgcc, pgf95

Sun Studio C/C++/Fortran

Mac users: Apple distributes old compilers. Get latest gcc from
http://hpc.sourceforge.net/
You also need Apple Developer Tools (CodeWarrior).
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Introduction: What Do Directives Look Like?

In C or C++, directives begin with the # comment character and
the string pragma omp followed by the name of the directive.

# pragma omp parallel

# pragma omp sections

# pragma omp for

# pragma omp critical

Directives appear just before a block of code, which is delimited by
{ curly brackets } or the body of a for statement.
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Introduction: What Do Directives Look Like?

The parallel directive begins a parallel region.

# pragma omp parallel

{

do things in parallel here

}

If the entire parallel region is a single for or do loop, or a single
sections directive, the directives can be combined:

# pragma omp parallel for

for ( i = 0; i < n; i++ )

{

do things in parallel here

}
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Introduction: What Do Directives Look Like?

There’s overhead in starting up a parallel region. If you have
several loops in a row, try to include them all in one parallel region:

!$omp parallel

!$omp do

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel
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Introduction: What Do Directives Look Like?

The end of each loop normally forces all threads to wait. If there
are several loops in one parallel region, you can use a nowait
command to let a fast thread move on to the next one.

!$omp parallel

!$omp do nowait

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel
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Introduction: What Do Directives Look Like?

CLAUSES are additional information included on a directive.

The most common clauses define a list of private or shared
variables.

# pragma omp parallel shared (n,s,x,y) private (i,t)

# pragma omp for

for ( i = 0; i < n; i++ )

{

t = tan ( y[i] / x[i] );

x[i] = s * x[i] + t * y[i];

}
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Introduction: Long Directive Lines

You may often find that the text of a directive becomes rather long.

In C and C++, you can break the directive at a convenient point,
interrupting the text with a backslash character, \, and then
continuing the text on a new line.

# pragma omp parallel for \

shared ( n, s, x, y ) \

private ( i, t )

for ( i = 0; i < n; i++ )

{

t = tan ( y[i] / x[i] );

x[i] = s * x[i] + t * y[i];

}
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Introduction: What Do Directives Look Like?

FORTRAN77 directives begin with the string c$omp.

c$omp parallel do private ( i, j )

Directives longer than 72 characters must continue on a new line.

The continuation line also begins with the c$omp marker AND a
continuation character in column 6, such as &.

c$omp parallel do

c$omp& shared ( n, s, x, y )

c$omp& private ( i, t )

do i = 1, n

t = tan ( y(i) / x(i) )

x(i) = s * x(i) + t * y(i)

end do

c$omp end parallel do
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Introduction: What Do Directives Look Like?

FORTRAN90 directives begin with the string !$omp.

!$omp parallel do private ( i, j )

Long lines may be continued using a terminal &.

The continued line must also be “commented out” with the
!$omp marker.

!$omp parallel do &

!$omp shared ( n, s, x, y ) &

!$omp private ( i, t )

do i = 1, n

t = tan ( y(i) / x(i) )

x(i) = s * x(i) + t * y(i)

end do

!$omp end parallel do
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Introduction: What Do Directives Do?

indicate parallel sections of the code:
# pragma omp parallel

mark variables that must be kept private:
# pragma omp parallel private ( x, y, z )

suggest how some results are to be combined into one:
# pragma omp parallel reduction ( + : sum )

indicate code that only one thread can do at a time:
# pragma omp critical
# pragma omp end critical

force threads to wait til all are done:
# pragma omp barrier
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Introduction: What Do Directives Do?

Work to be done in a loop:
# pragma omp for

Work to be done in a loop; when done, don’t wait!:
# pragma omp for nowait

suggest how loop work is to be divided:
# pragma omp for schedule (dynamic)

Work has been divided into user-defined “sections”:
# pragma omp sections

Work to be done using FORTRAN90 implicit loops:
!$omp workshare
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Introduction: Threads

OpenMP assigns pieces of a computation to threads.

Each thread is an independent but “obedient” entity. It has access
to the shared memory. It has “private” space for its own working
data.

We usually ask for one thread per available core:
ask for fewer, some cores are idle;
ask for more, some cores will run several threads, (probably slower).

An OpenMP program begins with one master thread executing.

The other threads begin in idle mode, waiting for work.
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Introduction: Fork and Join

The program proceeds in sequential execution until it encounters a
region that the user has marked as a parallel section

The master thread activates the idle threads. (Technically, the
master thread forks into multiple threads.)

The work is divided up into chunks (that’s really the term!); each
chunk is assigned to a thread until all the work is done.

The end of the parallel section is an implicit barrier. Program
execution will not proceed until all threads have exited the parallel
section and joined the master thread. (This is called
“synchronization”.)

The helper threads go idle until the next parallel section.
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Sections

The easiest kind of parallelism to understand involves a set of jobs
which can be done in any order.

Often, the number of tasks is small (2 to 5, say), and known in
advance. It’s possible that each task, by itself, is not suitable for
processing by multiple threads.

We may try to speed up the computation by working on all the
tasks at the same time, assigning one thread to each.
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Sections: Syntax for C/C++

#pragma omp parallel <-- inside "parallel"

{

#pragma omp sections (nowait) <--optional nowait

{

#pragma omp section

{

code for section 1

}

#pragma omp section

{

code for section 2

} <-- more sections

} could follow

}
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Sections: Syntax for FORTRAN90

!$omp parallel <-- inside "parallel"

... <-- optional initial work

!$omp sections (nowait) <-- optional nowait

!$omp section

code for section 1

!$omp section

code for section 2

<-- more sections

could follow

!$omp end sections

... <-- optional later work

!$omp end parallel
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Sections

Each section will be executed by one thread.

If there are more sections than threads, some threads will do
several sections.

Any extra threads will be idle.

The end of the sections block is a barrier, or synchronization point.
Idle threads, and threads which have completed their sections, wait
here for the others.

If the nowait clause is added to the sections directive, then idle
and finished threads move on immediately.
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Sections

Notice that, if the program is executed sequentially, (ignoring the
directives), then the sections will simply be computed one at a
time, in the given order.

A Fast Fourier Transform program needs to compute two tables,
containing the sines and cosines of angles. Sections could be used
if two threads are available:

!$omp parallel sections nowait

!$omp section

call sin_table ( n, s )

!$omp section

call cos_table ( n, c )

!$omp end parallel sections
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Loops

OpenMP is ideal for parallel execution of for or do loops.

It’s really as though we had a huge number of parallel sections,
which are all the same except for the iteration counter I.

To execute a loop in parallel requires a parallel directive, followed
by a for or do directive.

For convenience, there is a combined form, the parallel do or
parallel for directive.

We’ll look at a simple example of such a loop to get a feeling for
how OpenMP works.
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Loops: Default Behavior

OpenMP assigns “chunks” of the index range to each thread.

It’s as though 20 programs (threads) are running at the same time.

In fact, that’s exactly what is happening!

If you have nested loops, the order is significant! OpenMP splits
up the outer loop, not the inner.

If you can write a pair of loops either way, you want to make sure
the outer loop has a sizable iteration count!

for ( i = 0; i < 3; i++ )

for ( j = 0; j < 100000; j++ )

Burkardt Shared Memory Programming With OpenMP



Loops: Default Behavior

When OpenMP splits up the loop iterations, it has to decide what
data is shared (in common), and what is private (each thread
gets a separate variable of the same name).

Each thread automatically gets a private copy of the loop index.

In FORTRAN only, each thread also gets a private copy of the loop
index for any loops nested inside the main loop. In C/C++, nested
loop indices are not automatically “privatized”.

By default, all other variables are shared’.

A simple test: if your loop executes correctly even if the
iterations are done in reverse order, things are probably
going to be OK!
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Loops: Shared and Private Data

In the ideal case, each iteration of the loop uses data in a way that
doesn’t depend on other iterations. Loosely, this is the meaning of
the term shared data.

A SAXPY computation adds a multiple of one vector to another.
Each iteration is

y(i) = s * x(i) + y(i)
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Loops: Sequential Version

# i n c l u d e <s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double x [ 1 0 0 0 ] , y [ 1 0 0 0 ] , s ;

s = 123 . 456 ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
y [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;

}

f o r ( i = 0 ; i < n ; i++ )
{

y [ i ] = y [ i ] + s ∗ x [ i ] ;
}
r e t u r n 0 ;

}
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Loops: The SAXPY task

This is a “perfect” parallel application: no private data, no
memory contention.

The arrays X and Y can be shared, because only the thread
associated with loop index I needs to look at the I-th entries.

Each thread will need to know the value of S but they can all
agree on what that value is. (They “share” the same value).
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Loops: SAXPY with OpenMP Directives

# i n c l u d e <s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e <omp . h>

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double x [ 1 0 0 0 ] , y [ 1 0 0 0 ] , s ;

s = 123 . 456 ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
y [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;

}

#pragma omp p a r a l l e l f o r
f o r ( i = 0 ; i < n ; i++ )
{

y [ i ] = y [ i ] + s ∗ x [ i ] ;
}
r e t u r n 0 ;

}
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Loops: C Syntax

We’ve included the <omp.h> file, but this is only needed to refer
to predefined constants, or call OpenMP functions.

The #pragma omp string is a marker that indicates to the
compiler that this is an OpenMP directive.

The parallel for clause requests parallel execution of the following
for loop.

The parallel section terminates at the closing brace of the for loop
block.

Burkardt Shared Memory Programming With OpenMP



Loops: Fortran Syntax

The include ’omp lib.h’ command is only needed to refer to
predefined constants, or call OpenMP functions.

In FORTRAN90, try use omp lib instead.

The marker string is c$omp or !$omp.

The parallel do clause requests parallel execution of a do loop.

In Fortran, but not C, the end of the parallel loop must also be
marked. A c$omp end parallel directive is used for this.
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Loops: SAXPY with OpenMP Directives

program main

i n c l u d e ’ omp l i b . h ’

i n t e g e r i , n
double p r e c i s i o n x (1000) , y (1000) , s

n = 1000
s = 123.456

do i = 1 , n
x ( i ) = rand ( )
y ( i ) = rand ( )

end do

c$omp p a r a l l e l do
do i = 1 , n

y ( i ) = y ( i ) + s ∗ x ( i )
end do

c$omp end p a r a l l e l do

stop
end
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Loops: QUIZ: Which of these loops are “safe”?

do i = 2, n - 1

y(i) = ( x(i) + x(i-1) ) / 2 Loop #1

end do

do i = 2, n - 1

y(i) = ( x(i) + x(i+1) ) / 2 Loop #2

end do

do i = 2, n - 1

x(i) = ( x(i) + x(i-1) ) / 2 Loop #3

end do

do i = 2, n - 1

x(i) = ( x(i) + x(i+1) ) / 2 Loop #4

end do
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Loops: How To Think About Threads

To visualize parallel execution, suppose 4 threads will execute the
1,000 iterations of the SAXPY loop.

OpenMP might assign the iterations in chunks of 50, so thread 1
will go from 1 to 50, then 201 to 251, then 401 to 450, and so on.

Then you also have to imagine that the four threads each execute
their loops more or less simultaneously.

Even this simple model of what’s going on will suggest some of the
things that can go wrong in a parallel program!
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Loops: The SAXPY loop, as OpenMP might think of it

i f ( t h r e a d i d == 0 ) then
do i l o = 1 , 801 , 200

do i = i l o , i l o + 49
y ( i ) = y ( i ) + s ∗ x ( i )

end do
end do

e l s e i f ( t h r e a d i d == 1 ) then
do i l o = 51 , 851 , 200

do i = i l o , i l o + 49
y ( i ) = y ( i ) + s ∗ x ( i )

end do
end do

e l s e i f ( t h r e a d i d == 2 ) then
do i l o = 101 , 901 , 200

do i = i l o , i l o + 49
y ( i ) = y ( i ) + s ∗ x ( i )

end do
end do

e l s e i f ( t h r e a d i d == 3 ) then
do i l o = 151 , 951 , 200

do i = i l o , i l o + 49
y ( i ) = y ( i ) + s ∗ x ( i )

end do
end do

end i f
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Loops: Comments

What about the loop that initializes X and Y?

The problem here is that we’re calling the rand function.

Normally, inside a parallel loop, you can call a function and it will
also run in parallel. However, the function cannot have side effects.

The rand function is a special case; it has an internal “static” or
“saved” variable whose value is changed and remembered
internally.

Getting random numbers in a parallel loop requires care. We will
leave this topic for later discussion.
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Critical Regions and Reductions

Critical regions of a code contain operations that should not be
performed by more than one thread at a time.

A common cause of critical regions occurs when several threads
want to modify the same variable, perhaps in a summation:

total = total + x[i]

To see what a critical region looks like, let’s consider the following
program, which computes the maximum entry of a vector.
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VECTOR SUM: Sequential version

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
u s i n g namespace s td ;

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double t o t a l , x [ 1 0 0 0 ] ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
}

t o t a l = 0 . 0 ;
f o r ( i = 0 ; i < n ; i++ )
{

t o t a l = t o t a l + x [ i ] ;
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Critical Regions and Reductions

To turn our program into an OpenMP program is easy:

add the statement # include <omp.h>

add the directive # pragma omp parallel for just before the
for loop

compile, say with g++ -fopenmp vector sum.C

But to turn our program into a CORRECT OpenMP program is
not so easy!

This code cannot be guaranteed to run correctly on more than 1
processor!
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VECTOR SUM: First OpenMP version

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
# i n c l u d e <omp . h>
u s i n g namespace s td ;

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double t o t a l , x [ 1 0 0 0 ] ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
}

t o t a l = 0 . 0 ;
# pragma omp p a r a l l e l f o r

f o r ( i = 0 ; i < n ; i++ )
{

t o t a l = t o t a l + x [ i ] ;
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Critical Regions and Reductions

The problem is one of synchronization. Because more than one
thread is reading and writing the same data, it is possible for
information to be mishandled.

When OpenMP uses threads to execute the iterations of a loop:

the statements in a particular iteration of the loop will be
carried out by one thread, in the given order

but the statements in different iterations, carried out by
different threads, may be “interleaved” arbitrarily.
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Critical Regions and Reductions

The processors must work on local copies of data.

P0: read TOTAL, X1

P1: read TOTAL, X2

P0: local TOTAL = TOTAL + X1

P0: write TOTAL

P1: local TOTAL = TOTAL + X2

P1: write TOTAL

If X = [10,20], what is TOTAL at the end?
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Critical Region and Reductions

As soon as processor 0 reads TOTAL into its local memory, no
other processor should try to read or write TOTAL until processor
0 is done.

The update of TOTAL is called a critical region.

The OpenMP critical clause allows us to indicate that even
though we are inside a parallel section, the critical code may only
be performed by one thread at a time.

Fortran codes also need to use an end critical directive. C/C++
codes simply use curly braces to delimit the critical region.
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VECTOR SUM: Second OpenMP version

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
# i n c l u d e <omp . h>
u s i n g namespace s td ;

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double t o t a l , x [ 1 0 0 0 ] ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
}

t o t a l = 0 . 0 ;
# pragma omp p a r a l l e l f o r

f o r ( i = 0 ; i < n ; i++ )
{

# pragma omp c r i t i c a l
{

t o t a l = t o t a l + x [ i ] ;
}

}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Critical Regions and Reductions

This is code is correct, and it uses OpenMP.

However, it runs no faster than sequential code! That’s because
our critical region is the entire loop. So one processor adds a
value, than waits. The other processor adds a value and waits.
Nothing really happens in parallel!

Here’s a better solution. Each processor keeps its own local total,
and we only have to combine these at the end.
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VECTOR SUM: Third OpenMP version

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
# i n c l u d e <omp . h>
u s i n g namespace s td ;
i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , id , n = 1000 ;
double t o t a l , t o t a l l o c a l , x [ 1 0 0 0 ] ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
}
t o t a l = 0 . 0 ;

# pragma omp p a r a l l e l p r i v a t e ( id , t o t a l l o c a l )
{

i d = omp get thread num ( ) ;
t o t a l l o c a l = 0 . 0 ;

# pragma omp f o r
f o r ( i = 0 ; i < n ; i++ )
{

t o t a l l o c a l = t o t a l l o c a l + x [ i ] ;
}

# pragma omp c r i t i c a l
{

t o t a l = t o t a l + t o t a l l o c a l ;
}

}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Critical Regions and Reductions

This code is correct, and efficient.

I’ve had to jump ahead and include some OpenMP clause and
function calls you won’t recognize yet.

Can you see where and why the nowait clause might be useful?

However, without understanding the details, it is not hard to see
that the critical clause allows us to control the modification of the
TOTAL variable, and that the private clause allows each thread
to work on its own partial sum until needed.
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Critical Regions and Reductions

Simple operations like summations and maximums, which require a
critical section, come up so often that OpenMP offers a way to
hide the details of handling the critical section.

OpenMP offers the reduction clause for handling these special
examples of critical section programming.

Computing a dot product is an example where help is needed.

The variable summing the individual products is going to cause
conflicts - delays when several threads try to read its current value,
or errors, if several threads try to write updated versions of the
value.
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DOT PRODUCT: Sequential version

# i n c l u d e <s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double x [ 1 0 0 0 ] , y [ 1 0 0 0 ] , xdoty ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
y [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;

}

xdoty = 0 . 0 ;
f o r ( i = 0 ; i < n ; i++ )
{

xdoty = xdoty + x [ i ] ∗ y [ i ] ;
}
p r i n t f ( ”XDOTY = %e\n” , xdoty ) ;
r e t u r n 0 ;

}
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Critical Regions and Reductions: Examples

The vector dot product is one example of a reduction operation.

Other examples;

the sum of the entries of a vector,

the product of the entries of a vector,

the maximum or minimum of a vector,

the Euclidean norm of a vector,

Reduction operations, if recognized, can be carried out in parallel.

The OpenMP reduction clause allows the compiler to set
up the reduction correctly and efficiently.
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DOT PRODUCT: OpenMP version

# i n c l u d e <s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e <omp . h>

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , n = 1000 ;
double x [ 1 0 0 0 ] , y [ 1 0 0 0 ] , xdoty ;

f o r ( i = 0 ; i < n ; i++ )
{

x [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;
y [ i ] = ( double ) rand ( ) / ( double ) RAND MAX;

}

xdoty = 0 . 0 ;
#pragma omp p a r a l l e l f o r r e d u c t i o n ( + : xdoty )

f o r ( i = 0 ; i < n ; i++ )
{

xdoty = xdoty + x [ i ] ∗ y [ i ] ;
}
p r i n t f ( ”XDOTY = %e\n” , xdoty ) ;
r e t u r n 0 ;

}

Burkardt Shared Memory Programming With OpenMP



Critical Regions and Reductions: The reduction clause

Any variable which contains the result of a reduction operator
must be identified in a reduction clause of the OpenMP directive.

Reduction clause examples include:

reduction ( + : xdoty) (we just saw this)

reduction ( + : sum1, sum2, sum3 ) , (several sums)

reduction ( * : factorial), a product

reduction ( max : pivot ) , maximum value (Fortran only) )
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Data Conflicts and Data Dependence

Shared data is data that can be safely shared by threads during a
particular parallel operation, without leading to conflicts or errors.

By default, OpenMP will assume all data is shared.

A variable that is only “read” can obviously be shared. (Although
in some cases, delays might occur if several threads want to read it
at the same time).

Some variables may be shared even though they seem to be
written by multiple threads;

An example is an array A.
If entry A[I] is never changed except during loop iteration I,
then the array A can probably be shared.
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Data Conflicts and Data Dependence

Private data is information each thread keeps separately.

A single variable name now refers to all the copies.

Simple examples:

the iteration index of the loop, i

temporary variables

For instance, it’s common to create variables called im1 and ip1
equal to the loop index decremented and incremented by 1.

A temporary variable x inv, defined by
x inv = 1.0 / x[i]
would also have to be private, even though x would not be.
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Data Conflicts and Data Dependence: PRIME SUM

The PRIME SUM program illustrates private and shared variables.

Our task is to compute the sum of the prime numbers from 1 to N.

A natural formulation stores the result in TOTAL, then checks
each number I from 2 to N.

To check if the number I is prime, we ask whether it can be evenly
divided by any of the numbers J from 2 to I − 1.

We can use a temporary variable PRIME to help us.
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PRIME SUM: Sequential Version

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
u s i n g namespace s t d ;

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , j , t o t a l ;
i n t n = 1000 ;
boo l pr ime ;

t o t a l = 0 ;
f o r ( i = 2 ; i <= n ; i++ )
{

pr ime = t r u e ;

f o r ( j = 2 ; j < i ; j++ )
{

i f ( i % j == 0 )
{

pr ime = f a l s e ;
break ;

}
}
i f ( pr ime )
{

t o t a l = t o t a l + i ;
}

}
cout << ”PRIME SUM(2 : ” << n << ” ) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Data Conflicts and Data Dependence: Handling Conflicts!

Data conflicts will occur in PRIME SUM if all the data is shared
during a parallel execution. We can’t share a variable if two
threads want to put different numbers into it.

A given thread, carrying out iteration I:

works on an integer I

initializes PRIME to be TRUE

checks if any J divides I and resets PRIME if necessary;

adds I to TOTAL if PRIME is TRUE.

The variables J, PRIME and TOTAL represent possible data
conflicts that we must resolve.
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PRIME SUM: With OpenMP Directives

# i n c l u d e <c s t d l i b>
# i n c l u d e <i o s t r eam>
# i n c l u d e <omp . h>
u s i n g namespace s t d ;

i n t main ( i n t argc , char ∗a rgv [ ] )
{

i n t i , j , t o t a l , n = 1000 , t o t a l = 0 ;
boo l pr ime ;

# pragma omp p a r a l l e l f o r p r i v a t e ( i , pr ime , j ) sha r ed ( n )
# pragma omp r e d u c t i o n ( + : t o t a l )

f o r ( i = 2 ; i <= n ; i++ )
{

pr ime = t r u e ;

f o r ( j = 2 ; j < i ; j++ )
{

i f ( i % j == 0 )
{

pr ime = f a l s e ;
break ;

}
}
i f ( pr ime )
{

t o t a l = t o t a l + i ;
}

}
cout << ”PRIME SUM(2 : ” << n << ” ) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}
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Data Conflicts and Data Dependence

The shared, private and reduction clauses allow us to specify
how every variable is to be treated in the following loop.

We didn’t have to declare that i was private...but we did have to
declare that j was private!

By default, private variables have no value before or after the loop
- they are purely temporary quantities.

If you need to initialize your private variables, or need to save the
value stored by the very last iteration of the loop, OpenMP offers
the firstprivate and lastprivate clauses.
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Data Conflicts and Data Dependence

Data Dependence is an obstacle to parallel execution. Sometimes
it can be repaired, and sometimes it is unavoidable.

In a loop, the problem arises when the value of a variable depends
on results from a previous iteration of the loop.

Examples where this problem occurs include the solution of a
differential equation or the application of Newton’s method to a
nonlinear equation.

In both examples, each step of the approximation requires the
result of the previous approximation to proceed.
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Data Conflicts and Data Dependence

For example, suppose we computed factorials this way:

fact[0] = 1;

for ( i = 1; i < n; i++ )

{

fact[i] = fact[i-1] * i;

}

We can’t let OpenMP handle this calculation. The way we’ve
written it, the iterations must be computed sequentially.

The variable on the right hand side, fact[i-1],
is not guaranteed to be ready,
unless the previous iteration has completed.
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Data Conflicts and Data Dependence

The STEPS program illustrates an example of data dependence.
Here, we evaluate a function at equally spaced points in the unit
square.

Start (X,Y) at (0,0), increment X by DX. If X exceeds 1, reset to
zero, and increment Y by DY.

This is a natural way to “visit” every point.

This simple idea won’t work in parallel without some changes.

Each thread will need a private copy of (X,Y).

...but, much worse, the value (X,Y) is data dependent.
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The STEPS program: Sequential Version

program main

i n t e g e r i , j , m, n
r e a l dx , dy , f , t o t a l , x , y

t o t a l = 0 .0
y = 0 .0
do j = 1 , n

x = 0 .0
do i = 1 , m

t o t a l = t o t a l + f ( x , y )
x = x + dx

end do
y = y + dy

end do

stop
end
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Data Conflicts and Data Dependence

In this example, the data dependence is simply a consequence of a
common programming pattern. It’s not hard to avoid the
dependence once we recognize it.

Our options include:

precompute X(1:M) and Y(1:N) in arrays.

or notice X = I/M and Y = J/N

The first solution, converting some temporary scalar variables to
vectors and precomputing them, may be able to help you
parallelize a stubborn loop.

The second solution is simple and
saves us a separate preparation loop and extra storage.
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The STEPS program: With OpenMP directives

program main

use omp l i b

i n t e g e r i , j , m, n
r e a l f , t o t a l , x , y

t o t a l = 0 .0
! $omp p a r a l l e l do p r i v a t e ( i , j , x , y ) sha r ed ( m, n ) r e d u c t i o n ( + : t o t a l )

do j = 1 , n
y = j / r e a l ( n )
do i = 1 , m

x = i / r e a l ( m )
t o t a l = t o t a l + f ( x , y )

end do
end do

! $omp end p a r a l l e l do

stop
end
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Data Conflicts and Data Dependence

Another issue pops up in the STEPS program. What happens
when you call the function f(x,y) inside the loop?

Notice that f is not a variable, it’s a function, so it is not declared
private or shared.

The function might have internal variables, loops, might call other
functions, and so on.

OpenMP works in such a way that a function called within a
parallel loop will also participate in the parallel execution. We
don’t have to make any declarations about the function or its
internal variables at all.

Each thread runs a separate copy of f.

(But if f includes static or saved variables, trouble!)
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Compiling, Linking, Running

Strictly speaking, compilation takes one or more source code files,
say myprog.c, and translates them into ”object” files, myprog.o.

Compiler errors have to do with syntax, (as well as “include” files
that can’t be found).

Linking joins the object files, along with compiled libraries to
create an executable file a.out.

Linking errors have to do with calls to functions or routines that
cannot be found.
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Compiling, Linking, Running

A typical compile-only command is:

cc -c myprog.c

cc -c graphics.c

Typical link-only commands include:

cc myprog.o graphics.o -lnag

A one-shot compile-and-link command would be

cc myprog.c graphics.c -lnag
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Compiling, Linking, Running

By default, the linker creates an executable program called a.out.
It’s best to rename the executable to something meaningful:

cc myprog.c graphics.c -lnag

mv a.out myprog

or you can do everything in one shot:

cc -o myprog myprog.c graphics.c -lnag

The executable program can be run by typing its (full) name. But
the current directory is symbolized by “dot”, so you can type

./myprog
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Compiling, Linking, Running

When you compile an OpenMP source code file, some errors may
be reported because

the compiler you invoked doesn’t actually support OpenMP;

the compiler does support OpenMP, but you didn’t include
the appropriate compiler switch.

So if your program doesn’t compile, that doesn’t necessarily mean
you made a programming error.

You might be seeing complaints about a missing include file, or
unrecognized function names.
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Compiling, Linking, Running

On the other hand, if you didn’t call any OpenMP functions, then
any compiler will compile your code...because all the directives
look like comments.

So if your program does compile, that doesn’t necessarily mean
you’re actually using an OpenMP compiler!
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Compiling, Linking, Running

You build a parallel version of your program by telling the compiler
to activate the OpenMP directives.

GNU compilers need the fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.C

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90
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Compiling, Linking, Running

Intel C compilers need the openmp and parallel switches:

icc myprog.c -openmp -parallel

icpc myprog.C -openmp -parallel

Intel Fortran compilers also require the fpp switch:

ifort myprog.f -openmp -parallel -fpp

ifort myprog.f90 -openmp -parallel -fpp
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Compiling, Linking, Running

Once you have an executable OpenMP program, you can run it
interactively, the same way you would any executable program.

./a.out

The only thing you need to do is make sure that you have defined
the number of threads of execution - that is, “how parallel” you
want to be.
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Compiling, Linking, Running

The system has a default value for the number of threads. defined
as an environment variable OMP NUM THREADS Its value is
probably 1!

You can redefine this environment variable, or you can reset this
value inside your program.

We’ll explain your details and choices later, but for now, one way
to arrange for 4 threads of execution is as follows:

export OMP_NUM_THREADS=4

./a.out
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Compiling, Linking, Running

Now suppose you want to compile, link and run on the FSU HPC
system?

First you must use sftp to transfer your source codes to that
system.

Then you must use ssh to login to the system, and compile and
link your source codes and make an executable.

Then you run the program in batch mode. You prepare a script
file, called perhaps myprog.sh, that specifies how much time you
want, how many processors and so on.

You submit this file by the command

msub myprog.sh
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Compiling, Linking, Running

#!/bin/bash << Job uses BASH shell

#MOAB -N md << Job name is "MD"

#MOAB -q backfill << Run job in this queue

#MOAB -l nodes=1:ppn=4 << Want 1 node, 4 processors.

#MOAB -l walltime=00:02:00 << Request 2 minutes of time.

#MOAB -j oe << Join output and error files.

cd $PBS_O_WORKDIR << Move to directory

export OMP_NUM_THREADS=4 << Number of threads == PPN

./md << Finally!
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OpenMP Environment

Of course this looks like gobbledy gook! But you only have to copy
it from someone else, and understand which pieces of data you can
change and why you would change them.

We will have time during the lab session to go through

compiling, linking, running interactively on the lab machines

compiling, linking, running in batch on the FSU HPC system.
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OpenMP Environment

We have already run across the mysterious variable
OMP NUM THREADS.

I told you it specifies how many parallel threads of execution there
will be. You can set this variable externally, in the Unix
environment, or you can fiddle with it inside the program as it runs.

This variable is one example of a set of OpenMP environment
variables.

It’s time to take a look at these variables, how they influence the
way your program is run, and how your program can access and
modify their values.
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OpenMP Environment

OpenMP uses internal data which can be of use or interest.

In a few cases, the user can set some of these values by means of a
Unix environmental variable.

There are also functions the user may call to get or set this
information.
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OpenMP Environment

You can set:

maximum number of threads - most useful!

details of how to handle loops, nesting, and so on

You can get:

number of “processors” (=cores) are available

individual thread id’s

maximum number of threads

wall clock time
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OpenMP Environment: Variables

If you are working on a UNIX system, you can “talk” to OpenMP
by setting certain environment variables.

The syntax for setting such variables varies slightly, depending on
the shell you are using.

Many people use this method in order to specify the number of
threads to be used. If you don’t set this variable, your program
runs on one thread.
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OpenMP Environment: Variables

There are just 4 OpenMP environment variables:

OMP NUM THREADS, maximum number of threads

OMP DYNAMIC, allows dynamic thread adjustment

OMP NESTED, allows nested parallelism, default 0/FALSE

OMP SCHEDULE, determines how loop work is divided up
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OpenMP Environment: Variables

Determine your shell by:

echo $SHELL

Set the number of threads in the Bourne, Korn and BASH shells:

export OMP NUM THREADS=4

In the C or T shells, use a command like

setenv OMP NUM THREADS 4

To verify:

echo $OMP NUM THREADS
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OpenMP Environment: Functions

OpenMP environment functions include:

omp set num threads ( t )

t = omp get num threads ( )

p = omp get num procs ( )

id = omp get thread num ( )

wtime = omp get wtime()
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OpenMP Environment: How Many Threads May I Use?

A thread is one of the “workers” that OpenMP assigns to help do
your work.

There is a limit of

1 thread in the sequential sections.

OMP NUM THREADS threads in the parallel sections.
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OpenMP Environment: How Many Threads May I Use?

The number of threads

has a default for your computer.

can be initialized by setting OMP NUM THREADS before
execution

can be reset by calling omp set num threads(t)

can be checked by calling t=omp get num threads()
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OpenMP Environment: How Many Threads Should I Use?

If OMP NUM THREADS is 1, then you get no parallel speed up
at all, and probably actually slow down.

You can set OMP NUM THREADS much higher than the
number of processors; some threads will then “share” a processor.

Reasonable: one thread per processor.

p = omp_get_num_procs ( );

t = p;

omp_set_num_threads ( t );

These three commands can be compressed into one.
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OpenMP Environment: Which Thread Am I Using?

In any parallel section, you can ask each thread to identify itself,
and assign it tasks based on its index.

!$omp parallel

id = omp_get_thread_num ( )

write ( *, * ) ’Thread ’, id, ’ is running.’

!$omp end parallel
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OpenMP Environment: How Much Time Has Passed?

You can take “readings” of the wall clock time before and after a
parallel computation.

wtime = omp_get_wtime ( );

#pragma omp parallel for

for ( i = 0; i < n; i++ )

{

Do a lot of work in parallel;

}

wtime = omp_get_wtime ( ) - wtime;

cout << "Work took " << wtime << " seconds.\n";
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OpenMP Environment: ”Hiding” Parallel Code

OpenMP tries to make it possible for you to have your sequential
code and parallelize it too. In other words, a single program file
should be able to be run sequentially or in parallel, simply by
turning on the directives.

This isn’t going to work so well if we have these calls to
omp get wtime or omp get proc num running around. They
will cause an error when the program is compiled and loaded
sequentially, because the OpenMP library will not be available.

Fortunately, you can “comment out” all such calls, just as you do
the directives, or, in C and C++, check whether the symbol
OPENMP is defined.
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OpenMP Environment: Hiding Parallel Code in C++

# ifdef _OPENMP

# include <omp.h>

# endif

# ifdef _OPENMP

wtime = omp_get_wtime ( );

# endif

#pragma omp parallel for

for ( i = 0; i < n; i++ ){

Do a lot of work in parallel; }

# ifdef _OPENMP

wtime = omp_get_wtime ( ) - wtime;

cout << "Work took " << wtime << " seconds.\n";

# else

cout << "Elapsed time not measured.\n";

# endif
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OpenMP Environment: Hiding Parallel Code in F90

!$ use omp_lib

!$ wtime = omp_get_wtime ( )

!$omp parallel do

do i = 1, n

Do a lot of work in parallel;

end do

!$omp end parallel do

!$ wtime = omp_get_wtime ( ) - wtime

!$ write ( *, * ) ’Work took’, wtime, ’ seconds.’
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Parallel Control Structures, Loops

#pragma omp parallel for

for ( i = ilo; i <= ihi; i++ )

{

C/C++ code to be performed in parallel

}

!$omp parallel do

do i = ilo, ihi

FORTRAN code to be performed in parallel

end do

!$omp end parallel do

Burkardt Shared Memory Programming With OpenMP



Parallel Control Structure, Loops

FORTRAN Loop Restrictions:

The loop must be a do loop of the form;

do i = low, high (, increment)

The limits low, high (and increment if used), cannot change
during the iteration.

The program cannot jump out of the loop, using an exit or goto.

The loop cannot be a do while.

The loop cannot be an “infinite” do (no iteration limits).
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Parallel Control Structure, Loops

C Loop Restrictions:

The loop must be a for loop of the form:

for ( i = low; i < high; increment )

The limits low and high cannot change during the iteration;

The increment (or decrement) must be by a fixed amount.

The program cannot break from the loop.
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Parallel Control Structures, No Loop

It is possible to set up parallel work without a loop.

In this case, the user can assign work based on the ID of each
thread.

For instance, if the computation models a crystallization process
over time, then at each time step, half the threads might work on
updating the solid part, half the liquid.

If the size of the solid region increases greatly, the proportion of
threads assigned to it could be increased.
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Parallel Control Stuctures, No Loop, C/C++

#pragma omp parallel

{

id = omp_get_thread_num ( );

if ( id % 2 == 0 )

{

solid_update ( );

}

else

{

liquid_update ( );

}

}
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Parallel Control Stuctures, No Loop, FORTRAN

!$omp parallel

id = omp_get_thread_num ( )

if ( mod ( id, 2 ) == 0 ) then

call solid_update ( )

else if ( mod ( id, 4 ) == 1 ) then

call liquid_update ( )

else if ( mod ( id, 4 ) == 3 ) then

call gas_update ( )

end if

!$omp end parallel

(Now we’ve added a gas update task as well.)
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Parallel Control Structures, WORKSHARE

FORTRAN90 expresses implicit vector operations using colon
notation.

OpenMP includes the WORKSHARE directive, which says that
the marked code is to be performed in parallel.

The directive can also be used to parallelize the FORTRAN90
WHERE and the FORTRAN95 FORALL statements.

Burkardt Shared Memory Programming With OpenMP



Parallel Control Stuctures, FORTRAN90

!$omp parallel workshare

y(1:n) = a * x(1:n) + y(1:n)

!$omp end parallel workshare

!$omp parallel workshare

where ( x(1:n) /= 0.0 )

y(1:n) = log ( x(1:n) )

elsewhere

y(1:n) = 0.0

end where

!$omp end parallel workshare
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Parallel Control Stuctures, FORTRAN95

!$omp parallel workshare

forall ( i = k+1:n,j = k+1:n )

a(i,j) = a(i,j) - a(i,k) * a(k,j)

end forall

!$omp end parallel workshare

(This calculation corresponds to one of the steps of Gauss
elimination or LU factorization)
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SATISFY: Parallel Computing Without Loops

OpenMP is easiest to use with loops.

Here is an example where we get parallel execution without using
loops.

Doing the problem this way will make OpenMP seem like a small
scale version of MPI.
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SATISFY: Problem specification

What values of X make F(X) evaluate TRUE?

f(x) = ( x(1) || x(2) ) && ( !x(2) || !x(4) ) &&

( x(3) || x(4) ) && ( !x(4) || !x(5) ) &&

( x(5) || !x(6) ) && ( x(6) || !x(7) ) &&

( x(6) || x(7) ) && ( x(7) || !x(16) ) &&

( x(8) || !x(9) ) && ( !x(8) || !x(14) ) &&

( x(9) || x(10) ) && ( x(9) || !x(10) ) &&

( !x(10) || !x(11) ) && ( x(10) || x(12) ) &&

( x(11) || x(12) ) && ( x(13) || x(14) ) &&

( x(14) || !x(15) ) && ( x(15) || x(16) )

Burkardt Shared Memory Programming With OpenMP



SATISFY: Problem specification

Sadly, there is no clever way to solve a problem like this in general.
You simply try every possible input.

How do we generate all the inputs?

Can we divide the work among multiple processors?
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SATISFY: Algorithm Design

There are 216 = 65, 536 distinct input vectors.

There is a natural correspondence between the input vectors and
the integers from 0 to 65535.

We can divide the range [0,65536] into T NUM distinct (probably
unequal) subranges.

Each thread can generate its input vectors one at a time, evaluate
the function, and print any successes.
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SATISFY: Program Design

#pragma omp parallel

{

T = omp_get_num_threads ( );

ID = omp_get_thread_num ( );

ILO = ( ID ) * 65535 / T;

IHI = ( ID + 1 ) * 65535 / T;

for ( I = ILO; I < IHI; I++ )

{

X[0:15] <= I (set binary input)

VALUE = F ( X ) (evaluate function)

if ( VALUE ) print X

end

}
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SATISFY: FORTRAN90 Implementation

thread num = omp get num threads ( )
s o l u t i on num = 0

! $omp p a r a l l e l p r i v a t e ( i , i l o , i h i , j , va lue , x ) &
! $omp sha r ed ( n , thread num ) &
! $omp r e d u c t i o n ( + : so l u t i on num )

i d = omp get thread num ( )
i l o = i d ∗ 65536 / thread num
i h i = ( i d + 1 ) ∗ 65536 / thread num

j = i l o
do i = n , 1 , −1

x ( i ) = mod ( j , 2 )
j = j / 2

end do

do i = i l o , i h i − 1
va l u e = c i r c u i t v a l u e ( n , x )
i f ( v a l u e == 1 ) then

s o l u t i on num = so lu t i on num + 1
w r i t e ( ∗ , ’ (2 x , i2 , 2 x , i10 , 3 x , 16 i 2 ) ’ ) so lu t i on num , i − 1 , x ( 1 : n )

end i f
c a l l bve c ne x t ( n , x )

end do
! $omp end p a r a l l e l
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SATISFY: Observations

I wanted an example where parallelism didn’t require a for or do
loop. The loop you see is carried out entirely by one (each) thread.

The “implicit loop” occurs when when we begin the parallel
section and we generate all the threads.

The idea to take from this example is that the environment
functions allow you to set up your own parallel structures in cases
where loops aren’t appropriate.
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Data Classification (Private/Shared)

The very name “shared memory” suggests that the threads share
one set of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared –
with the exception of the loop index in the do or for statement.

It’s obvious why each thread will need its own copy of the loop
index. Even a compiler can see that!

However, some other variables may need to be treated specially
when running in parallel. In that case, you must explicitly tell the
compiler to set these aside as private variables.

It’s a good practice to declare all variables in a loop.
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Data Classification (Private/Shared)

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do

end do

end do
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Data Classification (Private/Shared)

I’ve had to cut this example down a bit. So let me point out that
coord and f are big arrays of spatial coordinates and forces, and
that f has been initialized already.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

List all the variables in this loop, and try to determine if they are
shared or private or perhaps a reduction variable.

Which variables are already shared or private by default?
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Data Classification (QUIZ)

do i = 1, n <-- I? N?

do j = 1, n <-- J?

d = 0.0 <-- D?

do k = 1, 3 <-- K

dif(k) = coord(k,i) - coord(k,j) <-- DIF?

d = d + dif(k) * dif(k) -- COORD?

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do <-- F?, PFUN?

end do

end do
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Data Classification (Private/Shared)

!$omp parallel do private ( i, j, k, d, dif ) &

!$omp shared ( n, coord, f )

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do

end do

end do

!$omp end parallel do
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Data Classification (Private/Shared/Reduction)

In the previous example, the variable D looked like a reduction
variable.

But that would only be the case if the loop index K was executed
as a parallel do.

We could work very hard to interchange the order of the I, J and K
loops, or even try to use nested parallelism on the K loop.

But these efforts would be pointless, since the loop runs from 1 to
3, a range too small to get a parallel benefit.
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Data Classification (Private/Shared/Reduction)

Suppose in FORTRAN90 we need the maximum of a vector.

x_max = - huge ( x_max ) ---+

do i = 1, n |

x_max = max ( x_max, x(i) ) | Loop #1

end do ---+

x_max = maxval ( x(1:n) ) ---> Loop #2

How could we parallelize loop #1 or loop #2!
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Data Classification (Private/Shared/Reduction)

In loop 1, the reduction variable x max will automatically be
initialized to the minimum real number.

!$omp parallel do private ( i ) shared ( n, x ) &

!$omp reduction ( max : x_max )

do i = 1, n

x_max = max ( x_max, x(i) )

end do

!$omp end parallel do

!$omp parallel workshare

x_max = maxval ( x(1:n) )

!$omp end parallel workshare
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Data Classification (DEFINE’d Variables in C/C++)

In C and C++, it is common to use a #define statement. This
can look almost like a declaration statement, with a variable name
and its value. It is actually a preprocessor directive, and the
“variable” is really a text string to be replaced by the given value.

By convention, defined variables are CAPITALIZED.

A typical defined variable is actually a constant, that is, a number.
And this means that even though it may look like a variable, it is
not appropriate nor necessary to include a defined variable in the
shared or private clauses of an OpenMP directive!
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Data Classification (DEFINE’d Variables in C/C++)

Do NOT put the defined variable N in the shared clause!

# define N 100

# pragma omp parallel for shared ( x, y ) \

private ( i, xinv )

for ( i = 0; i < N; i++ )

{

xinv = 1.0 / x[i];

y[i] = y[i] * xinv;

}
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Data Classification (PARAMETERS in FORTRAN)

In FORTRAN, it is common to use a parameter statement to
define constants such as π or

√
2.

The important thing about a parameter is that, although it looks
like a “variable”, it is a constant. At least for some compilers, this
means that it is neither appropriate nor necessary to include a
FORTRAN parameter in the shared or private clauses of an
OpenMP directive!
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Data Classification (PARAMETERS in FORTRAN)

Do NOT put the parameters pi or n in the shared clause!

integer, parameter :: n = 100

real, parameter :: pi = 3.14159265

!$omp parallel do shared ( c, s ) private ( angle, i )

do i = 1, n

angle = ( i - 1 ) * pi / n

c(i) = cos ( angle )

s(i) = sin ( angle )

end do

!$omp end parallel do
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Examples: The Index of the Maximum Entry

In Gauss elimination, the K-th step involves finding the row index
P of the largest element on or below the diagonal in column K of
the matrix.

What’s important isn’t the maximum value, but its index.

That means that we can’t simply use OpenMP’s reduction clause.

Let’s simplify the problem a little, and ask:

Can we determine the index of the largest element of a vector in
parallel?
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Examples: The Index of the Maximum Entry

The reduction clause can be thought of as carrying out a critical
section for us. Since there’s no OpenMP reduction clause for index
of maximum value, we’ll have to do it ourselves.

We want to do this in such a way that, as much as possible, all the
threads are kept busy.

We can let each thread find the maximum (and its index) on a
subset of the vector, and then have a cleanup code (and now we
use the critical section!) which just compares each thread’s results,
and takes the appropriate one.
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Examples: The Index of the Maximum Entry

all_max = 1

!$omp parallel private ( i,id,i_max ) shared ( n,p_num,x )

id = omp_get_thread_num ( );

i_max = id + 1;

do i = id + 1, n, p_num

if ( x(i_max) < x(i) ) then

i_max = i;

end if

end do

!$omp critical

if ( x(all_max) < x(i_max) ) then

all_max = i_max

end if

!$omp end critical

!$omp end parallel
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Examples: Random Numbers

Random numbers are a vital part of many algorithms. But you
must be sure that your random number generator behaves properly.

It is acceptable (but hard to check) that your parallel random
numbers are at least “similarly distributed.”

It would be ideal if you could generate the same stream of random
numbers whether in sequential or parallel mode.
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Examples: Random Numbers

Most random number generators work by repeatedly ”scrambling”
an integer value called the seed. One kind of scrambling is the
linear congruential generator:

SEED = ( A * SEED + B ) modulo C

If you want a real number returned, this is computed indirectly, as
a function of the updated value of the SEED;

float my_random ( int *SEED )

*SEED = ( A * *SEED + B ) modulo C

R = ( double ) *SEED / 2147483647.0

return R

Burkardt Shared Memory Programming With OpenMP



Examples: Random Numbers

Many random number generators have you set the seed first:

seed = 123456789;

srand48 ( seed );

This value of SEED is stored somewhere in “static” memory,
where the generator can get to it as needed.

When you call the random number generator, it gets a copy of the
seed, updates it, writes the updated seed back to static memory,
and then returns the random number you asked for:

x = drand48 ( ); <-- Hidden calculations

involve SEED.
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Examples: Random Numbers

For typical random number calculations, SEED determines
everything.

For parallel computations, it is dangerous to use an algorithm
which has hidden variables that are stored statically.

It’s important to test. Initialize SEED to 123456789, say, compute
20 values sequentially; repeat in parallel and compare.

Random number generators using hidden seeds may or may not
work correctly in parallel.

They may work inefficiently, if multiple processors contend
for access to a single shared seed.
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Examples: Random Numbers

# include ...stuff...

int main ( void )

{

int i;

unsigned int seed = 123456789;

double y[20];

srand ( seed );

for ( i = 0; i < 20; i++ )

{

y[i] = ( double ) rand ( ) / ( double ) RAND_MAX;

}

return 0;

}
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Examples: Random Numbers

There are random number generators which use a seed value, but
which have you pass the seed as an argument.

This means there is no internal memory in the random number
generator to get confused when multiple processes are involved.

It allows you to assign separate (and different!) seeds to each
thread, presumably resulting in distinct random sequences.

We can do this using a parallel section, setting a seed based on the
thread ID.
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Examples: Random Numbers

#omp pragma parallel private ( i, id, r, seed )

id = omp_get_thread_num ( );

seed = 123456789 * id

for ( i = 0; i < 1000; i++ )

{

r = my_random ( seed );

(do stuff with random number r )

}

#omp pragma end parallel
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Examples: Random Numbers

For the MPI system of parallel programming, generating distinct
sets of random numbers is also a big issue.

However, in that case, there is at least one well-tested package,
called SPRNG, developed at FSU by Professor Michael Mascagni,
which can generate distinct random numbers for multiple
processes.
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Examples: Carry Digits

Suppose vectors X and Y contain digits base B, and that Z is to
hold the base B representation of their sum. (Let’s assume for
discussion that base B is 10).

Adding is easy. But then we have to carry. Every entry of Z that is
B or greater has to have the excess subtracted off and carried to
the next higher digit. This works in one pass of the loop only if we
start at the lowest digit.

And adding 1 to 9,999,999,999 shows that a single carry operation
could end up changing every digit we have.
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Examples: Carry Digits

do i = 1, n

z(i) = x(i) + y(i)

end do

overflow = .false.

do i = 1, n

carry = z(i) / b

z(i) = z(i) - carry * b

if ( i < n ) then

z(i+1) = z(i+1) + carry

else

overflow = .true.

end if

end do
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Examples: Carry Digits

In the carry loop, notice that on the I-th iteration, we might write
(modify) both z[i] and z[i+1].

In parallel execution, the value of z[i] used by iteration I might be
read as 17, then iteration I-1, which is also executing, might
change the 17 to 18 because of a carry, but then iteration I, still
working with its temporary copy, might carry the 10, and return
the 7, meaning that the carry from iteration I-1 was lost!

99% of carries in base 10 only affect at most two higher digits. So
if we were desperate to use parallel processing, we could use
repeated carrying in a loop, plus a temporary array z2.
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Examples: Carry Digits

do

!$omp parallel workshare

z2(1) = mod ( z(1) , b )

z2(2:n) = mod ( z(2:n), b ) + z(1:n-1) / b

z(1:n) = z2(1:n)

done = all ( z(1:n-1) / b == 0 )

!$omp end parallel workshare

if ( done )

exit

end if

end do
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Conclusion

Although OpenMP is a relatively simple programming system,
there is a lot we have not covered.

The single clause allows you to insist that only one thread will
actually execute a block of code, while the others wait. (Useful for
initialization, or print out).

The schedule clause, which allows you to override the default rules
for how the work in a loop is divided.

There is a family of functions that allow you to use a lock variable
instead of a critical clause. Locks are turned on and off by
function calls, which can be made anywhere within the code.

Burkardt Shared Memory Programming With OpenMP



Conclusion

In nested parallelism, a parallel region contains smaller parallel
regions. A thread coming to one of these nested regions can then
fork into even more threads. Nested parallelism is only supported
on some systems.

OpenMP has the environment variable OMP NESTED to tell if
nesting is supported, and functions to determine how nesting is to
be handled.
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Conclusion

Debugging a parallel programming can be quite difficult.

If you are familiar with the Berkeley dbx or Gnu gdb debuggers,
these have been extended to deal with multithreaded programs.

There is also a program called TotalView with an intuitive
graphical interface.

However, I have a colleague who has worked in parallel
programming for years, and who insists that he can always track
down every problem by using print statements!

He’s not as disorganized as that sounds. When debugging,
he has each thread write a separate log file of what it’s
doing, and this gives him the evidence he needs.
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Conclusion: Monday’s Exercises

Exercises for the laboratory session will introduce you to OpenMP.

You’ll write a simple program to estimate an integral.

You will make OpenMP versions of FFT, molecular dynamics, and
heat equation programs, using directives on just one or two loops.

You will investigate (a little) the speedup as you increase the
number of processors, or make other changes in the codes.
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Conclusion: Weekend Headache

Before Monday, write a program that:

sets up a vector X with 1000 random values;

computes and prints the l1 norm of X sequentially;

computes and prints the l1 norm of X using OpenMP.

Run on the lab machines or any OpenMP system, with 2 processes.

Run on the FSU HPC system using 8 processes.
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Conclusion
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