# include # include # include # include # include "r8to.h" /******************************************************************************/ int i4_log_10 ( int i ) /******************************************************************************/ /* Purpose: I4_LOG_10 returns the integer part of the logarithm base 10 of an I4. Example: I I4_LOG_10 ----- -------- 0 0 1 0 2 0 9 0 10 1 11 1 99 1 100 2 101 2 999 2 1000 3 1001 3 9999 3 10000 4 Discussion: I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. Licensing: This code is distributed under the MIT license. Modified: 23 October 2007 Author: John Burkardt Parameters: Input, int I, the number whose logarithm base 10 is desired. Output, int I4_LOG_10, the integer part of the logarithm base 10 of the absolute value of X. */ { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } /******************************************************************************/ int i4_max ( int i1, int i2 ) /******************************************************************************/ /* Purpose: I4_MAX returns the maximum of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, are two integers to be compared. Output, int I4_MAX, the larger of I1 and I2. */ { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_min ( int i1, int i2 ) /******************************************************************************/ /* Purpose: I4_MIN returns the smaller of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, two integers to be compared. Output, int I4_MIN, the smaller of I1 and I2. */ { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_power ( int i, int j ) /******************************************************************************/ /* Purpose: I4_POWER returns the value of I^J. Licensing: This code is distributed under the MIT license. Modified: 23 October 2007 Author: John Burkardt Parameters: Input, int I, J, the base and the power. J should be nonnegative. Output, int I4_POWER, the value of I^J. */ { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_POWER - Fatal error!\n" ); fprintf ( stderr, " I^J requested, with I = 0 and J negative.\n" ); exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_POWER - Fatal error!\n" ); fprintf ( stderr, " I^J requested, with I = 0 and J = 0.\n" ); exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } /******************************************************************************/ void r8ge_print ( int m, int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8GE_PRINT prints an R8GE matrix. Discussion: The R8GE storage format is used for a "general" M by N matrix. A physical storage space is made for each logical entry. The two dimensional logical array is mapped to a vector, in which storage is by columns. Licensing: This code is distributed under the MIT license. Modified: 28 February 2012 Author: John Burkardt Parameters: Input, int M, the number of rows of the matrix. M must be positive. Input, int N, the number of columns of the matrix. N must be positive. Input, double A[M*N], the R8GE matrix. Input, char *TITLE, a title. */ { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } /******************************************************************************/ void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: R8GE_PRINT_SOME prints some of an R8GE matrix. Discussion: The R8GE storage format is used for a "general" M by N matrix. A physical storage space is made for each logical entry. The two dimensional logical array is mapped to a vector, in which storage is by columns. Licensing: This code is distributed under the MIT license. Modified: 28 February 2012 Author: John Burkardt Parameters: Input, int M, the number of rows of the matrix. M must be positive. Input, int N, the number of columns of the matrix. N must be positive. Input, double A[M*N], the R8GE matrix. Input, int ILO, JLO, IHI, JHI, designate the first row and column, and the last row and column to be printed. Input, char *TITLE, a title. */ { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; printf ( "\n" ); printf ( "%s\n", title ); /* Print the columns of the matrix, in strips of 5. */ for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); printf ( "\n" ); /* For each column J in the current range... Write the header. */ printf ( " Col: " ); for ( j = j2lo; j <= j2hi; j++ ) { printf ( "%7d ", j ); } printf ( "\n" ); printf ( " Row\n" ); printf ( " ---\n" ); /* Determine the range of the rows in this strip. */ i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { /* Print out (up to) 5 entries in row I, that lie in the current strip. */ printf ( "%5d ", i ); for ( j = j2lo; j <= j2hi; j++ ) { printf ( "%12g ", a[i-1+(j-1)*m] ); } printf ( "\n" ); } } return; # undef INCX } /******************************************************************************/ double *r8to_dif2 ( int n ) /******************************************************************************/ /* Purpose: R8TO_DIF2 sets the second difference as an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 25 September 2015 Author: John Burkardt Parameters: Input, int N, the order of the matrix. N must be positive. Output, double R8TO_DIF2[2*N-1], the R8TO matrix. */ { double *a; int i; a = ( double * ) malloc ( ( 2 * n - 1 ) * sizeof ( double ) ); for ( i = 0; i < 2 * n - 1; i++ ) { a[i] = 0.0; } a[0] = 2.0; a[1] = -1.0; a[n] = -1.0; return a; } /******************************************************************************/ double *r8to_indicator ( int n ) /******************************************************************************/ /* Purpose: R8TO_INDICATOR sets up an R8TO indicator matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. N must be positive. Output, double R8TO_INDICATOR[2*N-1], the R8TO matrix. */ { double *a; int fac; int i; int j; int k; a = ( double * ) malloc ( ( 2 * n - 1 ) * sizeof ( double ) ); fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); i = 1; k = 0; for ( j = 1; j <= n; j++ ) { a[k] = ( double ) ( fac * i + j ); k = k + 1; } j = 1; for ( i = 2; i <= n; i++ ) { a[k] = ( double ) ( fac * i + j ); k = k + 1; } return a; } /******************************************************************************/ double *r8to_mtv ( int n, double a[], double x[] ) /******************************************************************************/ /* Purpose: R8TO_MTV multiplies a vector times an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. Input, double A[2*N-1], the R8TO matrix. Input, double X[N], the vector to be multiplied by A. Output, double R8TO_MTV[N], the product A' * X. */ { double *b; int i; int j; b = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { b[i] = 0.0; for ( j = 0; j <= i; j++ ) { b[i] = b[i] + a[i-j] * x[j]; } for ( j = i+1; j < n; j++ ) { b[i] = b[i] + a[n+j-i-1] * x[j]; } } return b; } /******************************************************************************/ double *r8to_mv ( int n, double a[], double x[] ) /******************************************************************************/ /* Purpose: R8TO_MV multiplies an R8TO matrix times a vector. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. Input, double A[2*N-1], the R8TO matrix. Input, double X[N], the vector to be multiplied by A. Output, double R8TO_MV[N], the product A * x. */ { double *b; int i; int j; b = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { b[i] = 0.0; for ( j = 0; j < i; j++ ) { b[i] = b[i] + a[n+i-j-1] * x[j]; } for ( j = i; j < n; j++ ) { b[i] = b[i] + a[j-i] * x[j]; } } return b; } /******************************************************************************/ void r8to_print ( int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8TO_PRINT prints an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. N must be positive. Input, double A[2*N-1], the R8TO matrix. Input, char *TITLE, a title. */ { r8to_print_some ( n, a, 1, 1, n, n, title ); return; } /******************************************************************************/ void r8to_print_some ( int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: R8TO_PRINT_SOME prints some of an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. N must be positive. Input, double A[2*N-1], the R8TO matrix. Input, int ILO, JLO, IHI, JHI, designate the first row and column, and the last row and column to be printed. Input, char *TITLE, a title. */ { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; printf ( "\n" ); printf ( "%s\n", title ); /* Print the columns of the matrix, in strips of 5. */ for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); printf ( " Col: " ); for ( j = j2lo; j <= j2hi; j++ ) { printf ( "%7d ", j ); } printf ( "\n" ); printf ( " Row\n" ); printf ( " ---\n" ); /* Determine the range of the rows in this strip. */ i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, n ); for ( i = i2lo; i <= i2hi; i++ ) { /* Print out (up to) 5 entries in row I, that lie in the current strip. */ printf ( "%4d ", i ); for ( j = j2lo; j <= j2hi; j++ ) { if ( i <= j ) { printf ( "%12g ", a[j-i] ); } else { printf ( "%12g ", a[n+i-j-1] ); } } printf ( "\n" ); } } printf ( "\n" ); return; # undef INCX } /******************************************************************************/ double *r8to_random ( int n, int *seed ) /******************************************************************************/ /* Purpose: R8TO_RANDOM randomizes an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. N must be positive. Input/output, int *SEED, a seed for the random number generator. Output, double R8TO_RANDOM[2*N-1], the R8TO matrix. */ { double *a; a = r8vec_uniform_01_new ( 2 * n - 1, seed ); return a; } /******************************************************************************/ double *r8to_sl ( int n, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8TO_SL solves A*x=b, where A is an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 25 September 2015 Author: John Burkardt. Parameters: Input, int N, the order of the matrix. Input, double A[2*N-1], the R8TO matrix. Input, double B[N] the right hand side vector. Output, double R8TO_SL[N], the solution vector. X and B may share the same storage. */ { double *c1; double *c2; int i; int nsub; double r1; double r2; double r3; double r5; double r6; double *x; if ( n < 1 ) { return NULL; } x = ( double * ) malloc ( n * sizeof ( double ) ); /* Solve the system with the principal minor of order 1. */ r1 = a[0]; x[0] = b[0] / r1; if ( n == 1 ) { return x; } c1 = ( double * ) malloc ( ( n - 1 ) * sizeof ( double ) ); c2 = ( double * ) malloc ( ( n - 1 ) * sizeof ( double ) ); /* Recurrent process for solving the system with the Toeplitz matrix. */ for ( nsub = 2; nsub <= n; nsub++ ) { /* Compute multiples of the first and last columns of the inverse of the principal minor of order NSUB. */ r5 = a[n+nsub-2]; r6 = a[nsub-1]; if ( 2 < nsub ) { c1[nsub-2] = r2; for ( i = 1; i <= nsub - 2; i++ ) { r5 = r5 + a[n+i-1] * c1[nsub-i-1]; r6 = r6 + a[i] * c2[i-1]; } } r2 = - r5 / r1; r3 = - r6 / r1; r1 = r1 + r5 * r3; if ( 2 < nsub ) { r6 = c2[0]; c2[nsub-2] = 0.0; for ( i = 2; i <= nsub-1; i++ ) { r5 = c2[i-1]; c2[i-1] = c1[i-1] * r3 + r6; c1[i-1] = c1[i-1] + r6 * r2; r6 = r5; } } c2[0] = r3; /* Compute the solution of the system with the principal minor of order NSUB. */ r5 = 0.0; for ( i = nsub-1; 1 <= i; i-- ) { r5 = r5 + a[n+nsub-i-1] * x[i-1]; } r6 = ( b[nsub-1] - r5 ) / r1; for ( i = 0; i < nsub - 1; i++ ) { x[i] = x[i] + c2[i] * r6; } x[nsub-1] = r6; } free ( c1 ); free ( c2 ); return x; } /******************************************************************************/ double *r8to_slt ( int n, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8TO_SLT solves A'*x=b, where A is an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 25 September 2015 Author: John Burkardt. Parameters: Input, int N, the order of the matrix. Input, double A[2*N-1], the R8TO matrix. Input, double B[N] the right hand side vector. Output, double R8TO_SLT[N], the solution vector. X and B may share the same storage. */ { double *c1; double *c2; int i; int nsub; double r1; double r2; double r3; double r5; double r6; double *x; if ( n < 1 ) { return NULL; } x = ( double * ) malloc ( n * sizeof ( double ) ); /* Solve the system with the principal minor of order 1. */ r1 = a[0]; x[0] = b[0] / r1; if ( n == 1 ) { return x; } c1 = ( double * ) malloc ( ( n - 1 ) * sizeof ( double ) ); c2 = ( double * ) malloc ( ( n - 1 ) * sizeof ( double ) ); /* Recurrent process for solving the system with the Toeplitz matrix. */ for ( nsub = 2; nsub <= n; nsub++ ) { /* Compute multiples of the first and last columns of the inverse of the principal minor of order NSUB. */ r5 = a[nsub-1]; r6 = a[n+nsub-2]; if ( 2 < nsub ) { c1[nsub-2] = r2; for ( i = 1; i <= nsub-2; i++ ) { r5 = r5 + a[i] * c1[nsub-i-1]; r6 = r6 + a[n+i-1] * c2[i-1]; } } r2 = - r5 / r1; r3 = - r6 / r1; r1 = r1 + r5 * r3; if ( 2 < nsub ) { r6 = c2[0]; c2[nsub-2] = 0.0; for ( i = 2; i <= nsub-1; i++ ) { r5 = c2[i-1]; c2[i-1] = c1[i-1] * r3 + r6; c1[i-1] = c1[i-1] + r6 * r2; r6 = r5; } } c2[0] = r3; /* Compute the solution of the system with the principal minor of order NSUB. */ r5 = 0.0; for ( i = nsub-1; 1 <= i; i-- ) { r5 = r5 + a[nsub-i] * x[i-1]; } r6 = ( b[nsub-1] - r5 ) / r1; for ( i = 0; i < nsub-1; i++ ) { x[i] = x[i] + c2[i] * r6; } x[nsub-1] = r6; } free ( c1 ); free ( c2 ); return x; } /******************************************************************************/ double *r8to_to_r8ge ( int n, double a[] ) /******************************************************************************/ /* Purpose: R8TO_TO_R8GE copies an R8TO matrix to an R8GE matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the order of the matrix. Input, double A[2*N-1], the R8TO matrix. Output, double R8TO_TO_R8GE[N*N], the R8GE matrix. */ { double *b; int i; int j; b = ( double * ) malloc ( n * n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { b[i+j*n] = a[n+i-j-1]; } for ( j = i; j < n; j++ ) { b[i+j*n] = a[j-i]; } } return b; } /******************************************************************************/ double *r8to_zeros ( int n ) /******************************************************************************/ /* Purpose: R8TO_ZEROS zeros an R8TO matrix. Discussion: The R8TO storage format is used for a Toeplitz matrix, which is constant along diagonals. Thus, in an N by N Toeplitz matrix, there are at most 2*N-1 distinct entries. The format stores the N elements of the first row, followed by the N-1 elements of the first column (skipping the entry in the first row). Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Parameters: Input, int N, the number of rows and columns of the matrix. N must be positive. Output, double R8TO_ZEROS[2*N-1], the R8TO matrix. */ { double *a; a = r8vec_zeros_new ( 2 * n - 1 ); return a; } /******************************************************************************/ double *r8vec_indicator1_new ( int n ) /******************************************************************************/ /* Purpose: R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. Licensing: This code is distributed under the MIT license. Modified: 26 August 2008 Author: John Burkardt Parameters: Input, int N, the number of elements of A. Output, double R8VEC_INDICATOR1_NEW[N], the array. */ { double *a; int i; a = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } /******************************************************************************/ void r8vec_print ( int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8VEC_PRINT prints an R8VEC. Discussion: An R8VEC is a vector of R8's. Licensing: This code is distributed under the MIT license. Modified: 08 April 2009 Author: John Burkardt Parameters: Input, int N, the number of components of the vector. Input, double A[N], the vector to be printed. Input, char *TITLE, a title. */ { int i; printf ( "\n" ); printf ( "%s\n", title ); printf ( "\n" ); for ( i = 0; i < n; i++ ) { printf ( " %8d %14f\n", i, a[i] ); } return; } /******************************************************************************/ double *r8vec_uniform_01_new ( int n, int *seed ) /******************************************************************************/ /* Purpose: R8VEC_UNIFORM_01_NEW returns a unit pseudorandom R8VEC. Discussion: This routine implements the recursion seed = 16807 * seed mod ( 2^31 - 1 ) unif = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. Licensing: This code is distributed under the MIT license. Modified: 19 August 2004 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, int N, the number of entries in the vector. Input/output, int *SEED, a seed for the random number generator. Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. */ { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8VEC_UNIFORM_01_NEW - Fatal error!\n" ); fprintf ( stderr, " Input value of SEED = 0.\n" ); exit ( 1 ); } r = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } /******************************************************************************/ double *r8vec_zeros_new ( int n ) /******************************************************************************/ /* Purpose: R8VEC_ZEROS_NEW creates and zeroes an R8VEC. Discussion: An R8VEC is a vector of R8's. Licensing: This code is distributed under the MIT license. Modified: 25 March 2009 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. */ { double *a; int i; a = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; }