21 January 2020 08:58:05 AM SPARSE_INTERP_ND_TEST C version. Test the SPARSE_INTERP_ND library. The R8LIB library is also required. TEST01: Sparse interpolation for a function f(x) of M-dimensional argument. Use a sequence of sparse grids of levels 0 through SPARSE_MAX. Invoke a general Lagrange interpolant function to do this. Compare the exact function and the interpolants at a grid of points. The "order" is the sum of the orders of all the product grids used to make a particular sparse grid. Spatial dimension M = 1 Maximum sparse grid level = 9 Number of interpolation points is NI = 100 L Order ApproxError 1 1 2.66e-02 2 3 5.08e-04 3 5 1.58e-06 4 9 2.20e-12 5 17 1.45e-17 6 33 3.25e-17 7 65 4.12e-17 8 129 5.07e-17 9 257 8.66e-17 10 513 1.34e-16 TEST01: Sparse interpolation for a function f(x) of M-dimensional argument. Use a sequence of sparse grids of levels 0 through SPARSE_MAX. Invoke a general Lagrange interpolant function to do this. Compare the exact function and the interpolants at a grid of points. The "order" is the sum of the orders of all the product grids used to make a particular sparse grid. Spatial dimension M = 2 Maximum sparse grid level = 9 Number of interpolation points is NI = 100 L Order ApproxError 1 1 2.11e-02 2 7 7.38e-03 3 25 5.92e-04 4 67 5.90e-04 5 161 2.20e-04 6 371 9.37e-05 7 837 3.09e-05 8 1863 1.31e-05 9 4105 4.49e-06 10 8971 1.98e-06 TEST01: Sparse interpolation for a function f(x) of M-dimensional argument. Use a sequence of sparse grids of levels 0 through SPARSE_MAX. Invoke a general Lagrange interpolant function to do this. Compare the exact function and the interpolants at a grid of points. The "order" is the sum of the orders of all the product grids used to make a particular sparse grid. Spatial dimension M = 3 Maximum sparse grid level = 9 Number of interpolation points is NI = 100 L Order ApproxError 1 1 1.53e-02 2 10 5.64e-03 3 52 2.19e-03 4 195 2.46e-04 5 609 4.72e-04 6 1710 1.99e-04 7 4502 9.84e-05 8 11369 3.05e-05 9 27887 1.51e-05 10 66936 7.43e-06 TEST01: Sparse interpolation for a function f(x) of M-dimensional argument. Use a sequence of sparse grids of levels 0 through SPARSE_MAX. Invoke a general Lagrange interpolant function to do this. Compare the exact function and the interpolants at a grid of points. The "order" is the sum of the orders of all the product grids used to make a particular sparse grid. Spatial dimension M = 4 Maximum sparse grid level = 7 Number of interpolation points is NI = 100 L Order ApproxError 1 1 1.42e-02 2 13 6.08e-03 3 87 2.43e-03 4 411 1.24e-03 5 1573 1.27e-04 6 5257 4.15e-04 7 16035 2.11e-04 8 45879 1.55e-04 SPARSE_INTERP_ND_TEST Normal end of execution. 21 January 2020 08:58:08 AM