# include # include # include # include "rk3.h" /******************************************************************************/ void rk3 ( double *dydt ( double x, double y[] ), double tspan[2], double y0[], int n, int m, double t[], double y[] ) /******************************************************************************/ /* Purpose: rk3() uses a Runge-Kutta order 3 explicit method to solve an ODE. Licensing: This code is distributed under the MIT license. Modified: 07 May 2025 Author: John Burkardt Input: dydt: a function that evaluates the right hand side of the ODE. double tspan[2]: contains the initial and final times. double y0[m]: a column vector containing the initial condition. int n: the number of steps to take. int m: the number of variables. Output: double t[n+1], y[m*(n+1)]: the times and solution values. */ { double dt; int i; int j; double *k1; double *k2; double *k3; double *ym; ym = ( double * ) malloc ( m * sizeof ( double ) ); dt = ( tspan[1] - tspan[0] ) / ( double ) ( n ); t[0] = tspan[0]; j = 0; for ( i = 0; i < m; i++ ) { y[i+j*m] = y0[i]; } for ( j = 1; j <= n; j++ ) { for ( i = 0; i < m; i++ ) { ym[i] = y[i+(j-1)*m]; } k1 = dydt ( t[j-1], ym ); for ( i = 0; i < m; i++ ) { ym[i] = y[i+(j-1)*m] + dt * k1[i]; } k2 = dydt ( t[j-1] + dt, ym ); for ( i = 0; i < m; i++ ) { ym[i] = y[i+(j-1)*m] + dt * ( 0.25 * k1[i] + 0.25 * k2[i] ); } k3 = dydt ( t[j-1] + 0.5 * dt, ym ); t[j] = t[j-1] + dt; for ( i = 0; i < m; i++ ) { y[i+j*m] = y[i+(j-1)*m] + dt * ( k1[i] + k2[i] + 4.0 * k3[i] ) / 6.0; } free ( k1 ); free ( k2 ); free ( k3 ); } free ( ym ); return; }