# include # include # include # include # include # include # include "prob.h" /******************************************************************************/ double angle_cdf ( double x, int n ) /******************************************************************************/ /* Purpose: angle_cdf() evaluates the Angle CDF. Licensing: This code is distributed under the MIT license. Modified: 19 November 2004 Author: John Burkardt Reference: Reuven Rubinstein, Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks, Wiley, 1986. Parameters: Input, double X, the argument of the PDF. Input, int N, the spatial dimension. N must be at least 2. Output, real CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double zero = 0.0; if ( n < 2 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ANGLE_CDF - Fatal error!\n" ); fprintf ( stderr, " N must be at least 2.\n" ); fprintf ( stderr, " The input value of N = %d\n", n ); exit ( 1 ); } if ( x < 0.0 ) { cdf = 0.0; } else if ( r8_pi < x ) { cdf = 1.0; } else if ( n == 2 ) { cdf = x / r8_pi; } else { cdf = sin_power_int ( zero, x, n-2 ) * tgamma ( ( double ) ( n ) / 2.0 ) / ( sqrt ( r8_pi ) * tgamma ( ( double ) ( n - 1 ) / 2.0 ) ); } return cdf; } /******************************************************************************/ double angle_mean ( int n ) /******************************************************************************/ /* Purpose: angle_mean() returns the mean of the Angle PDF. Licensing: This code is distributed under the MIT license. Modified: 02 September 2004 Author: John Burkardt Parameters: Input, int N, the spatial dimension. N must be at least 2. Output, double ANGLE_MEAN, the mean of the PDF. */ { double mean; const double r8_pi = 3.14159265358979323; mean = r8_pi / 2.0; return mean; } /******************************************************************************/ double angle_pdf ( double x, int n ) /******************************************************************************/ /* Purpose: angle_pdf() evaluates the Angle PDF. Discussion: X is an angle between 0 and PI, corresponding to the angle made in an N-dimensional space, between a fixed line passing through the origin, and an arbitrary line that also passes through the origin, which is specified by a choosing any point on the N-dimensional sphere with uniform probability. Formula: PDF(X) = ( sin ( X ) )^(N-2) * Gamma ( N / 2 ) / ( sqrt ( PI ) * Gamma ( ( N - 1 ) / 2 ) ) PDF(X) = 1 / PI if N = 2. Licensing: This code is distributed under the MIT license. Modified: 02 September 2004 Author: John Burkardt Reference: Reuven Rubinstein, Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks, Wiley, 1986. Parameters: Input, double X, the argument of the PDF. Input, int N, the spatial dimension. N must be at least 2. Output, real PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( n < 2 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ANGLE_PDF - Fatal error!\n" ); fprintf ( stderr, " N must be at least 2.\n" ); fprintf ( stderr, " The input value of N = %d\n", n ); exit ( 1 ); } if ( x < 0.0 || r8_pi < x ) { pdf = 0.0; } else if ( n == 2 ) { pdf = 1.0 / r8_pi; } else { pdf = pow ( ( sin ( x ) ), ( n - 2 ) ) * tgamma ( ( double ) ( n ) / 2.0 ) / ( sqrt ( r8_pi ) * tgamma ( ( double ) ( n - 1 ) / 2.0 ) ); } return pdf; } /******************************************************************************/ double anglit_cdf ( double x ) /******************************************************************************/ /* Purpose: anglit_cdf() evaluates the Anglit CDF. Licensing: This code is distributed under the MIT license. Modified: 29 December 1999 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Output, double ANGLIT_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; if ( x < - 0.25 * r8_pi ) { cdf = 0.0; } else if ( x < 0.25 * r8_pi ) { cdf = 0.5 - 0.5 * cos ( 2.0 * x + r8_pi / 2.0 ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double anglit_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: anglit_cdf_inv() inverts the Anglit CDF. Licensing: This code is distributed under the MIT license. Modified: 29 December 1999 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double ANGLIT_CDF_INV, the corresponding argument. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ANGLIT_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = 0.5 * ( acos ( 1.0 - 2.0 * cdf ) - r8_pi / 2.0 ); return x; } /******************************************************************************/ double anglit_mean ( ) /******************************************************************************/ /* Purpose: anglit_mean() returns the mean of the Anglit PDF. Licensing: This code is distributed under the MIT license. Modified: 28 December 1999 Author: John Burkardt Parameters: Output, double ANGLIT_MEAN, the mean of the PDF. */ { return 0.0; } /******************************************************************************/ double anglit_pdf ( double x ) /******************************************************************************/ /* Purpose: anglit_pdf() evaluates the Anglit PDF. Formula: PDF(X) = SIN ( 2 * X + PI / 2 ) for -PI/4 <= X <= PI/4 Licensing: This code is distributed under the MIT license. Modified: 28 December 1999 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Output, double ANGLIT_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( x <= - 0.25 * r8_pi || 0.25 * r8_pi <= x ) { pdf = 0.0; } else { pdf = sin ( 2.0 * x + 0.25 * r8_pi ); } return pdf; } /******************************************************************************/ double anglit_sample ( int *seed ) /******************************************************************************/ /* Purpose: anglit_sample() samples the Anglit PDF. Licensing: This code is distributed under the MIT license. Modified: 28 December 1999 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double *ANGLIT_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = anglit_cdf_inv ( cdf ); return x; } /******************************************************************************/ double anglit_variance ( ) /******************************************************************************/ /* Purpose: anglit_variance() returns the variance of the Anglit PDF. Discussion: Variance = Integral ( -PI/4 <= X <= PI/4 ) X^2 * SIN ( 2 * X + PI / 2 ) Antiderivative = 0.5 * X * SIN ( 2 * X + PI / 2 ) + ( 0.25 - 0.5 * X^2 ) * COS ( 2 * X + PI / 2 ) Licensing: This code is distributed under the MIT license. Modified: 29 December 1999 Author: John Burkardt Parameters: Output, double ANGLIT_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = 0.0625 * r8_pi * r8_pi - 0.5; return variance; } /******************************************************************************/ double arcsin_cdf ( double x, double a ) /******************************************************************************/ /* Purpose: arcsin_cdf() evaluates the Arcsin CDF. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, the parameter of the CDF. A must be positive. Output, double ARCSIN_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; if ( x <= -a ) { cdf = 0.0; } else if ( x < a ) { cdf = 0.5 + asin ( x / a ) / r8_pi; } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double arcsin_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: ARCSIN_CDF_INV inverts the Arcsin CDF. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, the parameter of the CDF. A must be positive. Output, double ARCSIN_CDF_INV, the corresponding argument. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ARCSIN_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a * sin ( r8_pi * ( cdf - 0.5 ) ); return x; } /******************************************************************************/ int arcsin_check ( double a ) /******************************************************************************/ /* Purpose: ARCSIN_CHECK checks the parameter of the Arcsin CDF. Licensing: This code is distributed under the MIT license. Modified: 27 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A. Output, int ARCSIN_CHECK, is TRUE if the data is acceptable. */ { if ( a <= 0.0 ) { return 0; } else { return 1; } } /******************************************************************************/ double arcsin_mean ( double a ) /******************************************************************************/ /* Purpose: ARCSIN_MEAN returns the mean of the Arcsin PDF. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the CDF. A must be positive. Output, double MEAN, the mean of the PDF. */ { double mean = 0.0; return mean; } /******************************************************************************/ double arcsin_pdf ( double x, double a ) /******************************************************************************/ /* Purpose: ARCSIN_PDF evaluates the Arcsin PDF. Discussion: The LOGISTIC EQUATION has the form: X(N+1) = 4.0 * LAMBDA * ( 1.0 - X(N) ). where 0 < LAMBDA <= 1. This nonlinear difference equation maps the unit interval into itself, and is a simple example of a system exhibiting chaotic behavior. Ulam and von Neumann studied the logistic equation with LAMBDA = 1, and showed that iterates of the function generated a sequence of pseudorandom numbers with the Arcsin probability density function. The derived sequence Y(N) = ( 2 / PI ) * Arcsin ( SQRT ( X(N) ) ) is a pseudorandom sequence with the uniform probability density function on [0,1]. For certain starting values, such as X(0) = 0, 0.75, or 1.0, the sequence degenerates into a constant sequence, and for values very near these, the sequence takes a while before becoming chaotic. Formula: PDF(X) = 1 / ( PI * Sqrt ( A * A - X * X ) ) Reference: Daniel Zwillinger, Stephen Kokoska, CRC Standard Probability and Statistics Tables and Formulae, Chapman and Hall/CRC, 2000, pages 114-115. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 < X < 1.0. Input, double A, the parameter of the CDF. A must be positive. Output, double ARCSIN_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( a <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ARCSIN_PDF - Fatal error!\n" ); fprintf ( stderr, " Parameter A <= 0.\n" ); exit ( 1 ); } if ( x <= -a || a <= x ) { pdf = 0.0; } else { pdf = 1.0 / ( r8_pi * sqrt ( a * a - x * x ) ); } return pdf; } /******************************************************************************/ double arcsin_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: ARCSIN_SAMPLE samples the Arcsin PDF. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the CDF. A must be positive. Input/output, int *SEED, a seed for the random number generator. Output, double ARCSIN_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = arcsin_cdf_inv ( cdf, a ); return x; } /******************************************************************************/ double arcsin_variance ( double a ) /******************************************************************************/ /* Purpose: ARCSIN_VARIANCE returns the variance of the Arcsin PDF. Licensing: This code is distributed under the MIT license. Modified: 20 March 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the CDF. A must be positive. Output, double ARCSIN_VARIANCE, the variance of the PDF. */ { double variance = a * a / 2.0; return variance; } /******************************************************************************/ double benford_cdf ( int x ) /******************************************************************************/ /* Purpose: benford_cdf() returns the Benford CDF. Licensing: This code is distributed under the MIT license. Modified: 03 March 2016 Author: John Burkardt Input: int X, the string of significant digits to be checked. If X is 1, then we are asking for the Benford probability that a value will have first digit 1. If X is 123, we are asking for the probability that the first three digits will be 123, and so on. Output: double BENFORD_CDF, the Benford probability that an item taken from a real world distribution will have the initial digit X or less. */ { double value; if ( x <= 0 ) { value = 0.0; } else if ( i4_is_power_of_10 ( x + 1 ) ) { value = 1.0; } else { value = log10 ( ( double ) ( x + 1 ) ); value = fmod ( value, 1.0 ); } return value; } /******************************************************************************/ double benford_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: benford_cdf() inverts the Benford CDF. Licensing: This code is distributed under the MIT license. Modified: 13 November 2022 Author: John Burkardt Input: double BENFORD_CDF, the Benford probability that an item taken from a real world distribution will have the initial digit X or less. Output: int X: a value between 1 and 9 for which the cumulative Benford distribution is CDF. */ { int x; if ( cdf < 0.0 || 1.0 < cdf ) { printf ( "\n" ); printf ( " benford_cdf_inv(): Fatal error!\n" ); printf ( " 0.0 <= cdf <= 1.0 required.\n" ); printf ( " input value is cdf = %g\n", cdf ); exit ( 1 ); } /* If I don't subtract a tiny amount here, the calculation is wrong. */ x = floor ( pow ( 10.0, cdf ) - 0.00001 ); return x; } /******************************************************************************/ double benford_mean ( ) /******************************************************************************/ /* Purpose: benford_mean() returns the mean of the Benford PDF. Licensing: This code is distributed under the MIT license. Modified: 13 November 2022 Author: John Burkardt Reference: Frank Benford, The Law of Anomalous Numbers, Proceedings of the American Philosophical Society, Volume 78, pages 551-572, 1938. Ted Hill, The First Digit Phenomenon, American Scientist, Volume 86, July/August 1998, pages 358 - 363. Ralph Raimi, The Peculiar Distribution of First Digits, Scientific American, December 1969, pages 109-119. Output: real MU: the mean of the Benford PDF. */ { double arg; int i; double mu; mu = 0.0; for ( i = 1; i <= 9; i++ ) { arg = ( double ) ( i + 1 ) / ( double ) ( i ); mu = mu + i * log10 ( arg ); } return mu; } /******************************************************************************/ double benford_pdf ( int x ) /******************************************************************************/ /* Purpose: benford_pdf() returns the Benford probability of one or more significant digits. Discussion: Benford's law is an empirical formula explaining the observed distribution of initial digits in lists culled from newspapers, tax forms, stock market prices, and so on. It predicts the observed high frequency of the initial digit 1, for instance. Note that the probabilities of digits 1 through 9 are guaranteed to add up to 1, since LOG10 ( 2/1 ) + LOG10 ( 3/2) + LOG10 ( 4/3 ) + ... + LOG10 ( 10/9 ) = LOG10 ( 2/1 * 3/2 * 4/3 * ... * 10/9 ) = LOG10 ( 10 ) = 1. Formula: PDF(X) = LOG10 ( ( X + 1 ) / X ). Reference: Frank Benford, The Law of Anomalous Numbers, Proceedings of the American Philosophical Society, Volume 78, pages 551-572, 1938. Ted Hill, The First Digit Phenomenon, American Scientist, Volume 86, July/August 1998, pages 358 - 363. R Raimi, The Peculiar Distribution of First Digits, Scientific American, December 1969, pages 109-119. Licensing: This code is distributed under the MIT license. Modified: 03 March 2016 Author: John Burkardt Input: int X, the string of significant digits to be checked. If X is 1, then we are asking for the Benford probability that a value will have first digit 1. If X is 123, we are asking for the probability that the first three digits will be 123, and so on. Output: double BENFORD_PDF, the Benford probability that an item taken from a real world distribution will have the initial digits X. */ { double pdf; if ( x <= 0 ) { pdf = 0.0; } else { pdf = log10 ( ( double ) ( x + 1 ) / ( double ) ( x ) ); } return pdf; } /******************************************************************************/ int benford_sample ( ) /******************************************************************************/ /* Purpose: benford_sample() samples the Benford CDF. Licensing: This code is distributed under the MIT license. Modified: 13 November 2022 Author: John Burkardt Output: int X: a value between 1 and 9. */ { double cdf; int x; cdf = ( double ) rand ( ) / ( double ) RAND_MAX; x = benford_cdf_inv ( cdf ); return x; } /******************************************************************************/ double benford_variance ( ) /******************************************************************************/ /* Purpose: benford_variance() returns the variance of the Benford PDF. Licensing: This code is distributed under the MIT license. Modified: 13 November 2022 Author: John Burkardt Reference: Frank Benford, The Law of Anomalous Numbers, Proceedings of the American Philosophical Society, Volume 78, pages 551-572, 1938. Ted Hill, The First Digit Phenomenon, American Scientist, Volume 86, July/August 1998, pages 358 - 363. Ralph Raimi, The Peculiar Distribution of First Digits, Scientific American, December 1969, pages 109-119. Output: real variance: the variance of the Benford PDF. */ { double arg; int i; double mu; double variance; mu = 0.0; for ( i = 1; i <= 9; i++ ) { arg = ( double ) ( i + 1 ) / ( double ) ( i ); mu = mu + i * log10 ( arg ); } variance = 0.0; for ( i = 1; i <= 9; i++ ) { arg = ( double ) ( i + 1 ) / ( double ) ( i ); variance = variance + log10 ( arg ) * pow ( i - mu, 2 ); } return variance; } /******************************************************************************/ double bernoulli_cdf ( int x, double a ) /******************************************************************************/ /* Purpose: bernoulli_cdf() evaluates the Bernoulli CDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, int X, the number of successes on a single trial. X = 0 or 1. Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double BERNOULLI_CDF, the value of the CDF. */ { double cdf; if ( x < 0 ) { cdf = 0.0; } else if ( x == 0 ) { cdf = 1.0 - a; } else { cdf = 1.0; } return cdf; } /******************************************************************************/ int bernoulli_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: BERNOULLI_CDF_INV inverts the Bernoulli CDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, the parameter of the PDF. 0.0 <= A <= 1.0. Output, int BERNOULLI_CDF_INV, the corresponding argument. */ { int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BERNOULLI_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf <= 1.0 - a ) { x = 0; } else { x = 1; } return x; } /******************************************************************************/ int bernoulli_check ( double a ) /******************************************************************************/ /* Purpose: BERNOULLI_CHECK checks the parameter of the Bernoulli CDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 <= A <= 1.0. Output, int BERNOULLI_CHECK, is TRUE if the data is acceptable. */ { if ( a < 0.0 || 1.0 < a ) { return 0; } else { return 1; } } /******************************************************************************/ double bernoulli_mean ( double a ) /******************************************************************************/ /* Purpose: BERNOULLI_MEAN returns the mean of the Bernoulli PDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, double A, the probability of success. 0.0 <= A <= 1.0. Output, double BERNOULLI_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double bernoulli_pdf ( int x, double a ) /******************************************************************************/ /* Purpose: BERNOULLI_PDF evaluates the Bernoulli PDF. Formula: PDF(X)(A) = A^X * ( 1.0 - A )^( X - 1 ) X = 0 or 1. Discussion: The Bernoulli PDF describes the simple case in which a single trial is carried out, with two possible outcomes, called "success" and "failure"; the probability of success is A. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, int X, the number of successes on a single trial. X = 0 or 1. Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double BERNOULLI_PDF, the value of the PDF. */ { double pdf; if ( x < 0 ) { pdf = 0.0; } else if ( x == 0 ) { pdf = 1.0 - a; } else if ( x == 1 ) { pdf = a; } else { pdf = 0.0; } return pdf; } /******************************************************************************/ int bernoulli_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: BERNOULLI_SAMPLE samples the Bernoulli PDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int BERNOULLI_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = bernoulli_cdf_inv ( cdf, a ); return x; } /******************************************************************************/ double bernoulli_variance ( double a ) /******************************************************************************/ /* Purpose: BERNOULLI_VARIANCE returns the variance of the Bernoulli PDF. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double BERNOULLI_VARIANCE, the variance of the PDF. */ { double variance; variance = a * ( 1.0 - a ); return variance; } /******************************************************************************/ double bessel_i0 ( double arg ) /******************************************************************************/ /* Purpose: BESSEL_I0 evaluates the modified Bessel function I0. Discussion: The main computation evaluates slightly modified forms of minimax approximations generated by Blair and Edwards, Chalk River (Atomic Energy of Canada Limited) Report AECL-4928, October, 1974. This transportable program is patterned after the machine dependent FUNPACK packet NATSI0, but cannot match that version for efficiency or accuracy. This version uses rational functions that theoretically approximate I-SUB-0(X) to at least 18 significant decimal digits. Machine dependent constants: beta = Radix for the floating-point system maxexp = Smallest power of beta that overflows XSMALL = Positive argument such that 1.0 - X = 1.0 to machine precision for all ABS(X) .LE. XSMALL. XMAX = Largest argument acceptable to BESI0; Solution to equation: W(X) * (1+1/(8*X)+9/(128*X^2) = beta**maxexp where W(X) = EXP(X)/sqrt(2*PI*X) Approximate values for some important machines are: beta maxexp XSMALL CRAY-1 (S.P.) 2 8191 3.55D-15 Cyber 180/855 under NOS (S.P.) 2 1070 3.55D-15 IEEE (IBM/XT, SUN, etc.) (S.P.) 2 128 2.98D-8 IEEE (IBM/XT, SUN, etc.) (D.P.) 2 1024 5.55D-17 IBM 3033 (D.P.) 16 63 6.95D-18 VAX (S.P.) 2 127 2.98D-8 VAX D-Format (D.P.) 2 127 6.95D-18 VAX G-Format (D.P.) 2 1023 5.55D-17 XMAX CRAY-1 (S.P.) 5682.810 Cyber 180/855 under NOS (S.P.) 745.893 IEEE (IBM/XT, SUN, etc.) (S.P.) 91.900 IEEE (IBM/XT, SUN, etc.) (D.P.) 713.986 IBM 3033 (D.P.) 178.182 VAX (S.P.) 91.203 VAX D-Format (D.P.) 91.203 VAX G-Format (D.P.) 713.293 Licensing: This code is distributed under the MIT license. Modified: 13 November 2022 Author: Original FORTRAN77 version by W. J. Cody and L. Stoltz. This version by John Burkardt. Parameters: Input, double ARG, the argument. Output, double BESSEL_I0, the value of the modified Bessel function of the first kind. */ { double a; double b; double exp40 = 2.353852668370199854E+17; int i; double p[15] = { -5.2487866627945699800E-18, -1.5982226675653184646E-14, -2.6843448573468483278E-11, -3.0517226450451067446E-08, -2.5172644670688975051E-05, -1.5453977791786851041E-02, -7.0935347449210549190, -2.4125195876041896775E+03, -5.9545626019847898221E+05, -1.0313066708737980747E+08, -1.1912746104985237192E+10, -8.4925101247114157499E+11, -3.2940087627407749166E+13, -5.5050369673018427753E+14, -2.2335582639474375249E+15 }; double pp[8] = { -3.9843750000000000000E-01, 2.9205384596336793945, -2.4708469169133954315, 4.7914889422856814203E-01, -3.7384991926068969150E-03, -2.6801520353328635310E-03, 9.9168777670983678974E-05, -2.1877128189032726730E-06 }; double q[5] = { -3.7277560179962773046E+03, 6.5158506418655165707E+06, -6.5626560740833869295E+09, 3.7604188704092954661E+12, -9.7087946179594019126E+14 }; double qq[7] = { -3.1446690275135491500E+01, 8.5539563258012929600E+01, -6.0228002066743340583E+01, 1.3982595353892851542E+01, -1.1151759188741312645, 3.2547697594819615062E-02, -5.5194330231005480228E-04 }; double rec15 = 6.6666666666666666666E-02; double sump; double sumq; double value; double x; double xmax = 91.9; double xsmall = 2.98E-08; double xx; x = fabs ( arg ); if ( x < xsmall ) { value = 1.0; } else if ( x < 15.0 ) { /* XSMALL <= ABS(ARG) < 15.0 */ xx = x * x; sump = p[0]; for ( i = 1; i < 15; i++ ) { sump = sump * xx + p[i]; } xx = xx - 225.0; sumq = (((( xx + q[0] ) * xx + q[1] ) * xx + q[2] ) * xx + q[3] ) * xx + q[4]; value = sump / sumq; } else if ( 15.0 <= x ) { if ( xmax < x ) { value = HUGE_VAL; } else { /* 15.0 <= ABS(ARG) */ xx = 1.0 / x - rec15; sump = (((((( pp[0] * xx + pp[1] ) * xx + pp[2] ) * xx + pp[3] ) * xx + pp[4] ) * xx + pp[5] ) * xx + pp[6] ) * xx + pp[7]; sumq = (((((( xx + qq[0] ) * xx + qq[1] ) * xx + qq[2] ) * xx + qq[3] ) * xx + qq[4] ) * xx + qq[5] ) * xx + qq[6]; value = sump / sumq; /* Calculation reformulated to avoid premature overflow. */ if ( x <= xmax - 15.0 ) { a = exp ( x ); b = 1.0; } else { a = exp ( x - 40.0 ); b = exp40; } value = ( ( value * a - pp[0] * a ) / sqrt ( x ) ) * b; } } return value; } /******************************************************************************/ void bessel_i0_values ( int *n_data, double *x, double *fx ) /******************************************************************************/ /* Purpose: BESSEL_I0_VALUES returns some values of the I0 Bessel function. Discussion: The modified Bessel functions In(Z) and Kn(Z) are solutions of the differential equation Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. The modified Bessel function I0(Z) corresponds to N = 0. In Mathematica, the function can be evaluated by: BesselI[0,x] Licensing: This code is distributed under the MIT license. Modified: 20 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 20 double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.1010025027795146E+01, 0.1040401782229341E+01, 0.1092045364317340E+01, 0.1166514922869803E+01, 0.1266065877752008E+01, 0.1393725584134064E+01, 0.1553395099731217E+01, 0.1749980639738909E+01, 0.1989559356618051E+01, 0.2279585302336067E+01, 0.3289839144050123E+01, 0.4880792585865024E+01, 0.7378203432225480E+01, 0.1130192195213633E+02, 0.1748117185560928E+02, 0.2723987182360445E+02, 0.6723440697647798E+02, 0.4275641157218048E+03, 0.2815716628466254E+04 }; double x_vec[N_MAX] = { 0.00, 0.20, 0.40, 0.60, 0.80, 0.10E+01, 0.12E+01, 0.14E+01, 0.16E+01, 0.18E+01, 0.20E+01, 0.25E+01, 0.30E+01, 0.35E+01, 0.40E+01, 0.45E+01, 0.50E+01, 0.60E+01, 0.80E+01, 0.10E+02 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double bessel_i1 ( double arg ) /******************************************************************************/ /* Purpose: BESSEL_I1 evaluates the Bessel I function of order I. Discussion: The main computation evaluates slightly modified forms of minimax approximations generated by Blair and Edwards. This transportable program is patterned after the machine-dependent FUNPACK packet NATSI1, but cannot match that version for efficiency or accuracy. This version uses rational functions that theoretically approximate I-SUB-1(X) to at least 18 significant decimal digits. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants. Machine-dependent constants: beta = Radix for the floating-point system. maxexp = Smallest power of beta that overflows. XMAX = Largest argument acceptable to BESI1; Solution to equation: EXP(X) * (1-3/(8*X)) / SQRT(2*PI*X) = beta**maxexp Approximate values for some important machines are: beta maxexp XMAX CRAY-1 (S.P.) 2 8191 5682.810 Cyber 180/855 under NOS (S.P.) 2 1070 745.894 IEEE (IBM/XT, SUN, etc.) (S.P.) 2 128 91.906 IEEE (IBM/XT, SUN, etc.) (D.P.) 2 1024 713.987 IBM 3033 (D.P.) 16 63 178.185 VAX (S.P.) 2 127 91.209 VAX D-Format (D.P.) 2 127 91.209 VAX G-Format (D.P.) 2 1023 713.293 Licensing: This code is distributed under the MIT license. Modified: 28 October 2004 Author: Original FORTRAN77 version by William Cody, Laura Stoltz, This version by John Burkardt. Reference: Blair, Edwards, Chalk River Report AECL-4928, Atomic Energy of Canada, Limited, October, 1974. Parameters: Input, double ARG, the argument. Output, double BESSEL_I1, the value of the Bessel I1 function. */ { double a; double b; double exp40 = 2.353852668370199854E+17; double forty = 40.0; double half = 0.5; int j; double one = 1.0; double one5 = 15.0; double p[15] = { -1.9705291802535139930E-19, -6.5245515583151902910E-16, -1.1928788903603238754E-12, -1.4831904935994647675E-09, -1.3466829827635152875E-06, -9.1746443287817501309E-04, -4.7207090827310162436E-01, -1.8225946631657315931E+02, -5.1894091982308017540E+04, -1.0588550724769347106E+07, -1.4828267606612366099E+09, -1.3357437682275493024E+11, -6.9876779648010090070E+12, -1.7732037840791591320E+14, -1.4577180278143463643E+15 }; double pbar = 3.98437500E-01; double pp[8] = { -6.0437159056137600000E-02, 4.5748122901933459000E-01, -4.2843766903304806403E-01, 9.7356000150886612134E-02, -3.2457723974465568321E-03, -3.6395264712121795296E-04, 1.6258661867440836395E-05, -3.6347578404608223492E-07 }; double q[5] = { -4.0076864679904189921E+03, 7.4810580356655069138E+06, -8.0059518998619764991E+09, 4.8544714258273622913E+12, -1.3218168307321442305E+15 }; double qq[6] = { -3.8806586721556593450, 3.2593714889036996297, -8.5017476463217924408E-01, 7.4212010813186530069E-02, -2.2835624489492512649E-03, 3.7510433111922824643E-05 }; double rec15 = 6.6666666666666666666E-02; double sump; double sumq; double two25 = 225.0; double value; double x; double xmax = 713.987; double xx; double zero = 0.0; x = fabs ( arg ); /* ABS(ARG) < EPSILON */ if ( x < DBL_EPSILON ) { value = half * x; } /* EPSILON <= ABS(ARG) < 15.0 */ else if ( x < one5 ) { xx = x * x; sump = p[0]; for ( j = 1; j < 15; j++ ) { sump = sump * xx + p[j]; } xx = xx - two25; sumq = (((( xx + q[0] ) * xx + q[1] ) * xx + q[2] ) * xx + q[3] ) * xx + q[4]; value = ( sump / sumq ) * x; } else if ( xmax < x ) { value = HUGE_VAL; } /* 15.0 <= ABS(ARG) */ else { xx = one / x - rec15; sump = (((((( pp[0] * xx + pp[1] ) * xx + pp[2] ) * xx + pp[3] ) * xx + pp[4] ) * xx + pp[5] ) * xx + pp[6] ) * xx + pp[7]; sumq = ((((( xx + qq[0] ) * xx + qq[1] ) * xx + qq[2] ) * xx + qq[3] ) * xx + qq[4] ) * xx + qq[5]; value = sump / sumq; if ( xmax - one5 < x ) { a = exp ( x - forty ); b = exp40; } else { a = exp ( x ); b = one; } value = ( ( value * a + pbar * a ) / sqrt ( x ) ) * b; } if ( arg < zero ) { value = -value; } return value; } /******************************************************************************/ void bessel_i1_values ( int *n_data, double *x, double *fx ) /******************************************************************************/ /* Purpose: BESSEL_I1_VALUES returns some values of the I1 Bessel function. Discussion: The modified Bessel functions In(Z) and Kn(Z) are solutions of the differential equation Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. In Mathematica, the function can be evaluated by: BesselI[1,x] Licensing: This code is distributed under the MIT license. Modified: 20 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 20 double fx_vec[N_MAX] = { 0.0000000000000000, 0.1005008340281251, 0.2040267557335706, 0.3137040256049221, 0.4328648026206398, 0.5651591039924850, 0.7146779415526431, 0.8860919814143274, 0.1084810635129880E+01, 0.1317167230391899E+01, 0.1590636854637329E+01, 0.2516716245288698E+01, 0.3953370217402609E+01, 0.6205834922258365E+01, 0.9759465153704450E+01, 0.1538922275373592E+02, 0.2433564214245053E+02, 0.6134193677764024E+02, 0.3998731367825601E+03, 0.2670988303701255E+04 }; double x_vec[N_MAX] = { 0.00, 0.20, 0.40, 0.60, 0.80, 0.10E+01, 0.12E+01, 0.14E+01, 0.16E+01, 0.18E+01, 0.20E+01, 0.25E+01, 0.30E+01, 0.35E+01, 0.40E+01, 0.45E+01, 0.50E+01, 0.60E+01, 0.80E+01, 0.10E+02 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ void bessel_ix_values ( int *n_data, double *nu, double *x, double *fx ) /******************************************************************************/ /* Purpose: BESSEL_IX_VALUES returns some values of the Ix Bessel function. Discussion: This set of data considers the less common case in which the index of the Bessel function In is actually not an integer. We may suggest this case by occasionally replacing the symbol "In" by "Ix". The modified Bessel functions In(Z) and Kn(Z) are solutions of the differential equation Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. In Mathematica, the function can be evaluated by: BesselI[n,x] Licensing: This code is distributed under the MIT license. Modified: 02 March 2007 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *NU, the order of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 28 double fx_vec[N_MAX] = { 0.3592084175833614E+00, 0.9376748882454876E+00, 2.046236863089055E+00, 3.053093538196718E+00, 4.614822903407601E+00, 26.47754749755907E+00, 2778.784603874571E+00, 4.327974627242893E+07, 0.2935253263474798E+00, 1.099473188633110E+00, 21.18444226479414E+00, 2500.906154942118E+00, 2.866653715931464E+20, 0.05709890920304825E+00, 0.3970270801393905E+00, 13.76688213868258E+00, 2028.512757391936E+00, 2.753157630035402E+20, 0.4139416015642352E+00, 1.340196758982897E+00, 22.85715510364670E+00, 2593.006763432002E+00, 2.886630075077766E+20, 0.03590910483251082E+00, 0.2931108636266483E+00, 11.99397010023068E+00, 1894.575731562383E+00, 2.716911375760483E+20 }; double nu_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00 }; double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *nu = 0.0; *x = 0.0; *fx = 0.0; } else { *nu = nu_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double beta_binomial_cdf ( int x, double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_CDF evaluates the Beta Binomial CDF. Discussion: A simple summing approach is used. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, int X, the argument of the CDF. Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Output, double BETA_BINOMIAL_CDF, the value of the CDF. */ { double cdf; double pdf; int y; if ( x < 0 ) { cdf = 0.0; } else if ( x < c ) { cdf = 0.0; for ( y = 0; y <= x; y++ ) { pdf = r8_beta ( a + ( double ) y, b + ( double ) ( c - y) ) / ( ( double ) ( c + 1 ) * r8_beta ( ( double ) ( y + 1 ), ( double ) ( c - y + 1 ) ) * r8_beta ( a, b ) ); cdf = cdf + pdf; } } else if ( c <= x ) { cdf = 1.0; } return cdf; } /******************************************************************************/ int beta_binomial_cdf_inv ( double cdf, double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_CDF_INV inverts the Beta Binomial CDF. Discussion: A simple discrete approach is used. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Output, int BETA_BINOMIAL_CDF_INV, the smallest X whose cumulative density function is greater than or equal to CDF. */ { double cum; double pdf; int x; int y; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_BINOMIAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cum = 0.0; for ( y = 0; y <= c; y++ ) { pdf = r8_beta ( a + ( double ) ( y ), b + ( double ) ( c - y ) ) / ( ( double ) ( c + 1 ) * r8_beta ( ( double ) ( y + 1 ), ( double ) ( c - y + 1 ) ) * r8_beta ( a, b ) ); cum = cum + pdf; if ( cdf <= cum ) { x = y; return x; } } x = c; return x; } /******************************************************************************/ int beta_binomial_check ( double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_CHECK checks the parameters of the Beta Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Output, int BETA_BINOMIAL_CHECK, is TRUE if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " C < 0.\n" ); return 0; } return 1; } /******************************************************************************/ double beta_binomial_mean ( double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_MEAN returns the mean of the Beta Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= N. Output, double BETA_BINOMIAL_MEAN, the mean of the PDF. */ { double mean; mean = ( double ) ( c ) * a / ( a + b ); return mean; } /******************************************************************************/ double beta_binomial_pdf ( int x, double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_PDF evaluates the Beta Binomial PDF. Discussion: PDF(X)(A,B,C) = Beta(A+X,B+C-X) / ( (C+1) * Beta(X+1,C-X+1) * Beta(A,B) ) for 0 <= X <= C. This PDF can be reformulated as: The beta binomial probability density function for X successes out of N trials is PDF2(X)( N, MU, THETA ) = C(N,X) * Product ( 0 <= R <= X - 1 ) ( MU + R * THETA ) * Product ( 0 <= R <= N - X - 1 ) ( 1 - MU + R * THETA ) / Product ( 0 <= R <= N - 1 ) ( 1 + R * THETA ) where C(N,X) is the combinatorial coefficient; MU is the expectation of the underlying Beta distribution; THETA is a shape parameter. A THETA value of 0 ( or A+B --> Infinity ) results in the binomial distribution: PDF2(X) ( N, MU, 0 ) = C(N,X) * MU^X * ( 1 - MU )^(N-X) Given A, B, C for PDF, then the equivalent PDF2 has: N = C MU = A / ( A + B ) THETA = 1 / ( A + B ) Given N, MU, THETA for PDF2, the equivalent PDF has: A = MU / THETA B = ( 1 - MU ) / THETA C = N BETA_BINOMIAL_PDF(X)(1,1,C) = UNIFORM_DISCRETE_PDF(X)(0,C-1) Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, int X, the argument of the PDF. Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Output, double BETA_BINOMIAL_PDF, the value of the PDF. */ { double pdf; if ( x < 0 ) { pdf = 0.0; } else if ( x <= c ) { pdf = r8_beta ( a + ( double ) ( x ), b + ( double ) ( c - x ) ) / ( ( double ) ( c + 1 ) * r8_beta ( ( double ) ( x + 1 ), ( double ) ( c - x + 1 ) ) * r8_beta ( a, b ) ); } else if ( c < x ) { pdf = 0.0; } return pdf; } /******************************************************************************/ int beta_binomial_sample ( double a, double b, int c, int *seed ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_SAMPLE samples the Beta Binomial CDF. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Input/output, int *SEED, a seed for the random number generator. Output, int BETA_BINOMIAL_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = beta_binomial_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double beta_binomial_variance ( double a, double b, int c ) /******************************************************************************/ /* Purpose: BETA_BINOMIAL_VARIANCE returns the variance of the Beta Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 03 September 2004 Author: John Burkardt Parameters: Input, double A, B, parameters of the PDF. 0.0 < A, 0.0 < B. Input, int C, a parameter of the PDF. 0 <= C. Output, double BETA_BINOMIAL_VARIANCE, the variance of the PDF. */ { double variance; variance = ( ( double ) ( c ) * a * b ) * ( a + b + ( double ) ( c ) ) / ( ( a + b ) * ( a + b ) * ( a + b + 1.0 ) ); return variance; } /******************************************************************************/ double beta_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: BETA_CDF evaluates the Beta CDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double BETA_CDF, the value of the CDF. */ { double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else if ( x <= 1.0 ) { cdf = beta_inc ( a, b, x ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double beta_cdf_inv ( double cdf, double p, double q ) /******************************************************************************/ /* Purpose: BETA_CDF_INV inverts the Beta CDF. Licensing: This code is distributed under the MIT license. Modified: 28 April 2013 Author: Original FORTRAN77 version by GW Cran, KJ Martin, GE Thomas. This version by John Burkardt. Reference: GW Cran, KJ Martin, GE Thomas, Remark AS R19 and Algorithm AS 109: A Remark on Algorithms AS 63: The Incomplete Beta Integral and AS 64: Inverse of the Incomplete Beta Integeral, Applied Statistics, Volume 26, Number 1, 1977, pages 111-114. Parameters: Input, double CDF, the value of the incomplete Beta function. 0 <= CDF <= 1. Input, double P, Q, the parameters of the incomplete Beta function. Output, double BETA_CDF_INV, the argument of the Beta CDF which produces the value CDF. Local Parameters: Local, double SAE, the most negative decimal exponent which does not cause an underflow. */ { double a; double acu; double adj; double beta_log = 0.0; double fpu; double g; double h; int iex; int indx; double pp; double prev; double qq; double r; double s; double sae = -37.0; double sq; double t; double tx; double value; double w; double xin; double y; double yprev; fpu = pow ( 10.0, sae ); /* Test for admissibility of parameters. */ if ( p <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " P <= 0.0\n" ); value = -1.0; return value; } if ( q <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Q <= 0.0\n" ); value = -1.0; return value; } if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0.0 or 1.0 < CDF\n" ); value = -1.0; return value; } /* Return immediately if the answer is easy. */ if ( cdf == 0.0 ) { value = 0.0; return value; } if ( cdf == 1.0 ) { value = 1.0; return value; } /* Change tail if necessary. */ if ( 0.5 < cdf ) { a = 1.0 - cdf; pp = q; qq = p; indx = 1; } else { a = cdf; pp = p; qq = q; indx = 0; } /* Calculate the initial approximation. */ r = sqrt ( - log ( a * a ) ); y = r - ( 2.30753 + 0.27061 * r ) / ( 1.0 + ( 0.99229 + 0.04481 * r ) * r ); if ( 1.0 < pp && 1.0 < qq ) { r = ( y * y - 3.0 ) / 6.0; s = 1.0 / ( pp + pp - 1.0 ); t = 1.0 / ( qq + qq - 1.0 ); h = 2.0 / ( s + t ); w = y * sqrt ( h + r ) / h - ( t - s ) * ( r + 5.0 / 6.0 - 2.0 / ( 3.0 * h ) ); value = pp / ( pp + qq * exp ( w + w ) ); } else { r = qq + qq; t = 1.0 / ( 9.0 * qq ); t = r * pow ( 1.0 - t + y * sqrt ( t ), 3 ); if ( t <= 0.0 ) { value = 1.0 - exp ( ( log ( ( 1.0 - a ) * qq ) + beta_log ) / qq ); } else { t = ( 4.0 * pp + r - 2.0 ) / t; if ( t <= 1.0 ) { value = exp ( ( log ( a * pp ) + beta_log ) / pp ); } else { value = 1.0 - 2.0 / ( t + 1.0 ); } } } /* Solve for X by a modified Newton-Raphson method. */ r = 1.0 - pp; t = 1.0 - qq; yprev = 0.0; sq = 1.0; prev = 1.0; if ( value < 0.0001 ) { value = 0.0001; } if ( 0.9999 < value ) { value = 0.9999; } iex = fmax ( - 5.0 / pp / pp - 1.0 / pow ( a, 0.2 ) - 13.0, sae ); acu = pow ( 10.0, iex ); for ( ; ; ) { y = beta_inc ( pp, qq, value ); xin = value; y = ( y - a ) * exp ( beta_log + r * log ( xin ) + t * log ( 1.0 - xin ) ); if ( y * yprev <= 0.0 ) { prev = fmax ( sq, fpu ); } g = 1.0; for ( ; ; ) { for ( ; ; ) { adj = g * y; sq = adj * adj; if ( sq < prev ) { tx = value - adj; if ( 0.0 <= tx && tx <= 1.0 ) { break; } } g = g / 3.0; } if ( prev <= acu ) { if ( indx ) { value = 1.0 - value; } return value; } if ( y * y <= acu ) { if ( indx ) { value = 1.0 - value; } return value; } if ( tx != 0.0 && tx != 1.0 ) { break; } g = g / 3.0; } if ( tx == value ) { break; } value = tx; yprev = y; } if ( indx ) { value = 1.0 - value; } return value; } /******************************************************************************/ double beta_cdf_inv_old ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: BETA_CDF_INV_OLD inverts the Beta CDF. Licensing: This code is distributed under the MIT license. Modified: 22 October 2004 Author: Original FORTRAN77 version by Abernathy and Smith. This version by John Burkardt. Reference: Abernathy, Smith, Algorithm 724, ACM Transactions on Mathematical Software, Volume 19, Number 4, December 1993, pages 481-483. Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double BETA_CDF_INV, the argument of the CDF. */ { # define MAXK 20 double bcoeff; double cdf_x; double d[MAXK * (MAXK-1)]; double error = 0.0001; double errapp = 0.01; int i; int j; int k; int loopct; double pdf_x; double q; double s1; double s2; double sum2; double t; double tail; double x; double xold; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CDF_INV_OLD - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } /* Estimate the solution. */ x = a / ( a + b ); xold = 0.0; loopct = 2; while ( errapp <= fabs ( ( x - xold ) / x ) && loopct != 0 ) { xold = x; loopct = loopct - 1; /* CDF_X = PROB { BETA(A,B) <= X }. Q = ( CDF - CDF_X ) / PDF_X. */ cdf_x = beta_cdf ( x, a, b ); pdf_x = beta_pdf ( x, a, b ); q = ( cdf - cdf_x ) / pdf_x; /* D(N,K) = C(N,K) * Q**(N+K-1) / (N-1)! */ t = 1.0 - x; s1 = q * ( b - 1.0 ) / t; s2 = q * ( 1.0 - a ) / x; d[2-1+0*MAXK] = s1 + s2; tail = d[2-1+0*MAXK] * q / 2.0; x = x + q + tail; k = 3; while ( error < fabs ( tail / x ) && k <= MAXK ) { /* Find D(2,K-2). */ s1 = q * ( ( double ) ( k ) - 2.0 ) * s1 / t; s2 = q * ( 2.0 - ( double ) ( k ) ) * s2 / x; d[2-1+(k-2)*MAXK] = s1 + s2; /* Find D(3,K-3), D(4,K-4), D(5,K-5), ... , D(K-1,1). */ for ( i = 3; i <= k-1; i++ ) { sum2 = d[2-1+0*MAXK] * d[i-2+(k-i)*MAXK]; bcoeff = 1.0; for ( j = 1; j <= k - i; j++ ) { bcoeff = ( bcoeff * ( double ) ( k - i - j + 1 ) ) / ( double ) ( j ); sum2 = sum2 + bcoeff * d[2-1+j*MAXK] * d[i-2+(k-i-j)*MAXK]; } d[i-1+(k-i)*MAXK] = sum2 + d[i-2+(k-i+1)*MAXK] / ( double ) ( i - 1 ); } /* Compute D(K,0) and use it to expand the series. */ d[k-1+0*MAXK] = d[2-1+0*MAXK] * d[k-2+0*MAXK] + d[k-2+1*MAXK] / ( double ) ( k - 1 ); tail = d[k-1+0*MAXK] * q / ( double ) ( k ); x = x + tail; /* Check for divergence. */ if ( x <= 0.0 || 1.0 <= x ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CDF_INV_OLD - Fatal error!\n" ); fprintf ( stderr, " The series has diverged.\n" ); x = -1.0; return x; } k = k + 1; } } return x; # undef MAXK } /******************************************************************************/ int beta_check ( double a, double b ) /******************************************************************************/ /* Purpose: BETA_CHECK checks the parameters of the Beta PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int BETA_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ void beta_cdf_values ( int *n_data, double *a, double *b, double *x, double *fx ) /******************************************************************************/ /* Purpose: BETA_CDF_VALUES returns some values of the Beta CDF. Discussion: The incomplete Beta function may be written BETA_INC(A,B,X) = Integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT / Integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT Thus, BETA_INC(A,B,0.0) = 0.0; BETA_INC(A,B,1.0) = 1.0 The incomplete Beta function is also sometimes called the "modified" Beta function, or the "normalized" Beta function or the Beta CDF (cumulative density function. In Mathematica, the function can be evaluated by: BETA[X,A,B] / BETA[A,B] The function can also be evaluated by using the Statistics package: Needs["Statistics`ContinuousDistributions`"] dist = BetaDistribution [ a, b ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 April 2013 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Karl Pearson, Tables of the Incomplete Beta Function, Cambridge University Press, 1968. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, *B, the parameters of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 45 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 1.30625, 1.30625, 1.30625 }; static double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 11.7562, 11.7562, 11.7562 }; static double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01, 0.918884684620518, 0.21052977489419, 0.1824130512500673 }; static double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.225609, 0.0335568, 0.0295222 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *b = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double beta_inc ( double a, double b, double x ) /******************************************************************************/ /* Purpose: BETA_INC returns the value of the incomplete Beta function. Discussion: This calculation requires an iteration. In some cases, the iteration may not converge rapidly, or may become inaccurate. BETA_INC(A,B,X) = Integral ( 0 <= T <= X ) T^(A-1) (1-T)^(B-1) dT / Integral ( 0 <= T <= 1 ) T^(A-1) (1-T)^(B-1) dT = Integral ( 0 <= T <= X ) T^(A-1) (1-T)^(B-1) dT / BETA(A,B) Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: Original FORTRAN77 version by Majumder, Bhattacharjee. This version by John Burkardt. Reference: Majumder, Bhattacharjee, Algorithm AS63, Applied Statistics, 1973, volume 22, number 3. Parameters: Input, double A, B, the parameters of the function. 0.0 < A, 0.0 < B. Input, double X, the argument of the function. Normally, 0.0 <= X <= 1.0. Output, double BETA_INC, the value of the function. */ { double cx; int i; int it; int it_max = 1000; int indx; int ns; double pp; double psq; double qq; double rx; double temp; double term; double tol = 1.0E-07; double value; double xx; if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_INC - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); exit ( 1 ); } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_INC - Fatal error!\n" ); fprintf ( stderr, " B <= 0.\n" ); exit ( 1 ); } if ( x <= 0.0 ) { value = 0.0; return value; } else if ( 1.0 <= x ) { value = 1.0; return value; } /* Change tail if necessary and determine S. */ psq = a + b; if ( a < ( a + b ) * x ) { xx = 1.0 - x; cx = x; pp = b; qq = a; indx = 1; } else { xx = x; cx = 1.0 - x; pp = a; qq = b; indx = 0; } term = 1.0; i = 1; value = 1.0; ns = ( int ) ( qq + cx * ( a + b ) ); /* Use Soper's reduction formulas. */ rx = xx / cx; temp = qq - ( double ) i; if ( ns == 0 ) { rx = xx; } it = 0; for ( ; ; ) { it = it + 1; if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BETA_INC - Fatal error!\n" ); fprintf ( stderr, " Maximum number of iterations exceeded!\n" ); fprintf ( stderr, " IT_MAX = %d\n", it_max ); exit ( 1 ); } term = term * temp * rx / ( pp + ( double ) ( i ) ); value = value + term; temp = fabs ( term ); if ( temp <= tol && temp <= tol * value ) { break; } i = i + 1; ns = ns - 1; if ( 0 <= ns ) { temp = qq - ( double ) i; if ( ns == 0 ) { rx = xx; } } else { temp = psq; psq = psq + 1.0; } } /* Finish calculation. */ value = value * exp ( pp * log ( xx ) + ( qq - 1.0 ) * log ( cx ) ) / ( r8_beta ( a, b ) * pp ); if ( indx ) { value = 1.0 - value; } return value; } /******************************************************************************/ void beta_inc_values ( int *n_data, double *a, double *b, double *x, double *fx ) /******************************************************************************/ /* Purpose: BETA_INC_VALUES returns some values of the incomplete Beta function. Discussion: The incomplete Beta function may be written BETA_INC(A,B,X) = Integral (0 <= T <= X) T^(A-1) * (1-T)^(B-1) dT / Integral (0 <= T <= 1) T^(A-1) * (1-T)^(B-1) dT Thus, BETA_INC(A,B,0.0) = 0.0; BETA_INC(A,B,1.0) = 1.0 The incomplete Beta function is also sometimes called the "modified" Beta function, or the "normalized" Beta function or the Beta CDF (cumulative density function. In Mathematica, the function can be evaluated by: BETA[X,A,B] / BETA[A,B] The function can also be evaluated by using the Statistics package: Needs["Statistics`ContinuousDistributions`"] dist = BetaDistribution [ a, b ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 April 2013 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Karl Pearson, Tables of the Incomplete Beta Function, Cambridge University Press, 1968. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, B, the parameters of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 45 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 1.30625, 1.30625, 1.30625 }; static double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 11.7562, 11.7562, 11.7562 }; static double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01, 0.918884684620518, 0.21052977489419, 0.1824130512500673 }; static double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.225609, 0.0335568, 0.0295222 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *b = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double beta_mean ( double a, double b ) /******************************************************************************/ /* Purpose: BETA_MEAN returns the mean of the Beta PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double BETA_MEAN, the mean of the PDF. */ { double mean; mean = a / ( a + b ); return mean; } /******************************************************************************/ double beta_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: BETA_PDF evaluates the Beta PDF. Discussion: PDF(A,B;X) = X^(A-1) * (1-X)^(B-1) / BETA(A,B). A = B = 1 yields the Uniform distribution on [0,1]. A = B = 1/2 yields the Arcsin distribution. B = 1 yields the power function distribution. A = B -> Infinity tends to the Normal distribution. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double BETA_PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 || 1.0 < x ) { pdf = 0.0; } else { pdf = pow ( x, ( a - 1.0 ) ) * pow ( ( 1.0 - x ), ( b - 1.0 ) ) / r8_beta ( a, b ); } return pdf; } /******************************************************************************/ double beta_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: BETA_SAMPLE samples the Beta PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Reference: William Kennedy, James Gentle, Algorithm BN, Statistical Computing, Dekker, 1980. Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Input/output, int SEED, a seed for the random number generator. Output, double BETA_SAMPLE, a sample of the PDF. */ { double mu; double stdev; double test; double u; double x; double y; mu = ( a - 1.0 ) / ( a + b - 2.0 ); stdev = 0.5 / sqrt ( a + b - 2.0 ); for ( ; ; ) { y = normal_01_sample ( seed ); x = mu + stdev * y; if ( x < 0.0 || 1.0 < x ) { continue; } u = r8_uniform_01 ( seed ); test = ( a - 1.0 ) * log ( x / ( a - 1.0 ) ) + ( b - 1.0 ) * log ( ( 1.0 - x ) / ( b - 1.0 ) ) + ( a + b - 2.0 ) * log ( a + b - 2.0 ) + 0.5 * y * y; if ( log ( u ) <= test ) { break; } } return x; } /******************************************************************************/ void beta_values ( int *n_data, double *x, double *y, double *fxy ) /******************************************************************************/ /* Purpose: BETA_VALUES returns some values of the Beta function. Discussion: Beta(X,Y) = ( Gamma(X) * Gamma(Y) ) / Gamma(X+Y) Both X and Y must be greater than 0. In Mathematica, the function can be evaluated by: Beta[X,Y] Properties: Beta(X,Y) = Beta(Y,X). Beta(X,Y) = Integral ( 0 <= T <= 1 ) T^(X-1) (1-T)^(Y-1) dT. Beta(X,Y) = Gamma(X) * Gamma(Y) / Gamma(X+Y) Licensing: This code is distributed under the MIT license. Modified: 13 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, Y, the arguments of the function. Output, double *FXY, the value of the function. */ { # define N_MAX 17 static double b_vec[N_MAX] = { 0.5000000000000000E+01, 0.2500000000000000E+01, 0.1666666666666667E+01, 0.1250000000000000E+01, 0.5000000000000000E+01, 0.2500000000000000E+01, 0.1000000000000000E+01, 0.1666666666666667E+00, 0.3333333333333333E-01, 0.7142857142857143E-02, 0.1587301587301587E-02, 0.2380952380952381E-01, 0.5952380952380952E-02, 0.1984126984126984E-02, 0.7936507936507937E-03, 0.3607503607503608E-03, 0.8325008325008325E-04 }; static double x_vec[N_MAX] = { 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 7.0E+00 }; static double y_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 0.2E+00, 0.4E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *y = 0.0; *fxy = 0.0; } else { *x = x_vec[*n_data-1]; *y = y_vec[*n_data-1]; *fxy = b_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double beta_variance ( double a, double b ) /******************************************************************************/ /* Purpose: BETA_VARIANCE returns the variance of the Beta PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double BETA_VARIANCE, the variance of the PDF. */ { double variance; variance = ( a * b ) / ( ( a + b ) * ( a + b ) * ( 1.0 + a + b ) ); return variance; } /******************************************************************************/ double binomial_cdf ( double x, int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_CDF evaluates the Binomial CDF. Discussion: CDF(X)(A,B) is the probability of at most X successes in A trials, given that the probability of success on a single trial is B. A sequence of trials with fixed probability of success on any trial is known as a sequence of Bernoulli trials. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int X, the desired number of successes. 0 <= X <= A. Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, double CDF, the value of the CDF. */ { int cnk; double cdf; int j; double pr; if ( x < 0 ) { cdf = 0.0; } else if ( a <= x ) { cdf = 1.0; } else if ( b == 0.0 ) { cdf = 1.0; } else if ( b == 1.0 ) { cdf = 0.0; } else { cdf = 0.0; for ( j = 0; j <= x; j++ ) { cnk = i4_choose ( a, j ); pr = ( double ) ( cnk ) * pow ( b, j ) * pow ( ( 1.0 - b ), ( a - j ) ); cdf = cdf + pr; } } return cdf; } /******************************************************************************/ int binomial_cdf_inv ( double cdf, int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_CDF_INV inverts the Binomial CDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, int BINOMIAL_CDF_INV, the corresponding argument. */ { double cdf2; double pdf; int x = 0.0; int x2; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BINOMIAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cdf2 = 0.0; for ( x2 = 0; x2 <= a; x2++ ) { pdf = binomial_pdf ( x2, a, b ); cdf2 = cdf2 + pdf; if ( cdf <= cdf2 ) { x = x2; return x; } } return x; } /******************************************************************************/ int binomial_check ( int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_CHECK checks the parameter of the Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, int BINOMIAL_CHECK, is true if the parameters are legal. */ { if ( a < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 1.\n" ); return 0; } if ( b < 0.0 || 1.0 < b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B < 0 or 1 < B.\n" ); return 0; } return 1; } /******************************************************************************/ double binomial_mean ( int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_MEAN returns the mean of the Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, double BINOMIAL_MEAN, the expected value of the number of successes in A trials. */ { double mean; mean = ( double ) ( a ) * b; return mean; } /******************************************************************************/ double binomial_pdf ( int x, int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_PDF evaluates the Binomial PDF. Discussion: PDF(A,B;X) is the probability of exactly X successes in A trials, given that the probability of success on a single trial is B. PDF(A,B;X) = C(N,X) * B^X * ( 1.0 - B )^( A - X ) Binomial_PDF(1,B;X) = Bernoulli_PDF(B;X). Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int X, the desired number of successes. 0 <= X <= A. Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, double BINOMIAL_PDF, the value of the PDF. */ { int cnk; double pdf; if ( a < 1 ) { pdf = 0.0; } else if ( x < 0 || a < x ) { pdf = 0.0; } else if ( b == 0.0 ) { if ( x == 0 ) { pdf = 1.0; } else { pdf = 0.0; } } else if ( b == 1.0 ) { if ( x == a ) { pdf = 1.0; } else { pdf = 0.0; } } else { cnk = i4_choose ( a, x ); pdf = ( double ) ( cnk ) * pow ( b, x ) * pow ( ( 1.0 - b ), ( a - x ) ); } return pdf; } /******************************************************************************/ int binomial_sample ( int a, double b, int *seed ) /******************************************************************************/ /* Purpose: BINOMIAL_SAMPLE samples the Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Reference: William Kennedy, James Gentle, Algorithm BU, Statistical Computing, Dekker, 1980. Parameters: Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int BINOMIAL_SAMPLE, a sample of the PDF. */ { int i; double u; int x; x = 0; for ( i = 1; i <= a; i++ ) { u = r8_uniform_01 ( seed ); if ( u <= b ) { x = x + 1; } } return x; } /******************************************************************************/ double binomial_variance ( int a, double b ) /******************************************************************************/ /* Purpose: BINOMIAL_VARIANCE returns the variance of the Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 28 January 1999 Author: John Burkardt Parameters: Input, int A, the number of trials. 1 <= A. Input, double B, the probability of success on one trial. 0.0 <= B <= 1.0. Output, double BINOMIAL_VARIANCE, the variance of the PDF. */ { double variance; variance = ( double ) ( a ) * b * ( 1.0 - b ); return variance; } /******************************************************************************/ double birthday_cdf ( int n ) /******************************************************************************/ /* Purpose: BIRTHDAY_CDF returns the Birthday Concurrence CDF. Licensing: This code is distributed under the MIT license. Modified: 26 August 2006 Author: John Burkardt Parameters: Input, int N, the number of people whose birthdays have been disclosed. Output, double BIRTHDAY_CDF, the probability that at least two of the N people have matching birthays.. */ { double cdf; int i; if ( n < 1 ) { cdf = 0.0; return cdf; } else if ( 365 < n ) { cdf = 1.0; return cdf; } /* Compute the probability that N people have distinct birthdays. */ cdf = 1.0; for ( i = 1; i <= n; i++ ) { cdf = cdf * ( double ) ( 365 + 1 - i ) / 365.0; } /* Compute the probability that it is NOT the case that N people have distinct birthdays. This is the cumulative probability that person 2 matches person 1, or person 3 matches 1 or 2, etc. */ cdf = 1.0 - cdf; return cdf; } /******************************************************************************/ int birthday_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: BIRTHDAY_CDF_INV inverts the Birthday Concurrence CDF. Licensing: This code is distributed under the MIT license. Modified: 26 August 2006 Author: John Burkardt Parameters: Input, double CDF, the probability that at least two of the N people have matching birthdays. Output, int BIRTHDAY_CDF_INV, the corresponding number of people whose birthdays need to be disclosed. */ { double cdf_not; int i; int n; if ( cdf <= 0.0 ) { n = 0; return n; } else if ( 1.0 <= cdf ) { n = 365; return n; } /* Compute the probability that N people have distinct birthdays. */ cdf_not = 1.0; for ( i = 1; i <= 365; i++ ) { cdf_not = cdf_not * ( double ) ( 365 + 1 - i ) / 365.0; if ( cdf <= 1.0 - cdf_not ) { n = i; return n; } } n = 365; return n; } /******************************************************************************/ double birthday_pdf ( int n ) /******************************************************************************/ /* Purpose: BIRTHDAY_PDF returns the Birthday Concurrence PDF. Discussion: The probability is the probability that the N-th person is the first one to match a birthday with someone earlier. Licensing: This code is distributed under the MIT license. Modified: 26 August 2006 Author: John Burkardt Parameters: Input, int N, the number of people whose birthdays have been disclosed. Output, double BIRTHDAY_PDF, the probability that the N-th person is the first to match a birthday with someone earlier. */ { int i; double pdf; if ( n < 1 || 365 < n ) { pdf = 0.0; return pdf; } pdf = 1.0; /* Compute the probability that N-1 people have distinct birthdays. */ for ( i = 1; i <= n - 1; i++ ) { pdf = pdf * ( double ) ( 365 + 1 - i ) / 365.0; } /* Compute the probability that person N has one of those N-1 birthdays. */ pdf = pdf * ( double ) ( n - 1 ) / 365.0; return pdf; } /******************************************************************************/ int birthday_sample ( int n, int *seed ) /******************************************************************************/ /* Purpose: BIRTHDAY_SAMPLE samples the Birthday Concurrence PDF. Discussion: The probability is the probability that the N-th person is the first one to match a birthday with someone earlier. Licensing: This code is distributed under the MIT license. Modified: 10 March 2016 Author: John Burkardt Parameters: Input, int N, the number of people whose birthdays have been disclosed. Input/output, int *SEED, a seed for the random number generator. Output, int BIRTHDAY_SAMPLE, * 1 if the first N-1 people had distinct birthdays, but person N had a birthday in common with a previous person, * 0 otherwise. */ { int *b; int u1; int u2; int value; if ( n < 1 ) { value = 0; return value; } /* Choose N birthdays at random. */ b = i4vec_uniform_ab_new ( n, 1, 365, seed ); /* Are the first N-1 birthdays unique? */ u1 = i4vec_unique_count ( n - 1, b ); if ( u1 < n - 1 ) { value = 0; return value; } /* Does the N-th birthday match an earlier one? */ u2 = i4vec_unique_count ( n, b ); if ( u2 == n - 1 ) { value = 1; } else { value = 0; } free ( b ); return value; } /******************************************************************************/ double bradford_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_CDF evaluates the Bradford CDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, double BRADFORD_CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else if ( x <= b ) { cdf = log ( 1.0 + c * ( x - a ) / ( b - a ) ) / log ( c + 1.0 ); } else if ( b < x ) { cdf = 1.0; } return cdf; } /******************************************************************************/ double bradford_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_CDF_INV inverts the Bradford CDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, double BRADFORD_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BRADFORD_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf <= 0.0 ) { x = a; } else if ( cdf < 1.0 ) { x = a + ( b - a ) * ( pow ( ( c + 1.0 ), cdf ) - 1.0 ) / c; } else if ( 1.0 <= cdf ) { x = b; } return x; } /******************************************************************************/ int bradford_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_CHECK checks the parameters of the Bradford PDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, int BRADFORD_CHECK, is true if the parameters are legal. */ { if ( b <= a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BRADFORD_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= A.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BRADFORD_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double bradford_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_MEAN returns the mean of the Bradford PDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, double BRADFORD_MEAN, the mean of the PDF. */ { double mean; mean = ( c * ( b - a ) + log ( c + 1.0 ) * ( a * ( c + 1.0 ) - b ) ) / ( c * log ( c + 1.0 ) ); return mean; } /******************************************************************************/ double bradford_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_PDF evaluates the Bradford PDF. Discussion: PDF(A,B,C;X) = C / ( ( C * ( X - A ) + B - A ) * log ( C + 1 ) ) Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, double BRADFORD_PDF, the value of the PDF. */ { double pdf; if ( x <= a ) { pdf = 0.0; } else if ( x <= b ) { pdf = c / ( ( c * ( x - a ) + b - a ) * log ( c + 1.0 ) ); } else if ( b < x ) { pdf = 0.0; } return pdf; } /******************************************************************************/ double bradford_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: BRADFORD_SAMPLE samples the Bradford PDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double BRADFORD_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = a + ( b - a ) * ( pow ( ( c + 1.0 ), cdf ) - 1.0 ) / c; return x; } /******************************************************************************/ double bradford_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: BRADFORD_VARIANCE returns the variance of the Bradford PDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A < B, 0.0 < C. Output, double BRADFORD_VARIANCE, the variance of the PDF. */ { double variance; variance = ( b - a ) * ( b - a ) * ( c * ( log ( c + 1.0 ) - 2.0 ) + 2.0 * log ( c + 1.0 ) ) / ( 2.0 * c * pow ( ( log ( c + 1.0 ) ), 2 ) ); return variance; } /******************************************************************************/ double buffon_box_pdf ( double a, double b, double l ) /******************************************************************************/ /* Purpose: BUFFON_BOX_PDF evaluates the Buffon Box PDF. Discussion: In the Buffon-Laplace needle experiment, we suppose that the plane has been tiled into a grid of rectangles of width A and height B, and that a needle of length L is dropped "at random" onto this grid. We may assume that one end, the "eye" of the needle falls at the point (X1,Y1), taken uniformly at random in the cell [0,A]x[0,B]. ANGLE, the angle that the needle makes is taken to be uniformly random. The point of the needle, (X2,Y2), therefore lies at (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) The needle will have crossed at least one grid line if any of the following are true: X2 <= 0, A <= X2, Y2 <= 0, B <= Y2. If L is larger than sqrt ( A*A + B*B ), then the needle will cross every time, and the computation is uninteresting. However, if L is smaller than this limit, then the probability of a crossing on a single trial is P(L,A,B) = ( 2 * L * ( A + B ) - L * L ) / ( PI * A * B ) and therefore, a record of the number of hits for a given number of trials can be used as a very roundabout way of estimating PI. Licensing: This code is distributed under the MIT license. Modified: 26 February 2007 Author: John Burkardt Reference: Sudarshan Raghunathan, Making a Supercomputer Do What You Want: High Level Tools for Parallel Programming, Computing in Science and Engineering, Volume 8, Number 5, September/October 2006, pages 70-80. Parameters: Input, double A, B, the horizontal and vertical dimensions of each cell of the grid. 0 <= A, 0 <= B. Input, double L, the length of the needle. 0 <= L <= min ( A, B ). Output, double BUFFON_BOX_PDF, the PDF. */ { double pdf; const double r8_pi = 3.141592653589793238462643; if ( a < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_BOX_PDF - Fatal error!\n" ); fprintf ( stderr, " Input A < 0.\n" ); exit ( 1 ); } else if ( a == 0.0 ) { pdf = 1.0; return pdf; } if ( b < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_BOX_PDF - Fatal error!\n" ); fprintf ( stderr, " Input B < 0.\n" ); exit ( 1 ); } else if ( b == 0.0 ) { pdf = 1.0; return pdf; } if ( l < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_BOX_PDF - Fatal error!\n" ); fprintf ( stderr, " Input L < 0.\n" ); exit ( 1 ); } else if ( l == 0.0 ) { pdf = 0.0; return pdf; } else if ( fmin ( a, b ) < l ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_BOX_PDF - Fatal error!\n" ); fprintf ( stderr, " min ( A, B ) < L.\n" ); exit ( 1 ); } pdf = ( 2.0 * l * ( a + b ) - l * l ) / ( r8_pi * a * b ); return pdf; } /******************************************************************************/ int buffon_box_sample ( double a, double b, double l, int trial_num ) /******************************************************************************/ /* Purpose: BUFFON_BOX_SAMPLE samples the Buffon box distribution. Discussion: In the Buffon-Laplace needle experiment, we suppose that the plane has been tiled into a grid of rectangles of width A and height B, and that a needle of length L is dropped "at random" onto this grid. We may assume that one end, the "eye" of the needle falls at the point (X1,Y1), taken uniformly at random in the cell [0,A]x[0,B]. ANGLE, the angle that the needle makes is taken to be uniformly random. The point of the needle, (X2,Y2), therefore lies at (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) The needle will have crossed at least one grid line if any of the following are true: X2 <= 0, A <= X2, Y2 <= 0, B <= Y2. This routine simulates the tossing of the needle, and returns the number of times that the needle crossed at least one grid line. If L is larger than sqrt ( A*A + B*B ), then the needle will cross every time, and the computation is uninteresting. However, if L is smaller than this limit, then the probability of a crossing on a single trial is P(L,A,B) = ( 2 * L * ( A + B ) - L * L ) / ( PI * A * B ) and therefore, a record of the number of hits for a given number of trials can be used as a very roundabout way of estimating PI. (Particularly roundabout, since we actually will use a good value of PI in order to pick the random angles) Since this routine invokes the C random number generator, the user should initialize the random number generator, particularly if it is desired to control whether the sequence is to be varied or repeated. Licensing: This code is distributed under the MIT license. Modified: 26 February 2007 Author: John Burkardt Reference: Sudarshan Raghunathan, Making a Supercomputer Do What You Want: High Level Tools for Parallel Programming, Computing in Science and Engineering, Volume 8, Number 5, September/October 2006, pages 70-80. Parameters: Input, double A, B, the horizontal and vertical dimensions of each cell of the grid. 0 <= A, 0 <= B. Input, double L, the length of the needle. 0 <= L <= min ( A, B ). Input, int TRIAL_NUM, the number of times the needle is to be dropped onto the grid. Output, int BUFFON_BOX_SAMPLE, the number of times the needle crossed at least one line of the grid of cells. */ { double angle; int hits; const double r8_pi = 3.141592653589793238462643; int trial; double x1; double x2; double y1; double y2; hits = 0; for ( trial = 1; trial <= trial_num; trial++ ) { /* Randomly choose the location of the eye of the needle in [0,0]x[A,B], and the angle the needle makes. */ x1 = a * ( double ) rand ( ) / ( double ) RAND_MAX; y1 = b * ( double ) rand ( ) / ( double ) RAND_MAX; angle = 2.0 * r8_pi * ( double ) rand ( ) / ( double ) RAND_MAX; /* Compute the location of the point of the needle. */ x2 = x1 + l * cos ( angle ); y2 = y1 + l * sin ( angle ); /* Count the end locations that lie outside the cell. */ if ( x2 <= 0.0 || a <= x2 || y2 <= 0.0 || b <= y2 ) { hits = hits + 1; } } return hits; } /******************************************************************************/ double buffon_pdf ( double a, double l ) /******************************************************************************/ /* Purpose: BUFFON_PDF evaluates the Buffon PDF. Discussion: In the Buffon needle experiment, we suppose that the plane has been ruled by vertical lines with a spacing of A units, and that a needle of length L is dropped "at random" onto this grid. Because of the various symmetries, we may assume that this eye of this needle lands in the first infinite strip, and we may further assume that its Y coordinate is 0. Thus, we have the eye as (X1,Y1) with 0 <= X1 <= A and Y1 = 0. ANGLE, the angle that the needle makes is taken to be uniformly random. The point of the needle, (X2,Y2), therefore lies at (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) The needle will have crossed at least one grid line if any of the following are true: X2 <= 0, A <= X2. The probability of a crossing on a single trial is P(A,L) = ( 2 * L ) / ( PI * A ) and therefore, a record of the number of hits for a given number of trials can be used as a very roundabout way of estimating PI. Licensing: This code is distributed under the MIT license. Modified: 01 March 2007 Author: John Burkardt Parameters: Input, double A, the horizontal spacing between the vertical grid lines. 0 <= A. Input, double L, the length of the needle. Output, double BUFFON_PDF, the Buffon PDF. */ { double pdf; const double r8_pi = 3.141592653589793238462643; if ( a < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_PDF - Fatal error!\n" ); fprintf ( stderr, " Input A < 0.\n" ); exit ( 1 ); } else if ( a == 0.0 ) { pdf = 1.0; return pdf; } if ( l < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BUFFON_PDF - Fatal error!\n" ); fprintf ( stderr, " Input L < 0.\n" ); exit ( 1 ); } else if ( l == 0.0 ) { pdf = 0.0; return pdf; } pdf = ( 2.0 * l ) / ( r8_pi * a ); return pdf; } /******************************************************************************/ int buffon_sample ( double a, double l, int trial_num ) /******************************************************************************/ /* Purpose: BUFFON_SAMPLE samples the Buffon PDF. Discussion: In the Buffon needle experiment, we suppose that the plane has been ruled by vertical lines with a spacing of A units, and that a needle of length L is dropped "at random" onto this grid. Because of the various symmetries, we may assume that this eye of this needle lands in the first infinite strip, and we may further assume that its Y coordinate is 0. Thus, we have the eye as (X1,Y1) with 0 <= X1 <= A and Y1 = 0. ANGLE, the angle that the needle makes is taken to be uniformly random. The point of the needle, (X2,Y2), therefore lies at (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) The needle will have crossed at least one grid line if any of the following are true: X2 <= 0, A <= X2. The probability of a crossing on a single trial is P(A,L) = ( 2 * L ) / ( PI * A ) and therefore, a record of the number of hits for a given number of trials can be used as a very roundabout way of estimating PI. Since this routine invokes the C random number generator, the user should initialize the random number generator, particularly if it is desired to control whether the sequence is to be varied or repeated. Licensing: This code is distributed under the MIT license. Modified: 01 March 2007 Author: John Burkardt Parameters: Input, double A, the horizontal spacing between the vertical grid lines. 0 <= A. Input, double L, the length of the needle. Input, int TRIAL_NUM, the number of times the needle is to be dropped onto the grid. Output, int BUFFON_SAMPLE, the number of times the needle crossed at least one line of the grid of cells. */ { double angle; int hits; const double r8_pi = 3.141592653589793238462643; int trial; double x1; double x2; hits = 0; for ( trial = 1; trial <= trial_num; trial++ ) { /* Randomly choose the location (X1,Y1) of the eye of the needle in [0,0]x[A,0], and the angle the needle makes. */ x1 = a * ( double ) rand ( ) / ( double ) RAND_MAX; angle = 2.0 * r8_pi * ( double ) rand ( ) / ( double ) RAND_MAX; /* Compute the location of the point of the needle. We only need to know the value of X2, not Y2! */ x2 = x1 + l * cos ( angle ); /* Count the end locations that lie outside the cell. */ if ( x2 <= 0.0 || a <= x2 ) { hits = hits + 1; } } return hits; } /******************************************************************************/ double burr_cdf ( double x, double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_CDF evaluates the Burr CDF. Licensing: This code is distributed under the MIT license. Modified: 08 August 2016 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, double BURR_CDF, the value of the CDF. */ { double cdf; double y; if ( x <= a ) { cdf = 0.0; } else { y = ( x - a ) / b; cdf = 1.0 - 1.0 / pow ( 1.0 + pow ( y, c ), d ); } return cdf; } /******************************************************************************/ double burr_cdf_inv ( double cdf, double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_CDF_INV inverts the Burr CDF. Licensing: This code is distributed under the MIT license. Modified: 08 August 2016 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, double BURR_CDF_INV, the corresponding argument. */ { double x; double y; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BURR_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } y = pow ( pow ( 1.0 / ( 1.0 - cdf ), 1.0 / d ) - 1.0, 1.0 / c ); x = a + b * y; return x; } /******************************************************************************/ int burr_check ( double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_CHECK checks the parameters of the Burr CDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, int BURR_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BURR_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BURR_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double burr_mean ( double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_MEAN returns the mean of the Burr PDF. Licensing: This code is distributed under the MIT license. Modified: 08 August 2016 Author: John Burkardt Parameters: Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, double BURR_MEAN, the mean of the PDF. */ { double mean; double ymean; ymean = d * r8_beta ( d - 1.0 / c, 1.0 + 1.0 / c ); mean = a + b * ymean; return mean; } /******************************************************************************/ double burr_pdf ( double x, double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_PDF evaluates the Burr PDF. Discussion: Y = ( X - A ) / B; PDF(X)(A,B,C,D) = ( C * D / B ) * Y ^ ( C - 1 ) / ( 1 + Y ^ C ) ^ ( D + 1 ) Licensing: This code is distributed under the MIT license. Modified: 08 August 2016 Author: John Burkardt Reference: M E Johnson, Multivariate Statistical Simulation, Wiley, New York, 1987. Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, double BURR_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = ( c * d / b ) * pow ( y, c - 1.0 ) / pow ( 1.0 + pow ( y, c ), d + 1.0 ); } return pdf; } /******************************************************************************/ double burr_sample ( double a, double b, double c, double d, int *seed ) /******************************************************************************/ /* Purpose: BURR_SAMPLE samples the Burr PDF. Licensing: This code is distributed under the MIT license. Modified: 11 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double BURR_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = burr_cdf_inv ( cdf, a, b, c, d ); return x; } /******************************************************************************/ double burr_variance ( double a, double b, double c, double d ) /******************************************************************************/ /* Purpose: BURR_VARIANCE returns the variance of the Burr PDF. Licensing: This code is distributed under the MIT license. Modified: 08 August 2016 Author: John Burkardt Parameters: Input, double A, B, C, D, the parameters of the PDF. 0 < B, 0 < C. Output, double BURR_VARIANCE, the variance of the PDF. */ { double mu1; double mu2; double variance; if ( c <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BURR_VARIANCE(): Warning!\n" ); fprintf ( stderr, " Variance undefined for C <= 2.\n" ); variance = HUGE_VAL; } else { mu1 = b * d * r8_beta ( ( c * d - 1.0 ) / c, ( c + 1.0 ) / c ); mu2 = b * b * d * r8_beta ( ( c * d - 2.0 ) / c, ( c + 2.0 ) / c ); variance = - mu1 * mu1 + mu2; } return variance; } /******************************************************************************/ double cardioid_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_CDF evaluates the Cardioid CDF. Discussion: The angle X is assumed to lie between A - PI and A + PI. Licensing: This code is distributed under the MIT license. Modified: 30 July 2005 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 <= B <= 0.5. Output, double CDF, the value of the PDF. */ { double cdf; const double r8_pi = 3.14159265358979323; if ( x <= a - r8_pi ) { cdf = 0.0; } else if ( x < a + r8_pi ) { cdf = ( r8_pi + x - a + 2.0 * b * sin ( x - a ) ) / ( 2.0 * r8_pi ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double cardioid_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_CDF_INV inverts the Cardioid CDF. Licensing: This code is distributed under the MIT license. Modified: 30 July 2005 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0 <= CDF <= 1. Input, double A, B, the parameters. 0.0 <= B <= 0.5. Output, double CARDIOD_CDF_INV, the argument with the given CDF. A - PI <= X <= A + PI. */ { double fp; double fx; int it; const double r8_pi = 3.14159265358979323; double tol = 0.000001; double x; if ( cdf <= 0.0 ) { x = a - r8_pi; } else if ( cdf < 1.0 ) { x = a; it = 0; for ( ; ; ) { fx = cdf - ( r8_pi + x - a + 2.0 * b * sin ( x - a ) ) / ( 2.0 * r8_pi ); if ( fabs ( fx ) < tol ) { break; } if ( 10 < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CARDIOID_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Too many iterations.\n" ); exit ( 1 ); } fp = - ( 1.0 + 2.0 * b * cos ( x - a ) ) / ( 2.0 * r8_pi ); x = x - fx / fp; x = fmax ( x, a - r8_pi ); x = fmin ( x, a + r8_pi ); it = it + 1; } } else { x = a + r8_pi; } return x; } /******************************************************************************/ int cardioid_check ( double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_CHECK checks the parameters of the Cardioid CDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2005 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. -0.5 <= B <= 0.5. Output, int CARDIOID_CHECK, is true if the parameters are legal. */ { int value; if ( b < -0.5 || 0.5 < b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CARDIOID_CHECK(): Warning!\n" ); fprintf ( stderr, " B < -0.5 or 0.5 < B.\n" ); value = 0; return value; } value = 1; return value; } /******************************************************************************/ double cardioid_mean ( double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_MEAN returns the mean of the Cardioid PDF. Licensing: This code is distributed under the MIT license. Modified: 30 July 2005 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= B <= 0.5. Output, double MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double cardioid_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_PDF evaluates the Cardioid PDF. Discussion: The cardioid PDF can be thought of as being applied to points on a circle. Compare this distribution with the "Cosine PDF". PDF(A,B;X) = ( 1 / ( 2 * PI ) ) * ( 1 + 2 * B * COS ( X - A ) ) for 0 <= B <= 1/2. Licensing: This code is distributed under the MIT license. Modified: 30 July 2005 Author: John Burkardt Reference: N I Fisher, Statistical Analysis of Circular Data, Cambridge, 1993. Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 <= B <= 0.5. Output, double CARDIOID_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; pdf = ( 1.0 + 2.0 * b * cos ( x - a ) ) / ( 2.0 * r8_pi ); return pdf; } /******************************************************************************/ double cardioid_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: CARDIOID_SAMPLE samples the Cardioid PDF. Licensing: This code is distributed under the MIT license. Modified: 30 July 2005 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= B <= 0.5. Input/output, int *SEED, a seed for the random number generator. Output, double CARDIOD_SAMPLE, a sample of the PDF. A - PI <= X <= A + PI. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = cardioid_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double cardioid_variance ( double a, double b ) /******************************************************************************/ /* Purpose: CARDIOID_VARIANCE returns the variance of the Cardioid PDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2005 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= B <= 0.5. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = 0.0; return variance; } /******************************************************************************/ double cauchy_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: cauchy_cdf() evaluates the Cauchy CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - a ) / b; cdf = 0.5 + atan ( y ) / r8_pi; return cdf; } /******************************************************************************/ double cauchy_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: cauchy_cdf_inv() inverts the Cauchy CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double CAUCHY_CDF_INV, the corresponding argument. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CAUCHY_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a + b * tan ( r8_pi * ( cdf - 0.5 ) ); return x; } /******************************************************************************/ void cauchy_cdf_values ( int *n_data, double *mu, double *sigma, double *x, double *fx ) /******************************************************************************/ /* Purpose: cauchy_cdf_values() returns some values of the Cauchy CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = CauchyDistribution [ mu, sigma ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 05 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *SIGMA, the variance of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double fx_vec[N_MAX] = { 0.5000000000000000, 0.8524163823495667, 0.9220208696226307, 0.9474315432887466, 0.6475836176504333, 0.6024163823495667, 0.5779791303773693, 0.5628329581890012, 0.6475836176504333, 0.5000000000000000, 0.3524163823495667, 0.2500000000000000 }; double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double sigma_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *sigma = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *sigma = sigma_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int cauchy_check ( double a, double b ) /******************************************************************************/ /* Purpose: cauchy_check() checks the parameters of the Cauchy CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int CAUCHY_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CAUCHY_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double cauchy_mode ( double a, double b ) /******************************************************************************/ /* Purpose: cauchy_mode() returns the mode of the Cauchy PDF. Discussion: The mean of the Cauchy PDF is undefined, or infinite. This function returns the mode of the PDF instead. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Input: double A, B, the parameters of the PDF. 0.0 < B. Output: double cauchy_mode: the mode of the PDF. */ { double mode; mode = a; return mode; } /******************************************************************************/ double cauchy_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: cauchy_pdf() evaluates the Cauchy PDF. Discussion: PDF(A,B;X) = 1 / ( PI * B * ( 1 + ( ( X - A ) / B )^2 ) ) The Cauchy PDF is also known as the Breit-Wigner PDF. It has some unusual properties. In particular, the integrals for the expected value and higher order moments are "singular", in the sense that the limiting values do not exist. A result can be obtained if the upper and lower limits of integration are set equal to +T and -T, and the limit as T=>INFINITY is taken, but this is a very weak and unreliable sort of limit. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - a ) / b; pdf = 1.0 / ( r8_pi * b * ( 1.0 + y * y ) ); return pdf; } /******************************************************************************/ double cauchy_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: cauchy_sample() samples the Cauchy PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double CAUCHY_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = cauchy_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double chebyshev1_cdf ( double x ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_CDF evaluates the Chebyshev1 CDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Output, double CHEBYSHEV1_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; if ( x < -1.0 ) { cdf = 0.0; } else if ( 1.0 < x ) { cdf = 1.0; } else { cdf = 0.5 + asin ( x ) / r8_pi; } return cdf; } /******************************************************************************/ double chebyshev1_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_CDF_INV inverts the Chebyshev1 CDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double CHEBYSHEV1_CDF_INV, the corresponding argument. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHEBYSHEV1_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = sin ( r8_pi * ( cdf - 0.5 ) ); return x; } /******************************************************************************/ double chebyshev1_mean ( ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_MEAN returns the mean of the Chebyshev1 PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Output, double CHEBYSHEV1_MEAN, the mean of the PDF. */ { double mean; mean = 0.0; return mean; } /******************************************************************************/ double chebyshev1_pdf ( double x ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_PDF evaluates the Chebyshev1 PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X <= 1.0. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( x <= -1.0 || 1.0 <= x ) { pdf = 0.0; } else { pdf = 1.0 / r8_pi / sqrt ( 1.0 - x * x ); } return pdf; } /******************************************************************************/ double chebyshev1_sample ( int *seed ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_SAMPLE samples the Chebyshev1 PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double CHEBYSHEV1_SAMPLE, a random sample. */ { double cdf; double value; cdf = r8_uniform_01 ( seed ); value = chebyshev1_cdf_inv ( cdf ); return value; } /******************************************************************************/ double chebyshev1_variance ( ) /******************************************************************************/ /* Purpose: CHEBYSHEV1_VARIANCE returns the variance of the Chebyshev1 PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2016 Author: John Burkardt Parameters: Output, double CHEBYSHEV1_VARIANCE, the variance of the PDF. */ { double variance; variance = 0.5; return variance; } /******************************************************************************/ double chi_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_CDF evaluates the Chi CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, double CDF, the value of the CDF. */ { double cdf; double p2; double x2; double y; if ( x <= a ) { cdf = 0.0; } else { y = ( x - a ) / b; x2 = 0.5 * y * y; p2 = 0.5 * c; cdf = r8_gamma_inc ( p2, x2 ); } return cdf; } /******************************************************************************/ double chi_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_CDF_INV inverts the Chi CDF. Discussion: A simple bisection method is used. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, double CHI_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x = 0.0; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = a; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } x1 = a; cdf1 = 0.0; x2 = a + 1.0; for ( ; ; ) { cdf2 = chi_cdf ( x2, a, b, c ); if ( cdf < cdf2 ) { break; } x2 = a + 2.0 * ( x2 - a ); } /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = chi_cdf ( x3, a, b, c ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); return x; } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int chi_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_CHECK checks the parameters of the Chi CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, int CHI_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.0.\n" ); return 0; } return 1; } /******************************************************************************/ double chi_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_MEAN returns the mean of the Chi PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, double MEAN, the mean value. */ { double mean; mean = a + sqrt ( 2.0 ) * b * tgamma ( 0.5 * ( c + 1.0 ) ) / tgamma ( 0.5 * c ); return mean; } /******************************************************************************/ double chi_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_PDF evaluates the Chi PDF. Discussion: PDF(A,B,C;X) = EXP ( - 0.5 * ( ( X - A ) / B )^2 ) * ( ( X - A ) / B )^( C - 1 ) / ( 2^( 0.5 * C - 1 ) * B * GAMMA ( 0.5 * C ) ) CHI(A,B,1) is the Half Normal PDF; CHI(0,B,2) is the Rayleigh PDF; CHI(0,B,3) is the Maxwell PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, double PDF, the value of the PDF. */ { double pdf; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = exp ( - 0.5 * y * y ) * pow ( y, ( c - 1.0 ) ) / ( pow ( 2.0, ( 0.5 * c - 1.0 ) ) * b * tgamma ( 0.5 * c ) ); } return pdf; } /******************************************************************************/ double chi_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: CHI_SAMPLE samples the Chi PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double CHI_SAMPLE, a sample of the PDF. */ { double x; x = chi_square_sample ( c, seed ); x = a + b * sqrt ( x ); return x; } /******************************************************************************/ double chi_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: CHI_VARIANCE returns the variance of the Chi PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0 < B, 0 < C. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = b * b * ( c - 2.0 * pow ( ( tgamma ( 0.5 * ( c + 1.0 ) ) / tgamma ( 0.5 * c ) ), 2 ) ); return variance; } /******************************************************************************/ double chi_square_cdf ( double x, double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_CDF evaluates the Chi squared CDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the value of the random deviate. Input, double A, the parameter of the distribution, usually the number of degrees of freedom. Output, double CDF, the value of the CDF. */ { double a2; double b2; double c2; double cdf; double x2; x2 = 0.5 * x; a2 = 0.0; b2 = 1.0; c2 = 0.5 * a; cdf = gamma_cdf ( x2, a2, b2, c2 ); return cdf; } /******************************************************************************/ double chi_square_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_CDF_INV inverts the Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: Original FORTRAN77 version by Best and Roberts. This version by John Burkardt. Reference: Best, Roberts, The Percentage Points of the Chi-Squared Distribution, Algorithm AS 91, Applied Statistics, Volume 24, Number ?, pages 385-390, 1975. Parameters: Input, double CDF, a value of the chi-squared cumulative probability density function. 0.000002 <= CDF <= 0.999998. Input, double A, the parameter of the chi-squared probability density function. 0 < A. Output, double CHI_SQUARE_CDF_INV, the value of the chi-squared random deviate with the property that the probability that a chi-squared random deviate with parameter A is less than or equal to X is CDF. */ { double a2; double aa = 0.6931471806; double b; double c; double c1 = 0.01; double c2 = 0.222222; double c3 = 0.32; double c4 = 0.4; double c5 = 1.24; double c6 = 2.2; double c7 = 4.67; double c8 = 6.66; double c9 = 6.73; double c10 = 13.32; double c11 = 60.0; double c12 = 70.0; double c13 = 84.0; double c14 = 105.0; double c15 = 120.0; double c16 = 127.0; double c17 = 140.0; double c18 = 175.0; double c19 = 210.0; double c20 = 252.0; double c21 = 264.0; double c22 = 294.0; double c23 = 346.0; double c24 = 420.0; double c25 = 462.0; double c26 = 606.0; double c27 = 672.0; double c28 = 707.0; double c29 = 735.0; double c30 = 889.0; double c31 = 932.0; double c32 = 966.0; double c33 = 1141.0; double c34 = 1182.0; double c35 = 1278.0; double c36 = 1740.0; double c37 = 2520.0; double c38 = 5040.0; double cdf_max = 0.999998; double cdf_min = 0.000002; double ch; double e = 0.0000005; double g; int i; int it_max = 20; double p1; double p2; double q; double s1; double s2; double s3; double s4; double s5; double s6; double t; double x; double x2; double xx; if ( cdf < cdf_min ) { x = -1.0; fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < CDF_MIN.\n" ); exit ( 1 ); } if ( cdf_max < cdf ) { x = -1.0; fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF_MAX < CDF.\n" ); exit ( 1 ); } xx = 0.5 * a; c = xx - 1.0; /* Compute Log ( Gamma ( A/2 ) ). */ g = lgamma ( a / 2.0 ); /* Starting approximation for small chi-squared. */ if ( a < -c5 * log ( cdf ) ) { ch = pow ( ( cdf * xx * exp ( g + xx * aa ) ), ( 1.0 / xx ) ); if ( ch < e ) { x = ch; return x; } } /* Starting approximation for A less than or equal to 0.32. */ else if ( a <= c3 ) { ch = c4; a2 = log ( 1.0 - cdf ); for ( ; ; ) { q = ch; p1 = 1.0 + ch * ( c7 + ch ); p2 = ch * ( c9 + ch * ( c8 + ch ) ); t = - 0.5 + ( c7 + 2.0 * ch ) / p1 - ( c9 + ch * ( c10 + 3.0 * ch ) ) / p2; ch = ch - ( 1.0 - exp ( a2 + g + 0.5 * ch + c * aa ) * p2 / p1 ) / t; if ( fabs ( q / ch - 1.0 ) <= c1 ) { break; } } } /* Call to algorithm AS 111. Note that P has been tested above. AS 241 could be used as an alternative. */ else { x2 = normal_01_cdf_inv ( cdf ); /* Starting approximation using Wilson and Hilferty estimate. */ p1 = c2 / a; ch = a * pow ( ( x2 * sqrt ( p1 ) + 1.0 - p1 ), 3 ); /* Starting approximation for P tending to 1. */ if ( c6 * a + 6.0 < ch ) { ch = - 2.0 * ( log ( 1.0 - cdf ) - c * log ( 0.5 * ch ) + g ); } } /* Call to algorithm AS 239 and calculation of seven term Taylor series. */ for ( i = 1; i <= it_max; i++ ) { q = ch; p1 = 0.5 * ch; p2 = cdf - r8_gamma_inc ( xx, p1 ); t = p2 * exp ( xx * aa + g + p1 - c * log ( ch ) ); b = t / ch; a2 = 0.5 * t - b * c; s1 = ( c19 + a2 * ( c17 + a2 * ( c14 + a2 * ( c13 + a2 * ( c12 + a2 * c11 ) ) ) ) ) / c24; s2 = ( c24 + a2 * ( c29 + a2 * ( c32 + a2 * ( c33 + a2 * c35 ) ) ) ) / c37; s3 = ( c19 + a2 * ( c25 + a2 * ( c28 + a2 * c31 ) ) ) / c37; s4 = ( c20 + a2 * ( c27 + a2 * c34 ) + c * ( c22 + a2 * ( c30 + a2 * c36 ) ) ) / c38; s5 = ( c13 + c21 * a2 + c * ( c18 + c26 * a2 ) ) / c37; s6 = ( c15 + c * ( c23 + c16 * c ) ) / c38; ch = ch + t * ( 1.0 + 0.5 * t * s1 - b * c * ( s1 - b * ( s2 - b * ( s3 - b * ( s4 - b * ( s5 - b * s6 ) ) ) ) ) ); if ( e < fabs ( q / ch - 1.0 ) ) { x = ch; return x; } } x = ch; fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_CDF_INV(): Warning!\n" ); fprintf ( stderr, " Convergence not reached.\n" ); return x; } /******************************************************************************/ void chi_square_cdf_values ( int *n_data, int *a, double *x, double *fx ) /******************************************************************************/ /* Purpose: CHI_SQUARE_CDF_VALUES returns some values of the Chi-Square CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = ChiSquareDistribution [ df ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 09 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *A, the parameter of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 21 int a_vec[N_MAX] = { 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 3, 3, 3, 3, 3, 10, 10, 10 }; double fx_vec[N_MAX] = { 0.7965567455405796E-01, 0.4987520807317687E-02, 0.1124629160182849, 0.9950166250831946E-02, 0.4729107431344619, 0.1812692469220181, 0.5975750516063926E-01, 0.1752309630642177E-01, 0.6826894921370859, 0.3934693402873666, 0.1987480430987992, 0.9020401043104986E-01, 0.3743422675270363E-01, 0.4275932955291202, 0.6083748237289110, 0.7385358700508894, 0.8282028557032669, 0.8883897749052874, 0.1721156299558408E-03, 0.3659846827343712E-02, 0.1857593622214067E-01 }; double x_vec[N_MAX] = { 0.01, 0.01, 0.02, 0.02, 0.40, 0.40, 0.40, 0.40, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 1.00, 2.00, 3.00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int chi_square_check ( double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_CHECK checks the parameter of the central Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the distribution. 1 <= A. Output, int CHI_SQUARE_CHECK, is true if the parameters are legal. */ { if ( a < 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 1.0.\n" ); return 0; } return 1; } /******************************************************************************/ double chi_square_mean ( double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_MEAN returns the mean of the central Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the distribution. 1 <= A. Output, double MEAN, the mean value. */ { double mean; mean = a; return mean; } /******************************************************************************/ double chi_square_pdf ( double x, double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_PDF evaluates the central Chi squared PDF. Discussion: PDF(A;X) = EXP ( - X / 2 ) * X^((A-2)/2) / ( 2^(A/2) * GAMMA ( A/2 ) ) Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, double A, the parameter of the PDF. 1 <= A. Output, double PDF, the value of the PDF. */ { double b; double pdf; if ( x < 0.0 ) { pdf = 0.0; } else { b = a / 2.0; pdf = exp ( -0.5 * x ) * pow ( x, ( b - 1.0 ) ) / ( pow ( 2.0, b ) * tgamma ( b ) ); } return pdf; } /******************************************************************************/ double chi_square_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: CHI_SQUARE_SAMPLE samples the central Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 1 <= A. Input/output, int *SEED, a seed for the random number generator. Output, double CHI_SQUARE_SAMPLE, a sample of the PDF. */ { double a2; double b2; double c2; int i; int it_max = 100; int n; double x; double x2; n = ( int ) a; if ( ( double ) ( n ) == a && n <= it_max ) { x = 0.0; for ( i = 1; i <= n; i++ ) { x2 = normal_01_sample ( seed ); x = x + x2 * x2; } } else { a2 = 0.0; b2 = 1.0; c2 = a / 2.0; x = gamma_sample ( a2, b2, c2, seed ); x = 2.0 * x; } return x; } /******************************************************************************/ double chi_square_variance ( double a ) /******************************************************************************/ /* Purpose: CHI_SQUARE_VARIANCE returns the variance of the central Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 12 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the distribution. 1 <= A. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = 2.0 * a; return variance; } /******************************************************************************/ void chi_square_noncentral_cdf_values ( int *n_data, int *df, double *lambda, double *x, double *cdf ) /******************************************************************************/ /* Purpose: CHI_SQUARE_NONCENTRAL_CDF_VALUES returns values of the noncentral chi CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NoncentralChiSquareDistribution [ df, lambda ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 30 August 2004 Author: John Burkardt Reference: Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *DF, the number of degrees of freedom. Output, double *LAMBDA, the noncentrality parameter. Output, double *X, the argument of the function. Output, double *CDF, the noncentral chi CDF. */ { # define N_MAX 28 double cdf_vec[N_MAX] = { 0.8399444269398261, 0.6959060300435139, 0.5350879697078847, 0.7647841496310313, 0.6206436532195436, 0.4691667375373180, 0.3070884345937569, 0.2203818092990903, 0.1500251895581519, 0.3071163194335791E-02, 0.1763982670131894E-02, 0.9816792594625022E-03, 0.1651753140866208E-01, 0.2023419573950451E-03, 0.4984476352854074E-06, 0.1513252400654827E-01, 0.2090414910614367E-02, 0.2465021206048452E-03, 0.2636835050342939E-01, 0.1857983220079215E-01, 0.1305736595486640E-01, 0.5838039534819351E-01, 0.4249784402463712E-01, 0.3082137716021596E-01, 0.1057878223400849, 0.7940842984598509E-01, 0.5932010895599639E-01, 0.2110395656918684 }; int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 60, 80, 100, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 8 }; double lambda_vec[N_MAX] = { 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 5.0, 5.0, 5.0, 20.0, 20.0, 20.0, 30.0, 30.0, 30.0, 5.0, 5.0, 5.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 0.5 }; double x_vec[N_MAX] = { 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 60.000, 60.000, 60.000, 0.050, 0.050, 0.050, 4.000, 4.000, 4.000, 5.000, 5.000, 5.000, 6.000, 6.000, 6.000, 5.000 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *lambda = 0.0; *df = 0; *cdf = 0.0; } else { *x = x_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *df = df_vec[*n_data-1]; *cdf = cdf_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double chi_square_noncentral_check ( double a, double b ) /******************************************************************************/ /* Purpose: CHI_SQUARE_NONCENTRAL_CHECK checks the parameters of the noncentral Chi Squared PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the parameter of the PDF. 1.0 <= A. Input, double B, the noncentrality parameter of the PDF. 0.0 <= B. Output, int CHI_SQUARE_NONCENTRAL_CHECK, is true if the parameters are legal. */ { if ( a < 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_NONCENTRAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 1.\n" ); return 0; } if ( b < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "CHI_SQUARE_NONCENTRAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B < 0.\n" ); return 0; } return 1; } /******************************************************************************/ double chi_square_noncentral_mean ( double a, double b ) /******************************************************************************/ /* Purpose: CHI_SQUARE_NONCENTRAL_MEAN returns the mean of the noncentral Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the parameter of the PDF. 1.0 <= A. Input, double B, the noncentrality parameter of the PDF. 0.0 <= B. Output, double MEAN, the mean value. */ { double mean; mean = a + b; return mean; } /******************************************************************************/ double chi_square_noncentral_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: CHI_SQUARE_NONCENTRAL_SAMPLE samples the noncentral Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 30 November 1999 Author: John Burkardt Parameters: Input, int A, the parameter of the PDF. 1.0 <= A. Input, double B, the noncentrality parameter of the PDF. 0.0 <= B. Input/output, int *SEED, a seed for the random number generator. Output, double CHI_SQUARE_NONCENTRAL_SAMPLE, a sample of the PDF. */ { double a1; double a2; double b2; double x; double x1; double x2; a1 = a - 1.0; x1 = chi_square_sample ( a1, seed ); a2 = sqrt ( b ); b2 = 1.0; x2 = normal_sample ( a2, b2, seed ); x = x1 + x2 * x2; return x; } /******************************************************************************/ double chi_square_noncentral_variance ( double a, double b ) /******************************************************************************/ /* Purpose: CHI_SQUARE_NONCENTRAL_VARIANCE returns the variance of the noncentral Chi squared PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 1 <= A. Input, double B, the noncentrality parameter of the PDF. 0.0 <= B. Output, double VARIANCE, the variance value. */ { double variance; variance = 2.0 * ( a + 2.0 * b ); return variance; } /******************************************************************************/ double *circular_normal_01_mean ( ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_01_MEAN returns the mean of the Circular Normal 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Output, double CIRCULAR_01_MEAN[2], the mean of the PDF. */ { double *mean; mean = ( double * ) malloc ( 2 * sizeof ( double )) ; mean[0] = 0.0; mean[1] = 0.0; return mean; } /******************************************************************************/ double circular_normal_01_pdf ( double x[2] ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_01_PDF evaluates the Circular Normal 01 PDF. Discussion: PDF(X) = EXP ( - 0.5 * ( X(1)^2 + X(2)^2 ) ) / ( 2 * PI ) Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double X[2], the argument of the PDF. Output, double CIRCULAR_NORMAL_01_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; pdf = exp ( - 0.5 * ( x[0] * x[0] + x[1] * x[1] ) ) / ( 2.0 * r8_pi ); return pdf; } /******************************************************************************/ double *circular_normal_01_sample ( int *seed ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_01_SAMPLE samples the Circular Normal 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double CIRCULAR_NORMAL_01_SAMPLE[2], a sample of the PDF. */ { const double r8_pi = 3.14159265358979323; double v1; double v2; double *x; x = ( double * ) malloc ( 2 * sizeof ( double ) ); v1 = r8_uniform_01 ( seed ); v2 = r8_uniform_01 ( seed ); x[0] = sqrt ( - 2.0 * log ( v1 ) ) * cos ( 2.0 * r8_pi * v2 ); x[1] = sqrt ( - 2.0 * log ( v1 ) ) * sin ( 2.0 * r8_pi * v2 ); return x; } /******************************************************************************/ double *circular_normal_01_variance ( ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_01_VARIANCE returns the variance of the Circular Normal 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Output, double CIRCULAR_NORMAL_01_VARIANCE[2], the variance of the PDF. */ { double *variance; variance = ( double * ) malloc ( 2 * sizeof ( double ) ); variance[0] = 1.0; variance[1] = 1.0; return variance; } /******************************************************************************/ double *circular_normal_mean ( double a[2], double b ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_MEAN returns the mean of the Circular Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 03 January 2011 Author: John Burkardt Parameters: Input, double A[2], a parameter of the PDF, the mean value. Input, double B, a parameter of the PDF, the standard deviation. Output, double CIRCULAR_MEAN[2], the mean of the PDF. */ { double *mean; mean = ( double * ) malloc ( 2 * sizeof ( double ) ); mean[0] = a[0]; mean[1] = a[1]; return mean; } /******************************************************************************/ double circular_normal_pdf ( double x[2], double a[2], double b ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_PDF evaluates the Circular Normal PDF. Discussion: PDF(X) = EXP ( - 0.5D+00 * ( ( (X(1)-A(1))^2 + (X(2)-A(2))^2 ) / B^2 ) / ( 2 * PI * B^2 ) Licensing: This code is distributed under the MIT license. Modified: 03 January 2011 Author: John Burkardt Parameters: Input, double X[2], the argument of the PDF. Input, double A[2], a parameter of the PDF, the mean value. Input, double B, a parameter of the PDF, the standard deviation. Output, double CIRCULAR_NORMAL_PDF, the value of the PDF. */ { double d; double pdf; const double r8_pi = 3.14159265358979323; d = ( pow ( x[0] - a[0], 2 ) + pow ( x[1] - a[1], 2 ) ) / pow ( b, 2 ); pdf = exp ( - 0.5 * d ) / ( 2.0 * b * b * r8_pi ); return pdf; } /******************************************************************************/ double *circular_normal_sample ( double a[2], double b, int *seed ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_SAMPLE samples the Circular Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 03 January 2011 Author: John Burkardt Parameters: Input, double A[2], a parameter of the PDF, the mean value. Input, double B, a parameter of the PDF, the standard deviation. Input/output, int *SEED, a seed for the random number generator. Output, double CIRCULAR_NORMAL_SAMPLE[2], a sample of the PDF. */ { const double r8_pi = 3.14159265358979323; double r; double v1; double v2; double *x; x = ( double * ) malloc ( 2 * sizeof ( double ) ); v1 = r8_uniform_01 ( seed ); v2 = r8_uniform_01 ( seed ); r = sqrt ( - 2.0 * log ( v1 ) ); x[0] = a[0] + b * r * cos ( 2.0 * r8_pi * v2 ); x[1] = a[1] + b * r * sin ( 2.0 * r8_pi * v2 ); return x; } /******************************************************************************/ double *circular_normal_variance ( double a[2], double b ) /******************************************************************************/ /* Purpose: CIRCULAR_NORMAL_VARIANCE returns the variance of the Circular Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 03 January 2011 Author: John Burkardt Parameters: Input, double A[2], a parameter of the PDF, the mean value. Input, double B, a parameter of the PDF, the standard deviation. Output, double CIRCULAR_NORMAL_VARIANCE[2], the variance of the PDF. */ { double *variance; variance = ( double * ) malloc ( 2 * sizeof ( double ) ); variance[0] = b; variance[1] = b; return variance; } /******************************************************************************/ double cosine_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: COSINE_CDF evaluates the Cosine CDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameter of the PDF. 0.0 < B. Output, double CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double y; if ( x <= a - r8_pi * b ) { cdf = 0.0; } else if ( x <= a + r8_pi * b ) { y = ( x - a ) / b; cdf = 0.5 + ( y + sin ( y ) ) / ( 2.0 * r8_pi ); } else if ( a + r8_pi * b < x ) { cdf = 1.0; } return cdf; } /******************************************************************************/ double cosine_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: COSINE_CDF_INV inverts the Cosine CDF. Discussion: A simple bisection method is used on the interval [ A - PI * B, A + PI * B ]. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double COSINE_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf3; int it; int it_max = 100; const double r8_pi = 3.14159265358979323; double tol = 0.0001; double x = 0.0; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "COSINE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = a - r8_pi * b; return x; } else if ( 1.0 == cdf ) { x = a + r8_pi * b; return x; } x1 = a - r8_pi * b; cdf1 = 0.0; x2 = a + r8_pi * b; /* Now use bisection. */ it = 0; for ( it = 1; it <= it_max; it++ ) { x3 = 0.5 * ( x1 + x2 ); cdf3 = cosine_cdf ( x3, a, b ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; return x; } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; } } fprintf ( stderr, "\n" ); fprintf ( stderr, "COSINE_CDF_INV(): Warning!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); return x; } /******************************************************************************/ int cosine_check ( double a, double b ) /******************************************************************************/ /* Purpose: COSINE_CHECK checks the parameters of the Cosine CDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameter of the PDF. 0.0 < B. Output, int COSINE_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "COSINE_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } return 1; } /******************************************************************************/ double cosine_mean ( double a, double b ) /******************************************************************************/ /* Purpose: COSINE_MEAN returns the mean of the Cosine PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double cosine_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: COSINE_PDF evaluates the Cosine PDF. Discussion: PDF(A,B;X) = ( 1 / ( 2 * PI * B ) ) * COS ( ( X - A ) / B ) for A - PI * B <= X <= A + PI * B Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; if ( x < a - r8_pi * b ) { pdf = 0.0; } else if ( x <= a + r8_pi * b ) { y = ( x - a ) / b; pdf = 1.0 / ( 2.0 * r8_pi * b ) * cos ( y ); } else if ( a + r8_pi * b < x ) { pdf = 0.0; } return pdf; } /******************************************************************************/ double cosine_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: COSINE_SAMPLE samples the Cosine PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double COSINE_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = cosine_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double cosine_variance ( double a, double b ) /******************************************************************************/ /* Purpose: COSINE_VARIANCE returns the variance of the Cosine PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = ( r8_pi * r8_pi / 3.0 - 2.0 ) * b * b; return variance; } /******************************************************************************/ double coupon_complete_pdf ( int type_num, int box_num ) /******************************************************************************/ /* Purpose: COUPON_COMPLETE_PDF evaluates the Complete Coupon Collection PDF. Discussion: PDF(TYPE_NUM;BOX_NUM) is the probability that, given an inexhaustible supply of boxes, inside each of which there is one of TYPE_NUM distinct coupons, which are uniformly distributed among the boxes, that it will require opening exactly BOX_NUM boxes to achieve at least one of each kind of coupon. Licensing: This code is distributed under the MIT license. Modified: 25 August 2006 Author: John Burkardt Reference: Herbert Wilf, Some New Aspects of the Coupon Collector's Problem, SIAM Review, Volume 48, Number 3, September 2006, pages 549-565. Parameters: Input, int BOX_NUM, the number of boxes that had to be opened in order to just get at least one of each coupon. 0 <= BOX_NUM. If BOX_NUM < TYPE_NUM, then PDF is surely 0. Input, int TYPE_NUM, the number of distinct coupons. 1 <= TYPE_NUM. Output, double COUPON_COMPLETE_PDF, the value of the PDF. */ { double factor; int i; double pdf; /* Nonsense cases. */ if ( box_num < 0 ) { pdf = 0.0; } else if ( type_num < 1 ) { pdf = 0.0; } /* Degenerate but meaningful case. */ else if ( type_num == 1 ) { if ( box_num == 1 ) { pdf = 1.0; } else { pdf = 0.0; } } /* Easy cases. */ else if ( box_num < type_num ) { pdf = 0.0; } /* General case. */ else { factor = 1.0; for ( i = 1; i <= type_num; i++ ) { factor = factor * ( double ) ( i ) / ( double ) ( type_num ); } for ( i = type_num + 1; i <= box_num; i++ ) { factor = factor / ( double ) ( type_num ); } pdf = factor * ( double ) ( stirling2_number ( box_num - 1, type_num - 1 ) ); } return pdf; } /******************************************************************************/ double coupon_mean ( int j, int type_num ) /******************************************************************************/ /* Purpose: coupon_mean() returns the mean of the Coupon PDF. Discussion: In this version of the coupon collector's problem, we assume that each box contains 1 coupon, that there are TYPE_NUM distinct types of coupon, uniformly distributed among an inexhaustible supply of boxes, and that the collector's goal is to get J distinct types of coupons by opening one box after another. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int J, the number of distinct coupons to be collected. J must be between 1 and N. Input, int TYPE_NUM, the number of distinct coupons. Output, double COUPON_MEAN, the mean number of boxes that must be opened in order to just get J distinct kinds. */ { int i; double mean; if ( type_num < j ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "COUPON_MEAN - Fatal error!\n" ); fprintf ( stderr, " Number of distinct coupons desired must be no more\n" ); fprintf ( stderr, " than the total number of boxes opened.\n" ); exit ( 1 ); } mean = 0.0; for ( i = 1; i <= j; i++ ) { mean = mean + 1.0 / ( double ) ( type_num - i + 1 ); } mean = mean * ( double ) ( type_num ); return mean; } /******************************************************************************/ void coupon_sample ( int type_num, int *seed, int coupon[], int *box_num ) /******************************************************************************/ /* Purpose: COUPON_SAMPLE simulates the coupon collector's problem. Discussion: The coupon collector needs to collect one of each of TYPE_NUM coupons. The collector may draw one coupon (or, in some settings, open one box) on each trial, and takes as many trials as necessary to complete the task. On each trial, the probability of picking any particular type of coupon is always 1 / TYPE_NUM. Interesting questions include; * what is the expected number of drawings necessary to complete the collection? * How does the expected number of drawings necessary to complete the collection vary as TYPE_NUM increases? * What is the distribution of the numbers of each type of coupon in a typical collection when it is just completed? As TYPE_NUM increases, the number of coupons necessary to be collected in order to get a complete set in any simulation strongly tends to the value TYPE_NUM * LOG ( TYPE_NUM ). If TYPE_NUM is 1, the simulation ends with a single drawing. If TYPE_NUM is 2, then we may call the coupon taken on the first drawing a "Head", say, and the process then is similar to the question of the length, plus one, of a run of Heads or Tails in coin flipping. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, int TYPE_NUM, the number of types of coupons. Input/output, int *SEED, a seed for the random number generator. Output, int COUPON[TYPE_NUM], the number of coupons of each type that were collected during the simulation. Output, int *BOX_NUM, the total number of boxes opened. */ { int i; int box_max = 2000; int straight; for ( i = 0; i < type_num; i++ ) { coupon[i] = 0; } straight = 0; *box_num = 0; /* Draw another coupon. */ while ( *box_num < box_max ) { i = i4_uniform_ab ( 1, type_num, seed ); /* Increment the number of I coupons. */ coupon[i-1] = coupon[i-1] + 1; *box_num = *box_num + 1; /* If I is the next one we needed, increase STRAIGHT by 1. */ if ( i == straight + 1 ) { for ( ; ; ) { straight = straight + 1; /* If STRAIGHT = TYPE_NUM, we have all of them. */ if ( type_num <= straight ) { return; } /* If the next coupon has not been collected, our straight is over. */ if ( coupon[straight] <= 0 ) { break; } } } } fprintf ( stderr, "\n" ); fprintf ( stderr, "COUPON_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " Maximum number of coupons drawn without success.\n" ); exit ( 1 ); } /******************************************************************************/ double coupon_variance ( int j, int type_num ) /******************************************************************************/ /* Purpose: COUPON_VARIANCE returns the variance of the Coupon PDF. Discussion: In this version of the coupon collector's problem, we assume that each box contains 1 coupon, that there are TYPE_NUM distinct types of coupon, uniformly distributed among an inexhaustible supply of boxes, and that the collector's goal is to get J distinct types of coupons by opening one box after another. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int J, the number of distinct coupons to be collected. J must be between 1 and N. Input, int TYPE_NUM, the number of distinct coupons. Output, double COUPON_VARIANCE, the variance of the number of boxes that must be opened in order to just get J distinct kinds. */ { int i; double variance; if ( type_num < j ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "COUPON_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " Number of distinct coupons desired must be no more\n" ); fprintf ( stderr, " than the total number of distinct coupons.\n" ); exit ( 1 ); } variance = 0.0; for ( i = 1; i <= j; i++ ) { variance = variance + ( double ) ( i - 1 ) / pow ( ( double ) ( type_num - i + 1 ), 2 ); } variance = variance * ( double ) ( type_num ); return variance; } /******************************************************************************/ double deranged_cdf ( int x, int a ) /******************************************************************************/ /* Purpose: DERANGED_CDF evaluates the Deranged CDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int X, the maximum number of items in their correct places. 0 <= X <= A. Input, int A, the number of items. 1 <= A. Output, double CDF, the value of the CDF. */ { double cdf; int cnk; int dnmk; int sum2; int x2; if ( x < 0 || a < x ) { cdf = 0.0; } else { sum2 = 0; for ( x2 = 0; x2 <= x; x2++ ) { cnk = i4_choose ( a, x2 ); dnmk = deranged_enum ( a - x2 ); sum2 = sum2 + cnk * dnmk; } cdf = ( double ) ( sum2 ) / r8_factorial ( a ); } return cdf; } /******************************************************************************/ int deranged_cdf_inv ( double cdf, int a ) /******************************************************************************/ /* Purpose: DERANGED_CDF_INV inverts the Deranged CDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, int A, the number of items. 1 <= A. Output, int DERANGED_CDF_INV, the corresponding argument. */ { double cdf2; double pdf; int x; int x2; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DERANGED_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cdf2 = 0.0; for ( x2 = 0; x2 <= a; x2++ ) { pdf = deranged_pdf ( x2, a ); cdf2 = cdf2 + pdf; if ( cdf <= cdf2 ) { x = x2; return x; } } x = a; return x; } /******************************************************************************/ int deranged_check ( int a ) /******************************************************************************/ /* Purpose: DERANGED_CHECK checks the parameter of the Deranged PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the total number of items. 1 <= A. Output, int DERANGED_CHECK, is true if the parameters are legal. */ { if ( a < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DERANGED_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 1.\n" ); return 0; } return 1; } /******************************************************************************/ int deranged_enum ( int n ) /******************************************************************************/ /* Purpose: DERANGED_ENUM returns the number of derangements of N objects. Discussion: A derangement of N objects is a permutation with no fixed points. If we symbolize the permutation operation by "P", then for a derangment, P(I) is never equal to I. Recursion: D(0) = 1 D(1) = 0 D(2) = 1 D(N) = (N-1) * ( D(N-1) + D(N-2) ) or D(0) = 1 D(1) = 0 D(N) = N * D(N-1) + (-1)^N D(N) = N! * ( 1 - 1/1! + 1/2! - 1/3! ... 1/N! ) Based on the inclusion/exclusion law. D(N) is the number of ways of placing N non-attacking rooks on an N by N chessboard with one diagonal deleted. Limit ( N -> Infinity ) D(N)/N! = 1 / e. The number of permutations with exactly K items in the right place is COMB(N,K) * D(N-K). First values: N D(N) 0 1 1 0 2 1 3 2 4 9 5 44 6 265 7 1854 8 14833 9 133496 10 1334961 Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int N, the number of objects to be permuted. Output, int DERANGED_ENUM, the number of derangements of N objects. */ { int dn; int dnm1; int dnm2; int i; if ( n < 0 ) { dn = 0; } else if ( n == 0 ) { dn = 1; } else if ( n == 1 ) { dn = 0; } else if ( n == 2 ) { dn = 1; } else { dnm1 = 0; dn = 1; for ( i = 3; i <= n; i++ ) { dnm2 = dnm1; dnm1 = dn; dn = ( i - 1 ) * ( dnm1 + dnm2 ); } } return dn; } /******************************************************************************/ double deranged_mean ( int a ) /******************************************************************************/ /* Purpose: DERANGED_MEAN returns the mean of the Deranged CDF. Discussion: The mean is computed by straightforward summation. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the number of items. 1 <= A. Output, double MEAN, the mean of the PDF. */ { double mean; double pdf; int x; mean = 0.0; for ( x = 0; x <= a; x++ ) { pdf = deranged_pdf ( x, a ); mean = mean + pdf * x; } return mean; } /******************************************************************************/ double deranged_pdf ( int x, int a ) /******************************************************************************/ /* Purpose: DERANGED_PDF evaluates the Deranged PDF. Discussion: PDF(A;X) is the probability that exactly X items will occur in their proper place after a random permutation of A items. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int X, the number of items in their correct places. 0 <= X <= A. Input, int A, the total number of items. 1 <= A. Output, double PDF, the value of the PDF. */ { int cnk; int dnmk; double pdf; if ( x < 0 || a < x ) { pdf = 0.0; } else { cnk = i4_choose ( a, x ); dnmk = deranged_enum ( a-x ); pdf = ( double ) ( cnk * dnmk ) / r8_factorial ( a ); } return pdf; } /******************************************************************************/ int deranged_sample ( int a, int *seed ) /******************************************************************************/ /* Purpose: DERANGED_SAMPLE samples the Deranged PDF. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the number of items. 1 <= A. Input/output, int *SEED, a seed for the random number generator. Output, int DERANGED_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = deranged_cdf_inv ( cdf, a ); return x; } /******************************************************************************/ double deranged_variance ( int a ) /******************************************************************************/ /* Purpose: DERANGED_VARIANCE returns the variance of the Deranged CDF. Discussion: The variance is computed by straightforward summation. Licensing: This code is distributed under the MIT license. Modified: 13 October 2004 Author: John Burkardt Parameters: Input, int A, the number of items. 1 <= A. Output, double VARIANCE, the variance of the PDF. */ { double mean; double pdf; int x; double variance; mean = deranged_mean ( a ); variance = 0.0; for ( x = 0; x <= a; x++ ) { pdf = deranged_pdf ( x, a ); variance = variance + pdf * pow ( ( x - mean ), 2 ); } return variance; } /******************************************************************************/ double digamma ( double x ) /******************************************************************************/ /* Purpose: DIGAMMA calculates DIGAMMA ( X ) = d ( LOG ( GAMMA ( X ) ) ) / dX Licensing: This code is distributed under the MIT license. Modified: 20 March 2016 Author: Original FORTRAN77 version by Jose Bernardo. This version by John Burkardt. Reference: Jose Bernardo, Algorithm AS 103: Psi ( Digamma ) Function, Applied Statistics, Volume 25, Number 3, 1976, pages 315-317. Parameters: Input, double X, the argument of the digamma function. 0 < X. Output, double DIGAMMA, the value of the digamma function at X. */ { static double c = 8.5; const double euler_mascheroni = 0.57721566490153286060; double r; double value; double x2; /* Check the input. */ if ( x <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIGAMMA - Fatal error!\n" ); fprintf ( stderr, " X <= 0.0\n" ); exit ( 1 ); } /* Use approximation for small argument. */ if ( x <= 0.000001 ) { value = - euler_mascheroni - 1.0 / x + 1.6449340668482264365 * x; return value; } /* Reduce to DIGAMA(X + N). */ value = 0.0; x2 = x; while ( x2 < c ) { value = value - 1.0 / x2; x2 = x2 + 1.0; } /* Use Stirling's (actually de Moivre's) expansion. */ r = 1.0 / x2; value = value + log ( x2 ) - 0.5 * r; r = r * r; value = value - r * ( 1.0 / 12.0 - r * ( 1.0 / 120.0 - r * ( 1.0 / 252.0 - r * ( 1.0 / 240.0 - r * ( 1.0 / 132.0 ) ) ) ) ); return value; } /******************************************************************************/ double dipole_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: DIPOLE_CDF evaluates the Dipole CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI is interesting, and -1.0 <= B <= 1.0. Output, double DIPOLE_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; cdf = 0.5 + ( 1.0 / r8_pi ) * atan ( x ) + b * b * ( x * cos ( 2.0 * a ) - sin ( 2.0 * a ) ) / ( r8_pi * ( 1.0 + x * x ) ); return cdf; } /******************************************************************************/ double dipole_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: DIPOLE_CDF_INV inverts the Dipole CDF. Discussion: A simple bisection method is used. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. -1.0 <= B <= 1.0. Output, double DIPOLE_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIPOLE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = - HUGE_VAL; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } /* Seek X1 < X < X2. */ x1 = - 1.0; for ( ; ; ) { cdf1 = dipole_cdf ( x1, a, b ); if ( cdf1 <= cdf ) { break; } x1 = 2.0 * x1; } x2 = 1.0; for ( ; ; ) { cdf2 = dipole_cdf ( x2, a, b ); if ( cdf <= cdf2 ) { break; } x2 = 2.0 * x2; } /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = dipole_cdf ( x3, a, b ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIPOLE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); exit ( 1 ); } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int dipole_check ( double a, double b ) /******************************************************************************/ /* Purpose: DIPOLE_CHECK checks the parameters of the Dipole CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI is interesting, and -1.0 <= B <= 1.0. Output, int DIPOLE_CHECK, is true if the parameters are legal. */ { if ( b < -1.0 || 1.0 < b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIPOLE_CHECK(): Warning!\n" ); fprintf ( stderr, " -1.0 <= B <= 1.0 is required.\n" ); fprintf ( stderr, " The input B = %g\n", b ); return 0; } return 1; } /******************************************************************************/ double dipole_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: DIPOLE_PDF evaluates the Dipole PDF. Discussion: PDF(A,B;X) = 1 / ( PI * ( 1 + X^2 ) ) + B^2 * ( ( 1 - X^2 ) * cos ( 2 * A ) + 2.0 * X * sin ( 2 * A ) ) / ( PI * ( 1 + X )^2 ) Densities of this kind commonly occur in the analysis of resonant scattering of elementary particles. DIPOLE_PDF(A,0;X) = CAUCHY_PDF(A;X) A = 0, B = 1 yields the single channel dipole distribution. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Reference: Robert Knop, Algorithm 441, ACM Transactions on Mathematical Software. Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI is interesting, and -1.0 <= B <= 1.0. Output, double DIPOLE_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; pdf = 1.0 / ( r8_pi * ( 1.0 + x * x ) ) + b * b * ( ( 1.0 - x * x ) * cos ( 2.0 * a ) + 2.0 * x * sin ( 2.0 * x ) ) / ( r8_pi * ( 1.0 + x * x ) * ( 1.0 + x * x ) ); return pdf; } /******************************************************************************/ double dipole_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: DIPOLE_SAMPLE samples the Dipole PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Reference: Robert Knop, Algorithm 441, ACM Transactions on Mathematical Software. Parameters: Input, double A, B, the parameters of the PDF. A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI is interesting, and -1.0 <= B <= 1.0. Input/output, int *SEED, a seed for the random number generator. Output, double DIPOLE_SAMPLE, a sample of the PDF. */ { double a2; double b2; double c2; double x; double *xc; /* Find (X1,X2) at random in a disk. */ a2 = b * sin ( a ); b2 = b * cos ( a ); c2 = 1.0; xc = disk_sample ( a2, b2, c2, seed ); /* The dipole variate is the ratio X1 / X2. */ x = xc[0] / xc[1]; free ( xc ); return x; } /******************************************************************************/ int dirichlet_check ( int n, double a[] ) /******************************************************************************/ /* Purpose: DIRICHLET_CHECK checks the parameters of the Dirichlet PDF. Licensing: This code is distributed under the MIT license. Modified: 30 October 2004 Author: John Burkardt Parameters: Input, int N, the number of components. Input, double A[N], the probabilities for each component. Each A[I] should be positive. Output, int DIRICHLET_CHECK, is true if the parameters are legal. */ { int i; int positive; positive = 0; for ( i = 0; i < n; i++ ) { if ( a[i] <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_CHECK(): Warning!\n" ); fprintf ( stderr, " A[%d] <= 0.\n", i ); fprintf ( stderr, " A[%d] = %g.\n", i, a[i] ); return 0; } else if ( 0.0 < a[i] ) { positive = 1; } } if ( !positive ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_CHECK(): Warning!\n" ); fprintf ( stderr, " All parameters are zero!\n" ); return 0; } return 1; } /******************************************************************************/ double *dirichlet_mean ( int n, double a[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MEAN returns the means of the Dirichlet PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, int N, the number of components. Input, double A[N], the probabilities for each component. Each A[I] should be positive. Output, double DIRICHLET_MEAN[N], the means of the PDF. */ { int i; double *mean; mean = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { mean[i] = a[i]; } r8vec_unit_sum ( n, mean ); return mean; } /******************************************************************************/ double *dirichlet_moment2 ( int n, double a[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MOMENT2 returns the second moments of the Dirichlet PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int N, the number of components. Input, double A[N], the probabilities for each component. Each A(I) should be positive. Output, double DIRICHLET_MOMENT[N*N], the second moments of the PDF. */ { double a_sum; double *m2; int i; int j; m2 = ( double * ) malloc ( n * n * sizeof ( double ) ); a_sum = r8vec_sum ( n, a ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j ) { m2[i+j*n] = a[i] * ( a[i] + 1.0 ) / ( a_sum * ( a_sum + 1.0 ) ); } else { m2[i+j*n] = a[i] * a[j] / ( a_sum * ( a_sum + 1.0 ) ); } } } return m2; } /******************************************************************************/ double dirichlet_pdf ( double x[], int n, double a[] ) /******************************************************************************/ /* Purpose: DIRICHLET_PDF evaluates the Dirichlet PDF. Discussion: PDF(N,A;X) = Product ( 1 <= I <= N ) X(I)^( A(I) - 1 ) * Gamma ( A_SUM ) / A_PROD where 0 < A(I) for all I; 0 <= X(I) for all I; Sum ( 1 <= I <= N ) X(I) = 1; A_SUM = Sum ( 1 <= I <= N ) A(I). A_PROD = Product ( 1 <= I <= N ) Gamma ( A(I) ) Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X(N), the argument of the PDF. Each X(I) should be greater than 0.0, and the X(I)'s must add up to 1.0. Input, int N, the number of components. Input, double A(N), the probabilities for each component. Each A(I) should be positive. Output, double PDF, the value of the PDF. */ { double a_prod; double a_sum; int i; double pdf; double tol = 0.0001; double x_sum; for ( i = 0; i < n; i++ ) { if ( x[i] <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_PDF - Fatal error!\n" ); fprintf ( stderr, " X(I) <= 0.\n" ); exit ( 1 ); } } x_sum = r8vec_sum ( n, x ); if ( tol < fabs ( x_sum - 1.0 ) ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_PDF - Fatal error!\n" ); fprintf ( stderr, " SUM X(I) =/= 1.\n" ); exit ( 1 ); } a_sum = r8vec_sum ( n, a ); a_prod = 1.0; for ( i = 0; i < n; i++ ) { a_prod = a_prod * tgamma ( a[i] ); } pdf = tgamma ( a_sum ) / a_prod; for ( i = 0; i < n; i++ ) { pdf = pdf * pow ( x[i], a[i] - 1.0 ); } return pdf; } /******************************************************************************/ double *dirichlet_sample ( int n, double a[], int *seed ) /******************************************************************************/ /* Purpose: DIRICHLET_SAMPLE samples the Dirichlet PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 169. Parameters: Input, int N, the number of components. Input, double A(N), the probabilities for each component. Each A(I) should be positive. Input/output, int *SEED, a seed for the random number generator. Output, double DIRICHLET_SAMPLE[N], a sample of the PDF. The entries of X should sum to 1. */ { double a2; double b2; double c2; int i; double *x; x = ( double * ) malloc ( n * sizeof ( double ) ); a2 = 0.0; b2 = 1.0; for ( i = 0; i < n; i++ ) { c2 = a[i]; x[i] = gamma_sample ( a2, b2, c2, seed ); } /* Rescale the vector to have unit sum. */ r8vec_unit_sum ( n, x ); return x; } /******************************************************************************/ double *dirichlet_variance ( int n, double a[] ) /******************************************************************************/ /* Purpose: DIRICHLET_VARIANCE returns the variances of the Dirichlet PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int N, the number of components. Input, double A(N), the probabilities for each component. Each A(I) should be positive. Output, double DIRICHLET_VARIANCE(N), the variances of the PDF. */ { double a_sum; int i; double *variance; variance = ( double * ) malloc ( n * sizeof ( double ) ); a_sum = r8vec_sum ( n, a ); for ( i = 0; i < n; i++ ) { variance[i] = a[i] * ( a_sum - a[i] ) / ( a_sum * a_sum * ( a_sum + 1.0 ) ); } return variance; } /******************************************************************************/ int dirichlet_mix_check ( int comp_num, int elem_num, double a[], double comp_weight[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MIX_CHECK checks the parameters of a Dirichlet mixture PDF. Licensing: This code is distributed under the MIT license. Modified: 30 October 2004 Author: John Burkardt Parameters: Input, int COMP_NUM, the number of components in the Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's that are mixed together. Input, int ELEM_NUM, the number of elements of an observation. Input, double A[ELEM_NUM*COMP_NUM], the probabilities for element ELEM_NUM in component COMP_NUM. Each A[I,J] should be positive. Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of the densities. These do not need to be normalized. The weight of a given component is the relative probability that that component will be used to generate the sample. Output, int DIRICHLET_MIX_CHECK, is true if the parameters are legal. */ { int comp_i; int elem_i; int positive; for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { if ( a[elem_i+comp_i*elem_num] <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_MIX_CHECK(): Warning!\n" ); fprintf ( stderr, " A(ELEM,COMP) <= 0.\n" ); fprintf ( stderr, " COMP = %d\n", comp_i ); fprintf ( stderr, " ELEM = %d\n", elem_i ); fprintf ( stderr, " A(COMP,ELEM) = %g\n", a[elem_i+comp_i*elem_num] ); return 0; } } } positive = 0; for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { if ( comp_weight[comp_i] < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_MIX_CHECK(): Warning!\n" ); fprintf ( stderr, " COMP_WEIGHT(COMP) < 0.\n" ); fprintf ( stderr, " COMP = %d\n", comp_i ); fprintf ( stderr, " COMP_WEIGHT(COMP) = %g\n", comp_weight[comp_i] ); return 0; } else if ( 0.0 < comp_weight[comp_i] ) { positive = 1; } } if ( !positive ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DIRICHLET_MIX_CHECK(): Warning!\n" ); fprintf ( stderr, " All component weights are zero.\n" ); return 0; } return 1; } /******************************************************************************/ double *dirichlet_mix_mean ( int comp_num, int elem_num, double a[], double comp_weight[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MIX_MEAN returns the means of a Dirichlet mixture PDF. Licensing: This code is distributed under the MIT license. Modified: 22 November 2004 Author: John Burkardt Parameters: Input, int COMP_NUM, the number of components in the Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's that are mixed together. Input, int ELEM_NUM, the number of elements of an observation. Input, double A[ELEM_NUM*COMP_NUM], the probabilities for element ELEM_NUM in component COMP_NUM. Each A[I,J] should be positive. Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of the densities. These do not need to be normalized. The weight of a given component is the relative probability that that component will be used to generate the sample. Output, double DIRICHLET_MIX_MEAN[ELEM_NUM], the means for each element. */ { double *a_vec; int comp_i; double *comp_mean; double comp_weight_sum; int elem_i; double *mean; a_vec = ( double * ) malloc ( elem_num * sizeof ( double ) ); mean = ( double * ) malloc ( elem_num * sizeof ( double ) ); comp_weight_sum = 0.0; for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { comp_weight_sum = comp_weight_sum + comp_weight[comp_i]; } for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { mean[elem_i] = 0.0; } for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { a_vec[elem_i] = a[elem_i+comp_i*elem_num]; } comp_mean = dirichlet_mean ( elem_num, a_vec ); for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { mean[elem_i] = mean[elem_i] + comp_weight[comp_i] * comp_mean[elem_i]; } free ( comp_mean ); } for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { mean[elem_i] = mean[elem_i] / comp_weight_sum; } free ( a_vec ); return mean; } /******************************************************************************/ double dirichlet_mix_pdf ( double x[], int comp_num, int elem_num, double a[], double comp_weight[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MIX_PDF evaluates a Dirichlet mixture PDF. Discussion: The PDF is a weighted sum of Dirichlet PDF's. Each PDF is a "component", with an associated weight. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double X[ELEM_NUM], the argument of the PDF. Input, int COMP_NUM, the number of components in the Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's that are mixed together. Input, int ELEM_NUM, the number of elements of an observation. Input, double A[ELEM_NUM*COMP_NUM], the probabilities for element ELEM_NUM in component COMP_NUM. Each A[I,J] should be positive. Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of the densities. These do not need to be normalized. The weight of a given component is the relative probability that that component will be used to generate the sample. Output, double DIRICHLET_MIX_PDF, the value of the PDF. */ { double *a_vec; double comp_pdf; double comp_weight_sum; int i; int j; double pdf; a_vec = ( double * ) malloc ( elem_num * sizeof ( double ) ); comp_weight_sum = 0.0; for ( j = 0; j < comp_num; j++ ) { comp_weight_sum = comp_weight_sum + comp_weight[j]; } pdf = 0.0; for ( j = 0; j < comp_num; j++ ) { for ( i = 0; i < elem_num; i++ ) { a_vec[i] = a[i+j*elem_num]; } comp_pdf = dirichlet_pdf ( x, elem_num, a_vec ); pdf = pdf + comp_weight[j] * comp_pdf / comp_weight_sum; } free ( a_vec ); return pdf; } /******************************************************************************/ double *dirichlet_mix_sample ( int comp_num, int elem_num, double a[], double comp_weight[], int *seed, int *comp ) /******************************************************************************/ /* Purpose: DIRICHLET_MIX_SAMPLE samples a Dirichlet mixture PDF. Licensing: This code is distributed under the MIT license. Modified: 30 October 2004 Author: John Burkardt Parameters: Input, int COMP_NUM, the number of components in the Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's that are mixed together. Input, int ELEM_NUM, the number of elements of an observation. Input, double A[ELEM_NUM*COMP_NUM], the probabilities for element ELEM_NUM in component COMP_NUM. Each A[I,J] should be positive. Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of the densities. These do not need to be normalized. The weight of a given component is the relative probability that that component will be used to generate the sample. Input/output, int *SEED, a seed for the random number generator. Output, int *COMP, the index of the component of the Dirichlet mixture that was chosen to generate the sample. Output, double DIRICHLET_MIX_SAMPLE[ELEM_NUM], a sample of the PDF. */ { double *a_vec; int elem_i; double *x; a_vec = ( double * ) malloc ( elem_num * sizeof ( double ) ); /* Choose a particular density component COMP. */ *comp = discrete_sample ( comp_num, comp_weight, seed ); /* Sample the density number COMP. */ for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { a_vec[elem_i] = a[elem_i+(*comp-1)*elem_num]; } x = dirichlet_sample ( elem_num, a_vec, seed ); free ( a_vec ); return x; } /******************************************************************************/ double dirichlet_multinomial_pdf ( int x[], int a, int b, double c[] ) /******************************************************************************/ /* Purpose: DIRICHLET_MULTINOMIAL_PDF evaluates a Dirichlet Multinomial PDF. Formula: PDF(A,B,C;X) = Comb(A,B,X) * ( Gamma(C_Sum) / Gamma(C_Sum+A) ) Product ( 1 <= I <= B ) Gamma(C(I)+X(I)) / Gamma(C(I)) where: Comb(A,B,X) is the multinomial coefficient C( A; X(1), X(2), ..., X(B) ), C_Sum = Sum ( 1 <= I <= B ) C(I) Licensing: This code is distributed under the MIT license. Modified: 19 October 2004 Author: John Burkardt Reference: Kenneth Lange, Mathematical and Statistical Methods for Genetic Analysis, Springer, 1997, page 45. Parameters: Input, int X[B]; X[I] counts the number of occurrences of outcome I, out of the total of A trials. Input, int A, the total number of trials. Input, int B, the number of different possible outcomes on one trial. Input, double C[B]; C[I] is the Dirichlet parameter associated with outcome I. Output, double DIRICHLET_MULTINOMIAL_PDF, the value of the Dirichlet multinomial PDF. */ { double c_sum; int i; double pdf; double pdf_log; c_sum = r8vec_sum ( b, c ); pdf_log = - lgamma ( c_sum + ( double ) ( a ) ) + lgamma ( c_sum ) + lgamma ( ( double ) ( a + 1 ) ); for ( i = 0; i < b; i++ ) { pdf_log = pdf_log + lgamma ( c[i] + ( double ) ( x[i] ) ) - lgamma ( c[i] ) - lgamma ( ( double ) ( x[i] + 1 ) ); } pdf = exp ( pdf_log ); return pdf; } /******************************************************************************/ double discrete_cdf ( int x, int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_CDF evaluates the Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int X, the item whose probability is desired. Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, double DISCRETE_CDF, the value of the CDF. */ { double cdf; if ( x < 1 ) { cdf = 0.0; } else if ( x < a ) { cdf = r8vec_sum ( x, b ) / r8vec_sum ( a, b ); } else if ( a <= x ) { cdf = 1.0; } return cdf; } /******************************************************************************/ int discrete_cdf_inv ( double cdf, int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_CDF_INV inverts the Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, int DISCRETE_CDF_INV, the corresponding argument for which CDF(X-1) < CDF <= CDF(X) */ { double b_sum; double cum; int j; int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DISCRETE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } b_sum = r8vec_sum ( a, b ); cum = 0.0; for ( j = 1; j <= a; j++ ) { cum = cum + b[j-1] / b_sum; if ( cdf <= cum ) { x = j; return x; } } x = a; return x; } /******************************************************************************/ int discrete_check ( int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_CHECK checks the parameters of the Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, int DISCRETE_CHECK, is true if the parameters are legal. */ { double b_sum; int j; for ( j = 0; j < a; j++ ) { if ( b[j] < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " Negative probabilities not allowed.\n" ); return 0; } } b_sum = r8vec_sum ( a, b ); if ( b_sum == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " Total probablity is zero.\n" ); return 0; } return 1; } /******************************************************************************/ double discrete_mean ( int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_MEAN evaluates the mean of the Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, double DISCRETE_MEAN, the mean of the PDF. */ { double b_sum; int j; double mean; b_sum = r8vec_sum ( a, b ); mean = 0.0; for ( j = 0; j < a; j++ ) { mean = mean + ( double ) ( j + 1 ) * b[j]; } mean = mean / b_sum; return mean; } /******************************************************************************/ double discrete_pdf ( int x, int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_PDF evaluates the Discrete PDF. Discusion: PDF(A,B;X) = B(X) if 1 <= X <= A = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int X, the item whose probability is desired. Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, double DISCRETE_PDF, the value of the PDF. */ { double b_sum; double pdf; b_sum = r8vec_sum ( a, b ); if ( 1 <= x && x <= a ) { pdf = b[x-1] / b_sum; } else { pdf = 0.0; } return pdf; } /******************************************************************************/ int discrete_sample ( int a, double b[], int *seed ) /******************************************************************************/ /* Purpose: DISCRETE_SAMPLE samples the Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Input/output, int *SEED, a seed for the random number generator. Output, int DISCRETE_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = discrete_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double discrete_variance ( int a, double b[] ) /******************************************************************************/ /* Purpose: DISCRETE_VARIANCE evaluates the variance of the Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int A, the number of probabilities assigned. Input, double B[A], the relative probabilities of outcomes 1 through A. Each entry must be nonnegative. Output, double DISCRETE_VARIANCE, the variance of the PDF. */ { double b_sum; int j; double mean; double variance; b_sum = r8vec_sum ( a, b ); mean = 0.0; for ( j = 1; j <= a; j++ ) { mean = mean + ( double ) ( j ) * b[j-1]; } mean = mean / b_sum; variance = 0.0; for ( j = 1; j <= a; j++ ) { variance = variance + b[j-1] * pow ( ( double ) j - mean, 2 ); } variance = variance / b_sum; return variance; } /******************************************************************************/ double *disk_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: DISK_MEAN returns the mean of the Disk distribution. Licensing: This code is distributed under the MIT license. Modified: 18 March 2106 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the disk. The disk is centered at (A,B) and has radius C. 0.0 < C. Output, double DISK_MEAN[2], the mean. */ { double *mean; mean = ( double * ) malloc ( 2 * sizeof ( double ) ); mean[0] = a; mean[1] = b; return mean; } /******************************************************************************/ double *disk_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: DISK_SAMPLE samples points from a disk. Licensing: This code is distributed under the MIT license. Modified: 18 March 2106 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the disk. The disk is centered at (A,B) and has radius C. 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double DISK_SAMPLE[2], a sampled point of the disk. */ { double angle; const double r8_pi = 3.14159265358979323; double radius_frac; double *x; x = ( double * ) malloc ( 2 * sizeof ( double ) ); radius_frac = sqrt ( r8_uniform_01 ( seed ) ); angle = 2.0 * r8_pi * r8_uniform_01 ( seed ); x[0] = a + c * radius_frac * cos ( angle ); x[1] = b + c * radius_frac * sin ( angle ); return x; } /******************************************************************************/ double disk_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: DISK_VARIANCE returns the variance of the Disk distribution. Licensing: This code is distributed under the MIT license. Modified: 18 March 2106 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the disk. The disk is centered at (A,B) and has radius C. 0.0 < C. Output, double DISK_VARIANCE, the variance. */ { double variance; variance = 0.5 * c * c; return variance; } /******************************************************************************/ double e_constant ( ) /******************************************************************************/ /* Purpose: E_CONSTANT returns the value of E. Discussion: "E" was named in honor of Euler, but is known as Napier's constant. Licensing: This code is distributed under the MIT license. Modified: 17 April 2004 Author: John Burkardt Parameters: Output, double E_CONSTANT, the base of the natural logarithm system. */ { double value = 2.71828182845904523536028747135266249775724709369995; return value; } /******************************************************************************/ double empirical_discrete_cdf ( double x, int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_CDF evaluates the Empirical Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, int A, the number of values. 0 < A. Input, double B[A], the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C[A], the values. The values must be distinct and in ascending order. Output, double EMPIRICAL_DISCRETE_CDF, the value of the CDF. */ { double bsum; double cdf; int i; cdf = 0.0; bsum = r8vec_sum ( a, b ); for ( i = 1; i <= a; i++ ) { if ( x < c[i-1] ) { return cdf; } cdf = cdf + b[i-1] / bsum; } return cdf; } /******************************************************************************/ double empirical_discrete_cdf_inv ( double cdf, int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_CDF_INV inverts the Empirical Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, int A, the number of values. 0 < A. Input, double B(A), the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C(A), the values. The values must be distinct and in ascending order. Output, double EMPIRICAL_DISCRETE_CDF_INV, the smallest argument whose CDF is greater than or equal to CDF. */ { double bsum; double cdf2; int i; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } bsum = r8vec_sum ( a, b ); x = c[0]; cdf2 = b[0] / bsum; for ( i = 1; i < a; i++ ) { if ( cdf <= cdf2 ) { return x; } x = c[i]; cdf2 = cdf2 + b[i] / bsum; } return x; } /******************************************************************************/ int empirical_discrete_check ( int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_CHECK checks the parameters of the Empirical Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int A, the number of values. 0 < A. Input, double B[A], the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C[A], the values. The values must be distinct and in ascending order. Output, int EMPIRICAL_DISCRETE_CHECK, is true if the parameters are legal. */ { int i; int j; int positive; if ( a <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " A must be positive.\n" ); fprintf ( stderr, " Input A = %d\n", a ); fprintf ( stderr, " A is the number of weights.\n" ); return 0; } for ( i = 0; i < a; i++ ) { if ( b[i] < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " B[%d] < 0.\n", i ); fprintf ( stderr, " But all B values must be nonnegative.\n" ); return 0; } } positive = 0; for ( i = 0; i < a; i++ ) { if ( 0.0 < b[i] ) { positive = 1; } } if ( !positive ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " All B(*) = 0.\n" ); fprintf ( stderr, " But at least one B values must be nonzero.\n" ); return 0; } for ( i = 0; i < a; i++ ) { for ( j = i+1; j < a; j++ ) { if ( c[i] == c[j] ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " All values C must be unique.\n" ); fprintf ( stderr, " But at least two values are identical.\n" ); return 0; } } } for ( i = 0; i < a-1; i++ ) { if ( c[i+1] < c[i] ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EMPIRICAL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " The values in C must be in ascending order.\n" ); return 0; } } return 1; } /******************************************************************************/ double empirical_discrete_mean ( int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_MEAN returns the mean of the Empirical Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of values. 0 < A. Input, double B(A), the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C(A), the values. The values must be distinct and in ascending order. Output, double EMPIRICAL_DISCRETE_MEAN, the mean of the PDF. */ { int i; double mean; mean = 0.0; for ( i = 0; i < a; i++ ) { mean = mean + b[i] * c[i]; } mean = mean / r8vec_sum ( a, b ); return mean; } /******************************************************************************/ double empirical_discrete_pdf ( double x, int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_PDF evaluates the Empirical Discrete PDF. Discussion: A set of A values C(1:A) are assigned nonnegative weights B(1:A), with at least one B nonzero. The probability of C(I) is the value of B(I) divided by the sum of the weights. The C's must be distinct, and given in ascending order. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, int A, the number of values. 0 < A. Input, double B(A), the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C(A), the values. The values must be distinct and in ascending order. Output, double EMPIRICAL_DISCRETE_PDF, the value of the PDF. */ { int i; double pdf; for ( i = 0; i <= a; i++ ) { if ( x == c[i] ) { pdf = b[i] / r8vec_sum ( a, b ); return pdf; } } pdf = 0.0; return pdf; } /******************************************************************************/ double empirical_discrete_sample ( int a, double b[], double c[], int *seed ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_SAMPLE samples the Empirical Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of values. 0 < A. Input, double B(A), the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C(A), the values. The values must be distinct and in ascending order. Input/output, int *SEED, a seed for the random number generator. Output, double EMPIRICAL_DISCRETE_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = empirical_discrete_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double empirical_discrete_variance ( int a, double b[], double c[] ) /******************************************************************************/ /* Purpose: EMPIRICAL_DISCRETE_VARIANCE returns the variance of the Empirical Discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of values. 0 < A. Input, double B(A), the weights of each value. 0 <= B(1:A) and at least one value is nonzero. Input, double C(A), the values. The values must be distinct and in ascending order. Output, double EMPIRICAL_DISCRETE_VARIANCE, the variance of the PDF. */ { double bsum; int i; double mean; double variance; bsum = r8vec_sum ( a, b ); mean = empirical_discrete_mean ( a, b, c ); variance = 0.0; for ( i = 0; i < a; i++ ) { variance = variance + ( b[i] / bsum ) * pow ( c[i] - mean, 2 ); } return variance; } /******************************************************************************/ double english_letter_cdf ( char c ) /******************************************************************************/ /* Purpose: ENGLISH_LETTER_CDF evaluates the English Letter CDF. Discussion: CDF('c') = 0.12441 Licensing: This code is distributed under the MIT license. Modified: 06 March 2016 Author: John Burkardt Reference: Robert Lewand, Cryptological Mathematics, Mathematics Association of America, 2000, ISBN13: 978-0883857199 Parameters: Input, char C, the letter whose probability is desired. 'a' <= c <= 'z', but case is ignored. Output, double ENGLISH_LETTER_CDF, the probability that a random letter is less than or equal to C. */ { double cdf; static double cdf_vec[27] = { 0.00000, 0.08167, 0.09659, 0.12441, 0.16694, 0.29396, 0.31624, 0.33639, 0.39733, 0.46699, 0.46852, 0.47624, 0.51649, 0.54055, 0.60804, 0.68311, 0.70240, 0.70335, 0.76322, 0.82649, 0.91705, 0.94463, 0.95441, 0.97802, 0.97952, 0.99926, 1.00000 }; int i; if ( 'a' <= c && c <= 'z' ) { i = c - 'a' + 1; cdf = cdf_vec[i]; } else if ( 'A' <= c && c <= 'Z' ) { i = c - 'A' + 1; cdf = cdf_vec[i]; } else { cdf = 0.0; } return cdf; } /******************************************************************************/ char english_letter_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: ENGLISH_LETTER_CDF_INV inverts the English Letter CDF. Licensing: This code is distributed under the MIT license. Modified: 06 March 2016 Author: John Burkardt Reference: Robert Lewand, Cryptological Mathematics, Mathematics Association of America, 2000, ISBN13: 978-0883857199 Parameters: Input, double CDF, a cumulative probability between 0 and 1. Input, char ENGLISH_LETTER_CDF_INV, the corresponding letter. */ { char c; static double cdf_vec[27] = { 0.00000, 0.08167, 0.09659, 0.12441, 0.16694, 0.29396, 0.31624, 0.33639, 0.39733, 0.46699, 0.46852, 0.47624, 0.51649, 0.54055, 0.60804, 0.68311, 0.70240, 0.70335, 0.76322, 0.82649, 0.91705, 0.94463, 0.95441, 0.97802, 0.97952, 0.99926, 1.00000 }; int i; c = ' '; for ( i = 1; i < 27; i++ ) { if ( cdf <= cdf_vec[i] ) { c = 'a' + i - 1; break; } } return c; } /******************************************************************************/ double english_letter_pdf ( char c ) /******************************************************************************/ /* Purpose: ENGLISH_LETTER_PDF evaluates the English Letter PDF. Discussion: PDF('c') = 0.02782 Licensing: This code is distributed under the MIT license. Modified: 06 March 2016 Author: John Burkardt Reference: Robert Lewand, Cryptological Mathematics, Mathematics Association of America, 2000, ISBN13: 978-0883857199 Parameters: Input, char C, the letter whose probability is desired. 'a' <= c <= 'z', but case is ignored. Output, double ENGLISH_LETTER_PDF, the value of the PDF. */ { int i; double pdf; double pdf_vec[26] = { 0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015, 0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758, 0.00978, 0.02361, 0.00150, 0.01974, 0.00074 }; if ( 'a' <= c && c <= 'z' ) { i = c - 'a'; pdf = pdf_vec[i]; } else if ( 'A' <= c && c <= 'Z' ) { i = c - 'A'; pdf = pdf_vec[i]; } else { pdf = 0.0; } return pdf; } /******************************************************************************/ char english_letter_sample ( int *seed ) /******************************************************************************/ /* Purpose: ENGLISH_LETTER_SAMPLE samples the English Letter PDF. Licensing: This code is distributed under the MIT license. Modified: 06 March 2016 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, character C, a sample of the PDF. */ { char c; double cdf; cdf = r8_uniform_01 ( seed ); c = english_letter_cdf_inv ( cdf ); return c; } /******************************************************************************/ double english_sentence_length_cdf ( int x ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_CDF evaluates the English Sentence Length CDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, int X, the sentence length whose CDF is desired. Output, double ENGLISH_SENTENCE_LENGTH_CDF, the value of the CDF. */ { # define SENTENCE_LENGTH_MAX 79 double cdf; int i; double pdf_vec[SENTENCE_LENGTH_MAX] = { 0.00806, 0.01370, 0.01862, 0.02547, 0.03043, 0.03189, 0.03516, 0.03545, 0.03286, 0.03533, 0.03562, 0.03788, 0.03669, 0.03751, 0.03518, 0.03541, 0.03434, 0.03305, 0.03329, 0.03103, 0.02867, 0.02724, 0.02647, 0.02526, 0.02086, 0.02178, 0.02128, 0.01801, 0.01690, 0.01556, 0.01512, 0.01326, 0.01277, 0.01062, 0.01051, 0.00901, 0.00838, 0.00764, 0.00683, 0.00589, 0.00624, 0.00488, 0.00477, 0.00406, 0.00390, 0.00350, 0.00318, 0.00241, 0.00224, 0.00220, 0.00262, 0.00207, 0.00174, 0.00174, 0.00128, 0.00121, 0.00103, 0.00117, 0.00124, 0.00082, 0.00088, 0.00061, 0.00061, 0.00075, 0.00063, 0.00056, 0.00052, 0.00057, 0.00031, 0.00029, 0.00021, 0.00017, 0.00021, 0.00034, 0.00031, 0.00011, 0.00011, 0.00008, 0.00006 }; double pdf_sum = 0.99768; if ( x < 1 ) { cdf = 0.0; } else if ( x < SENTENCE_LENGTH_MAX ) { cdf = 0.0; for ( i = 0; i < x; i++ ) { cdf = cdf + pdf_vec[i]; } cdf = cdf / pdf_sum; } else if ( SENTENCE_LENGTH_MAX <= x ) { cdf = 1.0; } return cdf; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ int english_sentence_length_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_CDF_INV inverts the English Sentence Length CDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, int ENGLISH_SENTENCE_LENGTH_CDF_INV, the corresponding sentence length for which CDF(X-1) < CDF <= CDF(X) */ { # define SENTENCE_LENGTH_MAX 79 double cum; int j; double pdf_vec[SENTENCE_LENGTH_MAX] = { 0.00806, 0.01370, 0.01862, 0.02547, 0.03043, 0.03189, 0.03516, 0.03545, 0.03286, 0.03533, 0.03562, 0.03788, 0.03669, 0.03751, 0.03518, 0.03541, 0.03434, 0.03305, 0.03329, 0.03103, 0.02867, 0.02724, 0.02647, 0.02526, 0.02086, 0.02178, 0.02128, 0.01801, 0.01690, 0.01556, 0.01512, 0.01326, 0.01277, 0.01062, 0.01051, 0.00901, 0.00838, 0.00764, 0.00683, 0.00589, 0.00624, 0.00488, 0.00477, 0.00406, 0.00390, 0.00350, 0.00318, 0.00241, 0.00224, 0.00220, 0.00262, 0.00207, 0.00174, 0.00174, 0.00128, 0.00121, 0.00103, 0.00117, 0.00124, 0.00082, 0.00088, 0.00061, 0.00061, 0.00075, 0.00063, 0.00056, 0.00052, 0.00057, 0.00031, 0.00029, 0.00021, 0.00017, 0.00021, 0.00034, 0.00031, 0.00011, 0.00011, 0.00008, 0.00006 }; double pdf_sum = 0.99768; int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ENGLISH_SENTENCE_LENGTH_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cum = 0.0; for ( j = 0; j < SENTENCE_LENGTH_MAX; j++ ) { cum = cum + pdf_vec[j]; if ( cdf <= cum / pdf_sum ) { x = j + 1; return x; } } x = SENTENCE_LENGTH_MAX; return x; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ double english_sentence_length_mean ( ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_MEAN evaluates the mean of the English Sentence Length PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Output, double ENGLISH_SENTENCE_LENGTH_MEAN, the mean of the PDF. */ { # define SENTENCE_LENGTH_MAX 79 int j; double mean; double pdf_vec[SENTENCE_LENGTH_MAX] = { 0.00806, 0.01370, 0.01862, 0.02547, 0.03043, 0.03189, 0.03516, 0.03545, 0.03286, 0.03533, 0.03562, 0.03788, 0.03669, 0.03751, 0.03518, 0.03541, 0.03434, 0.03305, 0.03329, 0.03103, 0.02867, 0.02724, 0.02647, 0.02526, 0.02086, 0.02178, 0.02128, 0.01801, 0.01690, 0.01556, 0.01512, 0.01326, 0.01277, 0.01062, 0.01051, 0.00901, 0.00838, 0.00764, 0.00683, 0.00589, 0.00624, 0.00488, 0.00477, 0.00406, 0.00390, 0.00350, 0.00318, 0.00241, 0.00224, 0.00220, 0.00262, 0.00207, 0.00174, 0.00174, 0.00128, 0.00121, 0.00103, 0.00117, 0.00124, 0.00082, 0.00088, 0.00061, 0.00061, 0.00075, 0.00063, 0.00056, 0.00052, 0.00057, 0.00031, 0.00029, 0.00021, 0.00017, 0.00021, 0.00034, 0.00031, 0.00011, 0.00011, 0.00008, 0.00006 }; double pdf_sum = 0.99768; mean = 0.0; for ( j = 1; j <= SENTENCE_LENGTH_MAX; j++ ) { mean = mean + ( double ) ( j ) * pdf_vec[j-1]; } mean = mean / pdf_sum; return mean; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ double english_sentence_length_pdf ( int x ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_PDF evaluates the English Sentence Length PDF. Discussion: PDF(A,B;X) = B(X) if 1 <= X <= A = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, int X, the sentence length whose probability is desired. Output, double ENGLISH_SENTENCE_LENGTH_PDF, the value of the PDF. */ { # define SENTENCE_LENGTH_MAX 79 double pdf; double pdf_vec[SENTENCE_LENGTH_MAX] = { 0.00806, 0.01370, 0.01862, 0.02547, 0.03043, 0.03189, 0.03516, 0.03545, 0.03286, 0.03533, 0.03562, 0.03788, 0.03669, 0.03751, 0.03518, 0.03541, 0.03434, 0.03305, 0.03329, 0.03103, 0.02867, 0.02724, 0.02647, 0.02526, 0.02086, 0.02178, 0.02128, 0.01801, 0.01690, 0.01556, 0.01512, 0.01326, 0.01277, 0.01062, 0.01051, 0.00901, 0.00838, 0.00764, 0.00683, 0.00589, 0.00624, 0.00488, 0.00477, 0.00406, 0.00390, 0.00350, 0.00318, 0.00241, 0.00224, 0.00220, 0.00262, 0.00207, 0.00174, 0.00174, 0.00128, 0.00121, 0.00103, 0.00117, 0.00124, 0.00082, 0.00088, 0.00061, 0.00061, 0.00075, 0.00063, 0.00056, 0.00052, 0.00057, 0.00031, 0.00029, 0.00021, 0.00017, 0.00021, 0.00034, 0.00031, 0.00011, 0.00011, 0.00008, 0.00006 }; double pdf_sum = 0.99768; if ( 1 <= x && x <= SENTENCE_LENGTH_MAX ) { pdf = pdf_vec[x-1] / pdf_sum; } else { pdf = 0.0; } return pdf; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ int english_sentence_length_sample ( int *seed ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_SAMPLE samples the English Sentence Length PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input/output, int *SEED, a seed for the random number generator. Output, int ENGLISH_SENTENCE_LENGTH_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = english_sentence_length_cdf_inv ( cdf ); return x; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ double english_sentence_length_variance ( ) /******************************************************************************/ /* Purpose: ENGLISH_SENTENCE_LENGTH_VARIANCE: variance of the English Sentence Length PDF. Licensing: This code is distributed under the MIT license. Modified: 01 August 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Output, double ENGLISH_SENTENCE_LENGTH_VARIANCE, the variance of the PDF. */ { # define SENTENCE_LENGTH_MAX 79 int j; double mean; double pdf_vec[SENTENCE_LENGTH_MAX] = { 0.00806, 0.01370, 0.01862, 0.02547, 0.03043, 0.03189, 0.03516, 0.03545, 0.03286, 0.03533, 0.03562, 0.03788, 0.03669, 0.03751, 0.03518, 0.03541, 0.03434, 0.03305, 0.03329, 0.03103, 0.02867, 0.02724, 0.02647, 0.02526, 0.02086, 0.02178, 0.02128, 0.01801, 0.01690, 0.01556, 0.01512, 0.01326, 0.01277, 0.01062, 0.01051, 0.00901, 0.00838, 0.00764, 0.00683, 0.00589, 0.00624, 0.00488, 0.00477, 0.00406, 0.00390, 0.00350, 0.00318, 0.00241, 0.00224, 0.00220, 0.00262, 0.00207, 0.00174, 0.00174, 0.00128, 0.00121, 0.00103, 0.00117, 0.00124, 0.00082, 0.00088, 0.00061, 0.00061, 0.00075, 0.00063, 0.00056, 0.00052, 0.00057, 0.00031, 0.00029, 0.00021, 0.00017, 0.00021, 0.00034, 0.00031, 0.00011, 0.00011, 0.00008, 0.00006 }; double pdf_sum = 0.99768; double variance; mean = 0.0; for ( j = 1; j <= SENTENCE_LENGTH_MAX; j++ ) { mean = mean + ( double ) ( j ) * pdf_vec[j-1]; } mean = mean / pdf_sum; variance = 0.0; for ( j = 1; j <= SENTENCE_LENGTH_MAX; j++ ) { variance = variance + pdf_vec[j-1] * pow ( ( double ) j - mean, 2 ); } variance = variance / pdf_sum; return variance; # undef SENTENCE_LENGTH_MAX } /******************************************************************************/ double english_word_length_cdf ( int x ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_CDF evaluates the English Word Length CDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, int X, the word length whose CDF is desired. Output, double ENGLISH_WORD_LENGTH_CDF, the value of the CDF. */ { # define WORD_LENGTH_MAX 27 double cdf; int i; double pdf_vec[WORD_LENGTH_MAX] = { 0.03160, 0.16975, 0.21192, 0.15678, 0.10852, 0.08524, 0.07724, 0.05623, 0.04032, 0.02766, 0.01582, 0.00917, 0.00483, 0.00262, 0.00099, 0.00050, 0.00027, 0.00022, 0.00011, 0.00006, 0.00005, 0.00002, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 }; double pdf_sum = 0.99997; if ( x < 1 ) { cdf = 0.0; } else if ( x < WORD_LENGTH_MAX ) { cdf = 0.0; for ( i = 0; i < x; i++ ) { cdf = cdf + pdf_vec[i]; } cdf = cdf / pdf_sum; } else if ( WORD_LENGTH_MAX <= x ) { cdf = 1.0; } return cdf; # undef WORD_LENGTH_MAX } /******************************************************************************/ int english_word_length_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_CDF_INV inverts the English Word Length CDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, int ENGLISH_WORD_LENGTH_CDF_INV, the corresponding word length for which CDF(X-1) < CDF <= CDF(X) */ { # define WORD_LENGTH_MAX 27 double cum; int j; double pdf_vec[WORD_LENGTH_MAX] = { 0.03160, 0.16975, 0.21192, 0.15678, 0.10852, 0.08524, 0.07724, 0.05623, 0.04032, 0.02766, 0.01582, 0.00917, 0.00483, 0.00262, 0.00099, 0.00050, 0.00027, 0.00022, 0.00011, 0.00006, 0.00005, 0.00002, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 }; double pdf_sum = 0.99997; int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ENGLISH_WORD_LENGTH_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cum = 0.0; for ( j = 0; j < WORD_LENGTH_MAX; j++ ) { cum = cum + pdf_vec[j]; if ( cdf <= cum / pdf_sum ) { x = j + 1; return x; } } x = WORD_LENGTH_MAX; return x; # undef WORD_LENGTH_MAX } /******************************************************************************/ double english_word_length_mean ( ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_MEAN evaluates the mean of the English Word Length PDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Output, double ENGLISH_WORD_LENGTH_MEAN, the mean of the PDF. */ { # define WORD_LENGTH_MAX 27 int j; double mean; double pdf_vec[WORD_LENGTH_MAX] = { 0.03160, 0.16975, 0.21192, 0.15678, 0.10852, 0.08524, 0.07724, 0.05623, 0.04032, 0.02766, 0.01582, 0.00917, 0.00483, 0.00262, 0.00099, 0.00050, 0.00027, 0.00022, 0.00011, 0.00006, 0.00005, 0.00002, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 }; double pdf_sum = 0.99997; mean = 0.0; for ( j = 1; j <= WORD_LENGTH_MAX; j++ ) { mean = mean + ( double ) ( j ) * pdf_vec[j-1]; } mean = mean / pdf_sum; return mean; # undef WORD_LENGTH_MAX } /******************************************************************************/ double english_word_length_pdf ( int x ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_PDF evaluates the English Word Length PDF. Discussion: PDF(A,B;X) = B(X) if 1 <= X <= A = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input, int X, the word length whose probability is desired. Output, double ENGLISH_WORD_LENGTH_PDF, the value of the PDF. */ { # define WORD_LENGTH_MAX 27 double pdf; double pdf_vec[WORD_LENGTH_MAX] = { 0.03160, 0.16975, 0.21192, 0.15678, 0.10852, 0.08524, 0.07724, 0.05623, 0.04032, 0.02766, 0.01582, 0.00917, 0.00483, 0.00262, 0.00099, 0.00050, 0.00027, 0.00022, 0.00011, 0.00006, 0.00005, 0.00002, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 }; double pdf_sum = 0.99997; if ( 1 <= x && x <= WORD_LENGTH_MAX ) { pdf = pdf_vec[x-1] / pdf_sum; } else { pdf = 0.0; } return pdf; # undef WORD_LENGTH_MAX } /******************************************************************************/ int english_word_length_sample ( int *seed ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_SAMPLE samples the English Word Length PDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Input/output, int *SEED, a seed for the random number generator. Output, int ENGLISH_WORD_LENGTH_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = english_word_length_cdf_inv ( cdf ); return x; # undef WORD_LENGTH_MAX } /******************************************************************************/ double english_word_length_variance ( ) /******************************************************************************/ /* Purpose: ENGLISH_WORD_LENGTH_VARIANCE: variance of the English Word Length PDF. Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Henry Kucera, Winthrop Francis, Computational Analysis of Present-Day American English, Brown University Press, 1967. Parameters: Output, double ENGLISH_WORD_LENGTH_VARIANCE, the variance of the PDF. */ { # define WORD_LENGTH_MAX 27 int j; double mean; double pdf_vec[WORD_LENGTH_MAX] = { 0.03160, 0.16975, 0.21192, 0.15678, 0.10852, 0.08524, 0.07724, 0.05623, 0.04032, 0.02766, 0.01582, 0.00917, 0.00483, 0.00262, 0.00099, 0.00050, 0.00027, 0.00022, 0.00011, 0.00006, 0.00005, 0.00002, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 }; double pdf_sum = 0.99997; double variance; mean = 0.0; for ( j = 1; j <= WORD_LENGTH_MAX; j++ ) { mean = mean + ( double ) ( j ) * pdf_vec[j-1]; } mean = mean / pdf_sum; variance = 0.0; for ( j = 1; j <= WORD_LENGTH_MAX; j++ ) { variance = variance + pdf_vec[j-1] * pow ( ( double ) j - mean, 2 ); } variance = variance / pdf_sum; return variance; # undef WORD_LENGTH_MAX } /******************************************************************************/ double erlang_cdf ( double x, double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_CDF evaluates the Erlang CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, double ERLANG_CDF, the value of the CDF. */ { double cdf; double p2; double x2; if ( x < a ) { cdf = 0.0; } else { x2 = ( x - a ) / b; p2 = ( double ) ( c ); cdf = r8_gamma_inc ( p2, x2 ); } return cdf; } /******************************************************************************/ double erlang_cdf_inv ( double cdf, double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_CDF_INV inverts the Erlang CDF. Discussion: A simple bisection method is used. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, double ERLANG_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x = 0.0; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ERLANG_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = a; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } x1 = a; cdf1 = 0.0; x2 = a + 1.0; for ( ; ; ) { cdf2 = erlang_cdf ( x2, a, b, c ); if ( cdf < cdf2 ) { break; } x2 = a + 2.0 * ( x2 - a ); } /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = erlang_cdf ( x3, a, b, c ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ERLANG_CDF_INV(): Warning!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); return x; } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int erlang_check ( double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_CHECK checks the parameters of the Erlang PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, int ERLANG_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ERLANG_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } if ( c <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ERLANG_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double erlang_mean ( double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_MEAN returns the mean of the Erlang PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, double ERLANG_MEAN, the mean of the PDF. */ { double mean; mean = a + b * ( double ) ( c ); return mean; } /******************************************************************************/ double erlang_pdf ( double x, double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_PDF evaluates the Erlang PDF. Discussion: PDF(A,B,C;X) = ( ( X - A ) / B )^( C - 1 ) / ( B * Gamma ( C ) * EXP ( ( X - A ) / B ) ) for 0 < B, 0 < C integer, A <= X. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, double ERLANG_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = pow ( y, c - 1 ) / ( b * r8_factorial ( c - 1 ) * exp ( y ) ); } return pdf; } /******************************************************************************/ double erlang_sample ( double a, double b, int c, int *seed ) /******************************************************************************/ /* Purpose: ERLANG_SAMPLE samples the Erlang PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double ERLANG_SAMPLE, a sample of the PDF. */ { double a2; double b2; int i; double x; double x2; a2 = 0.0; b2 = b; x = a; for ( i = 1; i <= c; i++ ) { x2 = exponential_sample ( a2, b2, seed ); x = x + x2; } return x; } /******************************************************************************/ double erlang_variance ( double a, double b, int c ) /******************************************************************************/ /* Purpose: ERLANG_VARIANCE returns the variance of the Erlang PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, int C, the parameters of the PDF. 0.0 < B. 0 < C. Output, double ERLANG_VARIANCE, the variance of the PDF. */ { double variance; variance = b * b * ( double ) ( c ); return variance; } /******************************************************************************/ double euler_constant ( ) /******************************************************************************/ /* Purpose: EULER_CONSTANT returns the value of the Euler-Mascheroni constant. Discussion: The Euler-Mascheroni constant is often denoted by a lower-case Gamma. Gamma is defined as Gamma = limit ( M -> Infinity ) ( Sum ( 1 <= N <= M ) 1 / N ) - Log ( M ) Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Output, double EULER_CONSTANT, the value of the Euler-Mascheroni constant. */ { double value = 0.577215664901532860606512090082402431042; return value; } /******************************************************************************/ double exponential_01_cdf ( double x ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_CDF evaluates the Exponential 01 CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Output, double EXPONENTIAL_01_CDF, the value of the CDF. */ { double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else { cdf = 1.0 - exp ( - x ); } return cdf; } /******************************************************************************/ double exponential_01_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_CDF_INV inverts the Exponential 01 CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double EXPONENTIAL_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EXPONENTIAL_01_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = - log ( 1.0 - cdf ); return x; } /******************************************************************************/ double exponential_01_mean ( ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_MEAN returns the mean of the Exponential 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Output, double EXPONENTIAL_MEAN, the mean of the PDF. */ { double mean; mean = 1.0; return mean; } /******************************************************************************/ double exponential_01_pdf ( double x ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_PDF evaluates the Exponential 01 PDF. Discussion: PDF(X) = EXP ( - X ) Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Output, double PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 ) { pdf = 0.0; } else { pdf = exp ( - x ); } return pdf; } /******************************************************************************/ double exponential_01_sample ( int *seed ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_SAMPLE samples the Exponential PDF with parameter 1. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double EXPONENTIAL_01_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = - log ( 1.0 - cdf ); return x; } /******************************************************************************/ double exponential_01_variance ( ) /******************************************************************************/ /* Purpose: EXPONENTIAL_01_VARIANCE returns the variance of the Exponential 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = 1.0; return variance; } /******************************************************************************/ double exponential_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_CDF evaluates the Exponential CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameter of the PDF. 0.0 < B. Output, double EXPONENTIAL_CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else { cdf = 1.0 - exp ( ( a - x ) / b ); } return cdf; } /******************************************************************************/ double exponential_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_CDF_INV inverts the Exponential CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXPONENTIAL_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EXPONENTIAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a - b * log ( 1.0 - cdf ); return x; } /******************************************************************************/ void exponential_cdf_values ( int *n_data, double *lambda, double *x, double *fx ) /******************************************************************************/ /* Purpose: EXPONENTIAL_CDF_VALUES returns some values of the Exponential CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = ExponentialDistribution [ lambda ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 29 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *LAMBDA, the parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 9 double fx_vec[N_MAX] = { 0.3934693402873666, 0.6321205588285577, 0.7768698398515702, 0.8646647167633873, 0.8646647167633873, 0.9816843611112658, 0.9975212478233336, 0.9996645373720975, 0.9999546000702375 }; double lambda_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *lambda = 0.0; *x = 0.0; *fx = 0.0; } else { *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int exponential_check ( double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_CHECK checks the parameters of the Exponential CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameter of the PDF. 0.0 < B. Output, int EXPONENTIAL_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EXPONENTIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } return 1; } /******************************************************************************/ double exponential_mean ( double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_MEAN returns the mean of the Exponential PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXPONENTIAL_MEAN, the mean of the PDF. */ { double mean; mean = a + b; return mean; } /******************************************************************************/ double exponential_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_PDF evaluates the Exponential PDF. Discussion: PDF(A,B;X) = ( 1 / B ) * EXP ( ( A - X ) / B ) The time interval between two Poisson events is a random variable with the Exponential PDF. The parameter B is the average interval between events. In another context, the Exponential PDF is related to the Boltzmann distribution, which describes the relative probability of finding a system, which is in thermal equilibrium at absolute temperature T, in a given state having energy E. The relative probability is Boltzmann_Relative_Probability(E,T) = exp ( - E / ( k * T ) ), where k is the Boltzmann constant, k = 1.38 * 10**(-23) joules / degree Kelvin and normalization requires a determination of the possible energy states of the system. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXPONENTIAL_PDF, the value of the PDF. */ { double pdf; if ( x < a ) { pdf = 0.0; } else { pdf = ( 1.0 / b ) * exp ( ( a - x ) / b ); } return pdf; } /******************************************************************************/ double exponential_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: EXPONENTIAL_SAMPLE samples the Exponential PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double EXPONENTIAL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = exponential_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double exponential_variance ( double a, double b ) /******************************************************************************/ /* Purpose: EXPONENTIAL_VARIANCE returns the variance of the Exponential PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXPONENTIAL_VARIANCE, the variance of the PDF. */ { double variance; variance = b * b; return variance; } /******************************************************************************/ double extreme_values_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_CDF evaluates the Extreme Values CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXTREME_VALUES_CDF, the value of the CDF. */ { double cdf; double y; y = ( x - a ) / b; cdf = exp ( - exp ( - y ) ); return cdf; } /******************************************************************************/ double extreme_values_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_CDF_INV inverts the Extreme Values CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXTREME_VALUES_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EXTREME_VALUES_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a - b * log ( - log ( cdf ) ); return x; } /******************************************************************************/ void extreme_values_cdf_values ( int *n_data, double *alpha, double *beta, double *x, double *fx ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_CDF_VALUES returns some values of the Extreme Values CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = ExtremeValuesDistribution [ alpha, beta ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 05 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *ALPHA, the first parameter of the distribution. Output, double *BETA, the second parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double alpha_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double beta_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double fx_vec[N_MAX] = { 0.3678794411714423, 0.8734230184931166, 0.9818510730616665, 0.9975243173927525, 0.5452392118926051, 0.4884435800065159, 0.4589560693076638, 0.4409910259429826, 0.5452392118926051, 0.3678794411714423, 0.1922956455479649, 0.6598803584531254E-01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *alpha = 0.0; *beta = 0.0; *x = 0.0; *fx = 0.0; } else { *alpha = alpha_vec[*n_data-1]; *beta = beta_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int extreme_values_check ( double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_CHECK checks the parameters of the Extreme Values CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int EXTREME_VALUES_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "EXTREME_VALUES_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double extreme_values_mean ( double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_MEAN returns the mean of the Extreme Values PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXTREME_VALUES_MEAN, the mean of the PDF. */ { double mean; mean = a + b * euler_constant ( ); return mean; } /******************************************************************************/ double extreme_values_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_PDF evaluates the Extreme Values PDF. Discussion: PDF(A,B;X) = ( 1 / B ) * exp ( ( A - X ) / B - exp ( ( A - X ) / B ) ). The Extreme Values PDF is also known as the Fisher-Tippet PDF and the Log-Weibull PDF. The special case A = 0 and B = 1 is the Gumbel PDF. The Extreme Values PDF is the limiting distribution for the smallest or largest value in a large sample drawn from any of a great variety of distributions. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Reference: Eric Weisstein, editor, CRC Concise Encylopedia of Mathematics, CRC Press, 1998. Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXTREME_VALUES_PDF, the value of the PDF. */ { double pdf; pdf = ( 1.0 / b ) * exp ( ( a - x ) / b - exp ( ( a - x ) / b ) ); return pdf; } /******************************************************************************/ double extreme_values_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_SAMPLE samples the Extreme Values PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double EXTREME_VALUES_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = extreme_values_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double extreme_values_variance ( double a, double b ) /******************************************************************************/ /* Purpose: EXTREME_VALUES_VARIANCE returns the variance of the Extreme Values PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double EXTREME_VALUES_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = r8_pi * r8_pi * b * b / 6.0; return variance; } /******************************************************************************/ double f_cdf ( double x, int m, int n ) /******************************************************************************/ /* Purpose: F_CDF evaluates the F central CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Parameters: Input, double X, the argument of the CDF. Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Output, double F_CDF, the value of the CDF. */ { double arg1; double arg2; double arg3; double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else { arg1 = 0.5 * ( double ) ( n ); arg2 = 0.5 * ( double ) ( m ); arg3 = ( double ) ( n ) / ( ( double ) ( n ) + ( double ) ( m ) * x ); cdf = 1.0 - beta_inc ( arg1, arg2, arg3 ); } return cdf; } /******************************************************************************/ void f_cdf_values ( int *n_data, int *a, int *b, double *x, double *fx ) /******************************************************************************/ /* Purpose: F_CDF_VALUES returns some values of the F CDF test function. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = FRatioDistribution [ dfn, dfd ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 11 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *A, int B, the parameters of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 20 int a_vec[N_MAX] = { 1, 1, 5, 1, 2, 4, 1, 6, 8, 1, 3, 6, 1, 1, 1, 1, 2, 3, 4, 5 }; int b_vec[N_MAX] = { 1, 5, 1, 5, 10, 20, 5, 6, 16, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5 }; double fx_vec[N_MAX] = { 0.5000000000000000, 0.4999714850534485, 0.4996034370170990, 0.7496993658293228, 0.7504656462757382, 0.7514156325324275, 0.8999867031372156, 0.8997127554259699, 0.9002845660853669, 0.9500248817817622, 0.9500574946122442, 0.9501926400000000, 0.9750133887312993, 0.9900022327445249, 0.9949977837872073, 0.9989999621122122, 0.5687988496283079, 0.5351452100063650, 0.5143428032407864, 0.5000000000000000 }; double x_vec[N_MAX] = { 1.00, 0.528, 1.89, 1.69, 1.60, 1.47, 4.06, 3.05, 2.09, 6.61, 3.71, 3.00, 10.01, 16.26, 22.78, 47.18, 1.00, 1.00, 1.00, 1.00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *b = 0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int f_check ( int m, int n ) /******************************************************************************/ /* Purpose: F_CHECK checks the parameters of the F PDF. Licensing: This code is distributed under the MIT license. Modified: 25 October 2004 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Output, int F_CHECK, is true if the parameters are legal. */ { if ( m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_CHECK(): Warning!\n" ); fprintf ( stderr, " M <= 0.\n" ); return 0; } if ( n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_CHECK(): Warning!\n" ); fprintf ( stderr, " N <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double f_mean ( int m, int n ) /******************************************************************************/ /* Purpose: F_MEAN returns the mean of the F central PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Note, however, that the mean is not defined unless 3 <= N. Output, double F_MEAN, the mean of the PDF. */ { double mean; if ( n < 3 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_MEAN - Fatal error!\n" ); fprintf ( stderr, " The mean is not defined for N < 3.\n" ); exit ( 1 ); } mean = ( double ) ( n ) / ( double ) ( n - 2 ); return mean; } /******************************************************************************/ double f_pdf ( double x, int m, int n ) /******************************************************************************/ /* Purpose: F_PDF evaluates the F central PDF. Discussion: PDF(M,N;X) = M^(M/2) * X^((M-2)/2) / ( Beta(M/2,N/2) * N^(M/2) * ( 1 + (M/N) * X )^((M+N)/2) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Output, double F_PDF, the value of the PDF. */ { double a; double b; double bot1; double bot2; double pdf; double top; if ( x < 0.0 ) { pdf = 0.0; } else { a = ( double ) ( m ); b = ( double ) ( n ); top = sqrt ( pow ( a, m ) * pow ( b, n ) * pow ( x, m - 2 ) ); bot1 = r8_beta ( a / 2.0, b / 2.0 ) ; bot2 = sqrt ( pow ( b + a * x, m + n ) ); pdf = top / ( bot1 * bot2 ); } return pdf; } /******************************************************************************/ double f_sample ( int m, int n, int *seed ) /******************************************************************************/ /* Purpose: F_SAMPLE samples the F central PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Input/output, int *SEED, a seed for the random number generator. Output, double F_SAMPLE, a sample of the PDF. */ { double a; double x; double xm; double xn; a = ( double ) ( m ); xm = chi_square_sample ( a, seed ); a = ( double ) ( n ); xn = chi_square_sample ( a, seed ); x = ( double ) ( n ) * xm / ( ( double ) ( m ) * xn ); return x; } /******************************************************************************/ double f_variance ( int m, int n ) /******************************************************************************/ /* Purpose: F_VARIANCE returns the variance of the F central PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Note, however, that the variance is not defined unless 5 <= N. Output, double F_VARIANCE, the variance of the PDF. */ { double variance; if ( n < 5 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " The variance is not defined for N < 5.\n" ); exit ( 1 ); } variance = ( double ) ( 2 * n * n * ( m + n - 2 ) ) / ( double ) ( m * ( n - 2 ) * ( n - 2 ) * ( n - 4 ) ); return variance; } /******************************************************************************/ void f_noncentral_cdf_values ( int *n_data, int *n1, int *n2, double *lambda, double *x, double *fx ) /******************************************************************************/ /* Purpose: F_NONCENTRAL_CDF_VALUES returns some values of the F CDF test function. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NoncentralFRatioDistribution [ n1, n2, lambda ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 30 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *N1, int *N2, the numerator and denominator degrees of freedom. Output, double *LAMBDA, the noncentrality parameter. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 22 double fx_vec[N_MAX] = { 0.5000000000000000, 0.6367825323508774, 0.5840916116305482, 0.3234431872392788, 0.4501187879813550, 0.6078881441188312, 0.7059275551414605, 0.7721782003263727, 0.8191049017635072, 0.3170348430749965, 0.4327218008454471, 0.4502696915707327, 0.4261881186594096, 0.6753687206341544, 0.4229108778879005, 0.6927667261228938, 0.3632174676491226, 0.4210054012695865, 0.4266672258818927, 0.4464016600524644, 0.8445888579504827, 0.4339300273343604 }; double lambda_vec[N_MAX] = { 0.00, 0.00, 0.25, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 1.00, 1.00, 1.00, 2.00, 1.00, 1.00, 0.00, 1.00, 1.00, 1.00, 1.00, 1.00 }; int n1_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 16 }; int n2_vec[N_MAX] = { 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 5, 5, 5, 5, 1, 5, 6, 12, 16, 8 }; double x_vec[N_MAX] = { 1.00, 1.00, 1.00, 0.50, 1.00, 2.00, 3.00, 4.00, 5.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 1.00, 1.00, 1.00, 1.00, 2.00, 2.00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *n1 = 0; *n2 = 0; *lambda = 0.0; *x = 0.0; *fx = 0.0; } else { *n1 = n1_vec[*n_data-1]; *n2 = n2_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int f_noncentral_check ( double a, int m, int n ) /******************************************************************************/ /* Purpose: F_NONCENTRAL_CHECK checks the parameters of the F noncentral PDF. Licensing: This code is distributed under the MIT license. Modified: 30 October 2004 Author: John Burkardt Parameters: Input, double A, a parameter of the PDF. Input, int M, N, the parameters of the PDF. 1 <= M, 1 <= N. Output, int F_NONCENTRAL_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_NONCENTRAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); exit ( 1 ); } if ( m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_NONCENTRAL_CHECK(): Warning!\n" ); fprintf ( stderr, " M <= 0.\n" ); return 0; } if ( n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_NONCENTRAL_CHECK(): Warning!\n" ); fprintf ( stderr, " N <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double f_noncentral_mean ( double a, int m, int n ) /******************************************************************************/ /* Purpose: F_NONCENTRAL_MEAN returns the mean of the F noncentral PDF. Licensing: This code is distributed under the MIT license. Modified: 26 February 1999 Author: John Burkardt Parameters: Input, double A, a parameter of the PDF. Input, int M, N, parameters of the PDF. 1 <= M, 1 <= N. Note, however, that the mean is not defined unless 3 <= N. Output, double F_NONCENTRAL_MEAN, the mean of the PDF. */ { double mean; if ( n < 3 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_NONCENTRAL_MEAN - Fatal error!\n" ); fprintf ( stderr, " The mean is not defined for N < 3.\n" ); exit ( 1 ); } mean = ( ( double ) ( m ) + a ) * ( double ) ( n ) / ( ( double ) ( m ) * ( double ) ( n - 2 ) ); return mean; } /******************************************************************************/ double f_noncentral_variance ( double a, int m, int n ) /******************************************************************************/ /* Purpose: F_NONCENTRAL_VARIANCE returns the variance of the F noncentral PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, a parameter of the PDF. Input, int M, N, parameters of the PDF. 1 <= M, 1 <= N. Note, however, that the variance is not defined unless 5 <= N. Output, double F_NONCENTRAL_VARIANCE, the variance of the PDF. */ { double mr; double nr; double variance; if ( n < 5 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "F_NONCENTRAL_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " The variance is not defined for N < 5.\n" ); exit ( 1 ); } mr = ( double ) ( m ); nr = ( double ) ( n ); variance = ( ( mr + a ) * ( mr + a ) + 2.0 * ( mr + a ) * nr * nr ) / ( ( nr - 2.0 ) * ( nr - 4.0 ) * mr * mr ) - ( mr + a ) * ( mr + a ) * nr * nr / ( ( nr - 2.0 ) * ( nr - 2.0 ) * mr * mr ); return variance; } /******************************************************************************/ double fermi_dirac_sample ( double u, double v, int *seed ) /******************************************************************************/ /* Purpose: FERMI_DIRAC_SAMPLE samples a (continuous) Fermi-Dirac distribution. Licensing: This code is distributed under the MIT license. Modified: 08 April 2016 Author: Original BASIC version by Frederick Ruckdeschel. This version by John Burkardt Reference: Frederick Ruckdeschel, BASIC Scientific Subroutines, Volume I, McGraw Hill, 1980, ISBN: 0-07-054201-5, LC: QA76.95.R82. Parameters: Input, double U, V, the parameters of the distribution. The value of U represents the halfway point for the distribution. Half the probability is to the left, and half to the right, of the value U. The value of V controls the shape of the distribution. The ratio U/V determines the relative shape of the distribution. Values of U/V in excess of 100 will risk overflow. Input/output, int *SEED, a seed for the random number generator. Output, double FERMI_DIRAC_SAMPLE, a sample from the Fermi-Dirac distribution. Output values will be nonnegative, and roughly half of them should be less than or equal to U. */ { double a; double b; int iter_max = 1000; int iter_num; double x; double y; double y1; double z; x = r8_uniform_01 ( seed ); y = 1.0; a = exp ( 4.0 * u / v ); b = ( x - 1.0 ) * log ( 1.0 + a ); iter_num = 0; for ( ; ; ) { y1 = b + log ( a + exp ( y ) ); if ( fabs ( y - y1 ) < 0.001 ) { break; } y = y1; iter_num = iter_num + 1; if ( iter_max < iter_num ) { break; } } z = v * y1 / 4.0; return z; } /******************************************************************************/ double fisher_pdf ( double x[3], double kappa, double mu[3] ) /******************************************************************************/ /* Purpose: FISHER_PDF evaluates the Fisher PDF. Discussion: The formula for the PDF is: PDF(KAPPA,MU;X) = C(KAPPA) * exp ( KAPPA * MU' * X ) where: 0 <= KAPPA is the concentration parameter, MU is a point on the unit sphere, the mean direction, X is any point on the unit sphere, and C(KAPPA) is a normalization factor: C(KAPPA) = sqrt ( KAPPA ) / ( ( 2 * pi )^(3/2) * I(0.5,KAPPA) ) where I(nu,X) is the Bessel function of order NU and argument X. For a fixed value of MU, the value of KAPPA determines the tendency of sample points to tend to be near MU. In particular, KAPPA = 0 corresponds to a uniform distribution of points on the sphere, but as KAPPA increases, the sample points will tend to cluster more closely to MU. The Fisher distribution for points on the unit sphere is analogous to the normal distribution of points on a line, and, more precisely, to the von Mises distribution on a circle. Licensing: This code is distributed under the MIT license. Modified: 01 March 2007 Author: John Burkardt Reference: Kanti Mardia, Peter Jupp, Directional Statistics, Wiley, 2000, LC: QA276.M335 Parameters: Input, double X[3], the argument of the PDF. X should have unit Euclidean norm, but this routine will automatically work with a normalized version of X. Input, double KAPPA, the concentration parameter. 0 <= KAPPA is required. Input, double MU[3], the mean direction. MU should have unit Euclidean norm, but this routine will automatically work with a normalized version of MU. Output, double FISHER_PDF, the value of the PDF. */ { # define NB 1 double alpha; double arg; double b[NB]; double cf; int ize; double mu_norm; double pdf; const double r8_pi = 3.141592653589793; double x_norm; if ( kappa < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISHER_PDF - Fatal error!\n" ); fprintf ( stderr, " KAPPA must be nonnegative.\n" ); fprintf ( stderr, " Input KAPPA = %g\n", kappa ); exit ( 1 ); } if ( kappa == 0.0 ) { pdf = 1.0 / ( 4.0 * r8_pi ); return pdf; } alpha = 0.5; ize = 1; ribesl ( kappa, alpha, NB, ize, b ); cf = sqrt ( kappa ) / ( sqrt ( pow ( 2.0 * r8_pi, 3 ) ) * b[0] ); mu_norm = r8vec_length ( 3, mu ); if ( mu_norm == 0.0 ) { pdf = cf; return pdf; } x_norm = r8vec_length ( 3, x ); if ( x_norm == 0.0 ) { pdf = cf; return pdf; } arg = kappa * r8vec_dot ( 3, x, mu ) / ( x_norm * mu_norm ); pdf = cf * exp ( arg ); return pdf; # undef NB } /******************************************************************************/ double *fisher_sample ( double kappa, double mu[], int n, int *seed ) /******************************************************************************/ /* Purpose: FISHER_SAMPLE samples the Fisher distribution. Licensing: This code is distributed under the MIT license. Modified: 06 March 2007 Author: John Burkardt Reference: Nicholas Fisher, Toby Lewis, Brian Embleton, Statistical Analysis of Spherical Data, Cambridge, 2003, ISBN13: 978-0521456999, LC: QA276.F489. Parameters: Input, double KAPPA, the concentration parameter. Input, double MU[3], the mean direction. MU should have unit Euclidean norm, but this routine will automatically work with a normalized version of MU. Input, int N, the number of samples to choose. Input/output, int *SEED, a seed for the random number generator. Output, double FISHER_SAMPLE[3*N], a sample of the Fisher distribution. Local Parameters: Local, double ALPHA, BETA, the colatitude (theta) and longitude (phi) of the mean direction. */ { double a[3*3]; double alpha; double beta; int i; int j; int k; double lambda; double mu_norm; double *phi; const double r8_pi = 3.141592653589793; double rst[3]; double *theta; double *xyz; mu_norm = r8vec_length ( 3, mu ); if ( mu_norm == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISHER_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " MU = 0.\n" ); exit ( 1 ); } alpha = - acos ( mu[2] / mu_norm ); beta = atan2 ( mu[1], mu[0] ); lambda = exp ( - 2.0 * kappa ); theta = r8vec_uniform_01_new ( n, seed ); for ( k = 0; k < n; k++ ) { if ( kappa == 0.0 ) { theta[k] = 2.0 * asin ( sqrt ( 1.0 - theta[k] ) ); } else { theta[k] = 2.0 * asin ( sqrt ( - log ( theta[k] * ( 1.0 - lambda ) + lambda ) / ( 2.0 * kappa ) ) ); } } phi = r8vec_uniform_01_new ( n, seed ); for ( k = 0; k < n; k++ ) { phi[k] = 2.0 * r8_pi * phi[k]; } /* Compute the rotation matrix. */ a[0+0*3] = cos ( alpha ) * cos ( beta ); a[1+0*3] = - sin ( beta ); a[2+0*3] = sin ( alpha ) * cos ( beta ); a[0+1*3] = cos ( alpha ) * sin ( beta ); a[1+1*3] = + cos ( beta ); a[2+1*3] = sin ( alpha ) * sin ( beta ); a[0+2*3] = - sin ( alpha ); a[1+2*3] = 0.0; a[2+2*3] = cos ( alpha ); /* Compute the unrotated points. */ xyz = ( double * ) malloc ( 3 * n * sizeof ( double ) ); for ( k = 0; k < n; k++ ) { rst[0] = sin ( theta[k] ) * cos ( phi[k] ); rst[1] = sin ( theta[k] ) * sin ( phi[k] ); rst[2] = cos ( theta[k] ); /* Rotate the points. */ for ( i = 0; i < 3; i++ ) { xyz[i+k*3] = 0.0; for ( j = 0; j < 3; j++ ) { xyz[i+k*3] = xyz[i+k*3] + a[i+j*3] * rst[j]; } } } free ( theta ); free ( phi ); return xyz; } /******************************************************************************/ double fisk_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_CDF evaluates the Fisk CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double FISK_CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else { cdf = 1.0 / ( 1.0 + pow ( ( b / ( x - a ) ), c ) ); } return cdf; } /******************************************************************************/ double fisk_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_CDF_INV inverts the Fisk CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double FISK_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISK_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf <= 0.0 ) { x = a; } else if ( cdf < 1.0 ) { x = a + b * pow ( cdf / ( 1.0 - cdf ), 1.0 / c ); } else if ( 1.0 <= cdf ) { x = HUGE_VAL; } return x; } /******************************************************************************/ int fisk_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_CHECK checks the parameters of the Fisk PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, int FISK_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISK_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISK_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double fisk_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_MEAN returns the mean of the Fisk PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double FISK_MEAN, the mean of the PDF. */ { double mean; const double r8_pi = 3.14159265358979323; if ( c <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISK_MEAN - Fatal error!\n" ); fprintf ( stderr, " No mean defined for C <= 1.0\n" ); exit ( 1 ); } mean = a + r8_pi * ( b / c ) * r8_csc ( r8_pi / c ); return mean; } /******************************************************************************/ double fisk_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_PDF evaluates the Fisk PDF. Discussion: PDF(A,B,C;X) = ( C / B ) * ( ( X - A ) / B )^( C - 1 ) / ( 1 + ( ( X - A ) / B )^C )^2 The Fisk PDF is also known as the Log Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double FISK_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = ( c / b ) * pow ( y, ( c - 1.0 ) ) / pow ( ( 1.0 + pow ( y, c ) ), 2 ); } return pdf; } /******************************************************************************/ double fisk_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: FISK_SAMPLE samples the Fisk PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double FISK_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = fisk_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double fisk_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: FISK_VARIANCE returns the variance of the Fisk PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double FISK_VARIANCE, the variance of the PDF. */ { double g; const double r8_pi = 3.14159265358979323; double variance; if ( c <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FISK_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " No variance defined for C <= 2.0\n" ); exit ( 1 ); } g = r8_pi / c; variance = b * b * ( 2.0 * g * r8_csc ( 2.0 * g ) - pow ( ( g * r8_csc ( g ) ), 2 ) ); return variance; } /******************************************************************************/ double folded_normal_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_CDF evaluates the Folded Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. 0.0 <= X. Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, double FOLDED_NORMAL_CDF, the value of the CDF. */ { double cdf; double cdf1; double cdf2; double x1; double x2; if ( x < 0.0 ) { cdf = 0.0; } else { x1 = ( x - a ) / b; cdf1 = normal_01_cdf ( x1 ); x2 = ( - x - a ) / b; cdf2 = normal_01_cdf ( x2 ); cdf = cdf1 - cdf2; } return cdf; } /******************************************************************************/ double folded_normal_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_CDF_INV inverts the Folded Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, double FOLDED_NORMAL_CDF_INV, the argument of the CDF. 0.0 <= X. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x; double x1; double x2; double x3; double xa; double xb; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FOLDED_NORMAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = 0.0; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } /* Find X1, for which the value of CDF will be too small. */ if ( 0.0 <= a ) { x1 = normal_cdf_inv ( cdf, a, b ); } else { x1 = normal_cdf_inv ( cdf, -a, b ); } x1 = fmax ( x1, 0.0 ); cdf1 = folded_normal_cdf ( x1, a, b ); /* Find X2, for which the value of CDF will be too big. */ cdf2 = ( 1.0 - cdf ) / 2.0; xa = normal_cdf_inv ( cdf2, a, b ); xb = normal_cdf_inv ( cdf2, -a, b ); x2 = fmax ( fabs ( xa ), fabs ( xb ) ); cdf2 = folded_normal_cdf ( x2, a, b ); /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = folded_normal_cdf ( x3, a, b ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FOLDED_NORMAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); exit ( 1 ); } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int folded_normal_check ( double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_CHECK checks the parameters of the Folded Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, int FOLDED_NORMAL_CHECK, is true if the parameters are legal. */ { if ( a < 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FOLDED_NORMAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FOLDED_NORMAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double folded_normal_mean ( double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_MEAN returns the mean of the Folded Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, double FOLDED_NORMAL_MEAN, the mean of the PDF. */ { double a2; double cdf; double mean; const double r8_pi = 3.14159265358979323; a2 = a / b; cdf = normal_01_cdf ( a2 ); mean = b * sqrt ( 2.0 / r8_pi ) * exp ( - 0.5 * a2 * a2 ) - a * ( 1.0 - 2.0 * cdf ); return mean; } /******************************************************************************/ double folded_normal_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_PDF evaluates the Folded Normal PDF. Discussion: PDF(A;X) = sqrt ( 2 / PI ) * ( 1 / B ) * COSH ( A * X / B^2 ) * EXP ( - 0.5 * ( X^2 + A^2 ) / B^2 ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, double FOLDED_NORMAL_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( x < 0.0 ) { pdf = 0.0; } else { pdf = sqrt ( 2.0 / r8_pi ) * ( 1.0 / b ) * cosh ( a * x / b / b ) * exp ( - 0.5 * ( x * x + a * a ) / b / b ); } return pdf; } /******************************************************************************/ double folded_normal_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_SAMPLE samples the Folded Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double FOLDED_NORMAL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = folded_normal_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double folded_normal_variance ( double a, double b ) /******************************************************************************/ /* Purpose: FOLDED_NORMAL_VARIANCE returns the variance of the Folded Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A, 0.0 < B. Output, double FOLDED_NORMAL_VARIANCE, the variance of the PDF. */ { double mean; double variance; mean = folded_normal_mean ( a, b ); variance = a * a + b * b - mean * mean; return variance; } /******************************************************************************/ double frechet_cdf ( double x, double alpha ) /******************************************************************************/ /* Purpose: FRECHET_CDF evaluates the Frechet CDF. Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double ALPHA, the parameter. It is required that 0.0 < ALPHA. Input, double X, the argument of the CDF. Output, double CDF, the value of the CDF. */ { double cdf; if ( alpha <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_CDF - Fatal error!\n" ); fprintf ( stderr, " ALPHA <= 0.0.\n" ); exit ( 1 ); } if ( x <= 0.0 ) { cdf = 0.0; } else { cdf = exp ( - 1.0 / pow ( x, alpha ) ); } return cdf; } /******************************************************************************/ double frechet_cdf_inv ( double cdf, double alpha ) /******************************************************************************/ /* Purpose: FRECHET_CDF_INV inverts the Frechet CDF. Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double ALPHA, the parameter. It is required that 0.0 < ALPHA. Output, double FRECHET_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( alpha <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " ALPHA <= 0.0.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = 0.0; } else { x = pow ( - 1.0 / log ( cdf ), 1.0 / alpha ); } return x; } /******************************************************************************/ double frechet_mean ( double alpha ) /******************************************************************************/ /* Purpose: FRECHET_MEAN returns the mean of the Frechet PDF. Discussion: The distribution does not have a mean value unless 1 < ALPHA. Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double ALPHA, the parameter. It is required that 1.0 < ALPHA. Output, double MEAN, the mean of the PDF. */ { double mean; if ( alpha <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_MEAN - Fatal error!\n" ); fprintf ( stderr, " Mean does not exist if ALPHA <= 1.\n" ); exit ( 1 ); } mean = tgamma ( ( alpha - 1.0 ) / alpha ); return mean; } /******************************************************************************/ double frechet_pdf ( double x, double alpha ) /******************************************************************************/ /* Purpose: FRECHET_PDF evaluates the Frechet PDF. Discussion: PDF(X) = ALPHA * exp ( -1 / X^ALPHA ) / X^(ALPHA+1) Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double ALPHA, the parameter. It is required that 0.0 < ALPHA. Output, double PDF, the value of the PDF. */ { double pdf; if ( alpha <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_PDF - Fatal error!\n" ); fprintf ( stderr, " ALPHA <= 0.0.\n" ); exit ( 1 ); } pdf = alpha * exp ( - 1.0 / pow ( x, alpha ) ) / pow ( x, alpha + 1.0 ); return pdf; } /******************************************************************************/ double frechet_sample ( double alpha, int *seed ) /******************************************************************************/ /* Purpose: FRECHET_SAMPLE samples the Frechet PDF. Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double ALPHA, the parameter. It is required that 0.0 < ALPHA. Input/output, int *SEED, a seed for the random number generator. Output, double FRECHET_SAMPLE, a sample of the PDF. */ { double cdf; double x; if ( alpha <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " ALPHA <= 0.0.\n" ); exit ( 1 ); } cdf = r8_uniform_01 ( seed ); x = frechet_cdf_inv ( cdf, alpha ); return x; } /******************************************************************************/ double frechet_variance ( double alpha ) /******************************************************************************/ /* Purpose: FRECHET_VARIANCE returns the variance of the Frechet PDF. Discussion: The PDF does not have a variance unless 2 < ALPHA. Licensing: This code is distributed under the MIT license. Modified: 02 September 2008 Author: John Burkardt Parameters: Input, double ALPHA, the parameter. It is required that 2.0 < ALPHA. Output, double VARIANCE, the variance of the PDF. */ { double mean; double variance; if ( alpha <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FRECHET_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " Variance does not exist if ALPHA <= 2.\n" ); exit ( 1 ); } mean = tgamma ( ( alpha - 1.0 ) / alpha ); variance = tgamma ( ( alpha - 2.0 ) / alpha ) - mean * mean; return variance; } /******************************************************************************/ double gamma_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: GAMMA_CDF evaluates the Gamma CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double GAMMA_CDF, the value of the CDF. */ { double cdf; double p2; double x2; x2 = ( x - a ) / b; p2 = c; cdf = r8_gamma_inc ( p2, x2 ); return cdf; } /******************************************************************************/ void gamma_cdf_values ( int *n_data, double *mu, double *sigma, double *x, double *fx ) /******************************************************************************/ /* Purpose: GAMMA_CDF_VALUES returns some values of the Gamma CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = GammaDistribution [ mu, sigma ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 05 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *SIGMA, the variance of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double fx_vec[N_MAX] = { 0.8646647167633873, 0.9816843611112658, 0.9975212478233336, 0.9996645373720975, 0.6321205588285577, 0.4865828809674080, 0.3934693402873666, 0.3296799539643607, 0.4421745996289254, 0.1911531694619419, 0.6564245437845009E-01, 0.1857593622214067E-01 }; double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double sigma_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *sigma = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *sigma = sigma_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int gamma_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GAMMA_CHECK checks the parameters of the Gamma PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, int GAMMA_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GAMMA_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); fprintf ( stderr, " B = %g\n", b ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GAMMA_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); fprintf ( stderr, " C = %g\n", c ); return 0; } return 1; } /******************************************************************************/ double gamma_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GAMMA_MEAN returns the mean of the Gamma PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double GAMMA_MEAN, the mean of the PDF. */ { double mean; mean = a + b * c; return mean; } /******************************************************************************/ double gamma_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: GAMMA_PDF evaluates the Gamma PDF. Discussion: PDF(A,B,C;X) = EXP ( - ( X - A ) / B ) * ( ( X - A ) / B )^(C-1) / ( B * GAMMA ( C ) ) GAMMA_PDF(A,B,C;X), where C is an integer, is the Erlang PDF. GAMMA_PDF(A,B,1;X) is the Exponential PDF. GAMMA_PDF(0,2,C/2;X) is the Chi Squared PDF with C degrees of freedom. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. A controls the location of the peak; A is often chosen to be 0.0. B is the "scale" parameter; 0.0 < B, and is often 1.0. C is the "shape" parameter; 0.0 < C, and is often 1.0. Output, double GAMMA_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = pow ( y, c - 1.0 ) / ( b * tgamma ( c ) * exp ( y ) ); } return pdf; } /******************************************************************************/ double gamma_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: GAMMA_SAMPLE samples the Gamma PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: Original FORTRAN77 version by Ahrens and U Dieter. This version by John Burkardt. Reference: Joachim Ahrens, Ulrich Dieter, Generating Gamma variates by a modified rejection technique, Communications of the ACM, Volume 25, Number 1, January 1982, pages 47-54. Joachim Ahrens, Ulrich Dieter, Computer methods for sampling from Gamma, Beta, Poisson and binomial distributions, Computing, Volume 12, Number 3, September 1974, pages 223-246. Joachim Ahrens, Klaus-Dieter Kohrt, Ulrich Dieter,
Algorithm 599: Sampling from Gamma and Poisson Distributions,
ACM Transactions on Mathematical Software,
Volume 9, Number 2, June 1983, pages 255-257. Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double GAMMA_SAMPLE, a sample of the PDF. */ { double a1 = 0.3333333; double a2 = - 0.2500030; double a3 = 0.2000062; double a4 = - 0.1662921; double a5 = 0.1423657; double a6 = - 0.1367177; double a7 = 0.1233795; double bcoef; double co; double d; double e; double e1 = 1.0; double e2 = 0.4999897; double e3 = 0.1668290; double e4 = 0.0407753; double e5 = 0.0102930; const double euler = 2.71828182845904; double p; double q; double q0; double q1 = 0.04166669; double q2 = 0.02083148; double q3 = 0.00801191; double q4 = 0.00144121; double q5 = -0.00007388; double q6 = 0.00024511; double q7 = 0.00024240; double r; double s; double si; double s2; double t; double u; double v; double w; double x; /* Allow C = 0. */ if ( c == 0.0 ) { x = a; return x; } /* C < 1. */ if ( c < 1.0 ) { for ( ; ; ) { u = r8_uniform_01 ( seed ); t = 1.0 + c / euler; p = u * t; s = exponential_01_sample ( seed ); if ( p < 1.0 ) { x = exp ( log ( p ) / c ); if ( x <= s ) { break; } } else { x = - log ( ( t - p ) / c ); if ( ( 1.0 - c ) * log ( x ) <= s ) { break; } } } x = a + b * x; return x; } /* 1 <= C. */ else { s2 = c - 0.5; s = sqrt ( c - 0.5 ); d = sqrt ( 32.0 ) - 12.0 * sqrt ( c - 0.5 ); t = normal_01_sample ( seed ); x = pow ( ( sqrt ( c - 0.5 ) + 0.5 * t ), 2 ); if ( 0.0 <= t ) { x = a + b * x; return x; } u = r8_uniform_01 ( seed ); if ( d * u <= t * t * t ) { x = a + b * x; return x; } r = 1.0 / c; q0 = ( ( ( ( ( ( q7 * r + q6 ) * r + q5 ) * r + q4 ) * r + q3 ) * r + q2 ) * r + q1 ) * r; if ( c <= 3.686 ) { bcoef = 0.463 + s - 0.178 * s2; si = 1.235; co = 0.195 / s - 0.079 + 0.016 * s; } else if ( c <= 13.022 ) { bcoef = 1.654 + 0.0076 * s2; si = 1.68 / s + 0.275; co = 0.062 / s + 0.024; } else { bcoef = 1.77; si = 0.75; co = 0.1515 / s; } if ( 0.0 < sqrt ( c - 0.5 ) + 0.5 * t ) { v = 0.5 * t / s; if ( 0.25 < fabs ( v ) ) { q = q0 - s * t + 0.25 * t * t + 2.0 * s2 * log ( 1.0 + v ); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v + a2 ) * v + a1 ) * v; } if ( log ( 1.0 - u ) <= q ) { x = a + b * x; return x; } } for ( ; ; ) { e = exponential_01_sample ( seed ); u = r8_uniform_01 ( seed ); u = 2.0 * u - 1.0; t = bcoef + fabs ( si * e ) * r8_sign ( u ); if ( -0.7187449 <= t ) { v = 0.5 * t / s; if ( 0.25 < fabs ( v ) ) { q = q0 - s * t + 0.25 * t * t + 2.0 * s2 * log ( 1.0 + v ); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v + a2 ) * v + a1 ) * v; } if ( 0.0 < q ) { if ( 0.5 < q ) { w = exp ( q ) - 1.0; } else { w = ( ( ( ( e5 * q + e4 ) * q + e3 ) * q + e2 ) * q + e1 ) * q; } if ( co * fabs ( u ) <= w * exp ( e - 0.5 * t * t ) ) { x = a + b * pow ( s + 0.5 * t, 2 ); return x; } } } } } } /******************************************************************************/ double gamma_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GAMMA_VARIANCE returns the variance of the Gamma PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = b * b * c; return variance; } /******************************************************************************/ void gamma_inc_values ( int *n_data, double *a, double *x, double *fx ) /******************************************************************************/ /* Purpose: GAMMA_INC_VALUES returns some values of the incomplete Gamma function. Discussion: The (normalized) incomplete Gamma function P(A,X) is defined as: PN(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. With this definition, for all A and X, 0 <= PN(A,X) <= 1 and PN(A,INFINITY) = 1.0 In Mathematica, the function can be evaluated by: 1 - GammaRegularized[A,X] Licensing: This code is distributed under the MIT license. Modified: 20 November 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, the parameter of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 20 double a_vec[N_MAX] = { 0.10, 0.10, 0.10, 0.50, 0.50, 0.50, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; double fx_vec[N_MAX] = { 0.7382350532339351, 0.9083579897300343, 0.9886559833621947, 0.3014646416966613, 0.7793286380801532, 0.9918490284064973, 0.9516258196404043E-01, 0.6321205588285577, 0.9932620530009145, 0.7205974576054322E-01, 0.5891809618706485, 0.9915368159845525, 0.1018582711118352E-01, 0.4421745996289254, 0.9927049442755639, 0.4202103819530612E-01, 0.9796589705830716, 0.9226039842296429, 0.4470785799755852, 0.7444549220718699 }; double x_vec[N_MAX] = { 0.30E-01, 0.30, 0.15E+01, 0.75E-01, 0.75, 0.35E+01, 0.10, 0.10E+01, 0.50E+01, 0.10, 0.10E+01, 0.50E+01, 0.15, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double genlogistic_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_CDF evaluates the Generalized Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double CDF, the value of the CDF. */ { double cdf; double y; y = ( x - a ) / b; cdf = 1.0 / pow ( ( 1.0 + exp ( - y ) ), c ); return cdf; } /******************************************************************************/ double genlogistic_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_CDF_INV inverts the Generalized Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double GENLOGISTIC_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GENLOGISTIC_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = - HUGE_VAL; } else if ( cdf < 1.0 ) { x = a - b * log ( pow ( cdf, - 1.0 / c ) - 1.0 ); } else if ( 1.0 == cdf ) { x = HUGE_VAL; } return x; } /******************************************************************************/ int genlogistic_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_CHECK checks the parameters of the Generalized Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, int GENLOGISTIC_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GENLOGISTIC_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GENLOGISTIC_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double genlogistic_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_MEAN returns the mean of the Generalized Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double MEAN, the mean of the PDF. */ { double mean; mean = a + b * ( euler_constant ( ) + digamma ( c ) ); return mean; } /******************************************************************************/ double genlogistic_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_PDF evaluates the Generalized Logistic PDF. Discussion: PDF(A,B,C;X) = ( C / B ) * EXP ( ( A - X ) / B ) / ( ( 1 + EXP ( ( A - X ) / B ) )^(C+1) ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double PDF, the value of the PDF. */ { double pdf; double y; y = ( x - a ) / b; pdf = ( c / b ) * exp ( - y ) / pow ( 1.0 + exp ( - y ), c + 1.0 ); return pdf; } /******************************************************************************/ double genlogistic_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: GENLOGISTIC_SAMPLE samples the Generalized Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double GENLOGISTIC_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = genlogistic_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double genlogistic_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: GENLOGISTIC_VARIANCE returns the variance of the Generalized Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = b * b * ( r8_pi * r8_pi / 6.0 + trigamma ( c ) ); return variance; } /******************************************************************************/ double geometric_cdf ( int x, double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_CDF evaluates the Geometric CDF. Discussion: CDF(X,P) is the probability that there will be at least one successful trial in the first X Bernoulli trials, given that the probability of success in a single trial is P. Licensing: This code is distributed under the MIT license. Modified: 28 January 1999 Author: John Burkardt Parameters: Input, int X, the maximum number of trials. Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double GEOMETRIC_CDF, the value of the CDF. */ { double cdf; if ( x <= 0 ) { cdf = 0.0; } else if ( a == 0.0 ) { cdf = 0.0; } else if ( a == 1.0 ) { cdf = 1.0; } else { cdf = 1.0 - pow ( ( 1.0 - a ), x ); } return cdf; } /******************************************************************************/ int geometric_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_CDF_INV inverts the Geometric CDF. Licensing: This code is distributed under the MIT license. Modified: 22 November 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0 Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, int GEOMETRIC_CDF_INV, the corresponding value of X. */ { int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GEOMETRIC_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( a == 1.0 ) { x = 1; } else if ( a == 0.0 ) { x = i4_huge ( ); } else { x = 1 + ( int ) ( log ( 1.0 - cdf ) / log ( 1.0 - a ) ); } return x; } /******************************************************************************/ void geometric_cdf_values ( int *n_data, int *x, double *p, double *cdf ) /******************************************************************************/ /* Purpose: GEOMETRIC_CDF_VALUES returns values of the geometric CDF. Discussion: The geometric or Pascal probability density function gives the probability that the first success will happen on the X-th Bernoulli trial, given that the probability of a success on a single trial is P. The value of CDF ( X, P ) is the probability that the first success will happen on or before the X-th trial. In Mathematica, the function can be evaluated by: Needs["Statistics`DiscreteDistributions`] dist = GeometricDistribution [ p ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 21 August 2004 Author: John Burkardt Reference: Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Daniel Zwillinger and Stephen Kokoska, CRC Standard Probability and Statistics Tables and Formulae, Chapman and Hall / CRC Press, 2000. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *X, the number of trials. Output, double *P, the probability of success on one trial. Output, double *CDF, the cumulative density function. */ { # define N_MAX 14 double cdf_vec[N_MAX] = { 0.1900000000000000, 0.2710000000000000, 0.3439000000000000, 0.6861894039100000, 0.3600000000000000, 0.4880000000000000, 0.5904000000000000, 0.9141006540800000, 0.7599000000000000, 0.8704000000000000, 0.9375000000000000, 0.9843750000000000, 0.9995117187500000, 0.9999000000000000 }; double p_vec[N_MAX] = { 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.4, 0.5, 0.5, 0.5, 0.9 }; int x_vec[N_MAX] = { 1, 2, 3, 10, 1, 2, 3, 10, 3, 3, 3, 5, 10, 3 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0; *p = 0.0; *cdf = 0.0; } else { *x = x_vec[*n_data-1]; *p = p_vec[*n_data-1]; *cdf = cdf_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int geometric_check ( double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_CHECK checks the parameter of the Geometric CDF. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, int GEOMETRIC_CHECK, is true if the parameters are legal. */ { if ( a < 0.0 || 1.0 < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 0 or 1 < A.\n" ); return 0; } return 1; } /******************************************************************************/ double geometric_mean ( double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_MEAN returns the mean of the Geometric PDF. Discussion: MEAN is the expected value of the number of trials required to obtain a single success. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double MEAN, the mean of the PDF. */ { double mean; mean = 1.0 / a; return mean; } /******************************************************************************/ double geometric_pdf ( int x, double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_PDF evaluates the Geometric PDF. Discussion: PDF(A;X) = A * ( 1 - A )^(X-1) PDF(A;X) is the probability that exactly X Bernoulli trials, each with probability of success A, will be required to achieve a single success. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int X, the number of trials. 0 < X Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double PDF, the value of the PDF. */ { double pdf; /* Special cases. */ if ( x < 1 ) { pdf = 0.0; } else if ( a == 0.0 ) { pdf = 0.0; } else if ( a == 1.0 ) { if ( x == 1 ) { pdf = 1.0; } else { pdf = 0.0; } } else { pdf = a * pow ( ( 1.0 - a ), ( x - 1 ) ); } return pdf; } /******************************************************************************/ int geometric_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: GEOMETRIC_SAMPLE samples the Geometric PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int GEOMETRIC_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = geometric_cdf_inv ( cdf, a ); return x; } /******************************************************************************/ double geometric_variance ( double a ) /******************************************************************************/ /* Purpose: GEOMETRIC_VARIANCE returns the variance of the Geometric PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the probability of success on one trial. 0.0 <= A <= 1.0. Output, double GEOMETRIC_VARIANCE, the variance of the PDF. */ { double variance; variance = ( 1.0 - a ) / ( a * a ); return variance; } /******************************************************************************/ int get_seed ( ) /******************************************************************************/ /* Purpose: GET_SEED returns a random seed for the random number generator. Licensing: This code is distributed under the MIT license. Modified: 15 September 2003 Author: John Burkardt Parameters: Output, int GET_SEED, a random seed value. */ { # define I_MAX 2147483647 time_t clock; int ihour; int imin; int isec; int seed; struct tm *lt; time_t tloc; /* If the internal seed is 0, generate a value based on the time. */ clock = time ( &tloc ); lt = localtime ( &clock ); /* Hours is 1, 2, ..., 12. */ ihour = lt->tm_hour; if ( 12 < ihour ) { ihour = ihour - 12; } /* Move Hours to 0, 1, ..., 11 */ ihour = ihour - 1; imin = lt->tm_min; isec = lt->tm_sec; seed = isec + 60 * ( imin + 60 * ihour ); /* We want values in [1,43200], not [0,43199]. */ seed = seed + 1; /* Remap SEED from [1,43200] to [1,IMAX]. */ seed = ( int ) ( ( ( double ) seed ) * ( ( double ) I_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); /* Never use a seed of 0. */ if ( seed == 0 ) { seed = 1; } return seed; #undef I_MAX } /******************************************************************************/ double gompertz_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: GOMPERTZ_CDF evaluates the Gompertz CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Johnson, Kotz, and Balakrishnan, Continuous Univariate Distributions, Volume 2, second edition, Wiley, 1994, pages 25-26. Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 1 < A, 0 < B. Output, double GOMPERTZ_CDF, the value of the CDF. */ { double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else { cdf = 1.0 - exp ( - b * ( pow ( a, x ) - 1.0 ) / log ( a ) ); } return cdf; } /******************************************************************************/ double gompertz_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: GOMPERTZ_CDF_INV inverts the Gompertz CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Johnson, Kotz, and Balakrishnan, Continuous Univariate Distributions, Volume 2, second edition, Wiley, 1994, pages 25-26. Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 1 < A, 0 < B. Output, double GOMPERTZ_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GOMPERTZ_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf < 1.0 ) { x = log ( 1.0 - log ( 1.0 - cdf ) * log ( a ) / b ) / log ( a ); } else { x = HUGE_VAL; } return x; } /******************************************************************************/ int gompertz_check ( double a, double b ) /******************************************************************************/ /* Purpose: GOMPERTZ_CHECK checks the parameters of the Gompertz PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Reference: Johnson, Kotz, and Balakrishnan, Continuous Univariate Distributions, Volume 2, second edition, Wiley, 1994, pages 25-26. Parameters: Input, double A, B, the parameters of the PDF. 1 < A, 0 < B. Output, int GOMPERTZ_CHECK, is true if the parameters are legal. */ { if ( a <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GOMPERTZ_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 1.0!\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GOMPERTZ_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0!\n" ); return 0; } return 1; } /******************************************************************************/ double gompertz_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: GOMPERTZ_PDF evaluates the Gompertz PDF. Discussion: PDF(A,B;X) = B * A**X / exp ( B * ( A**X - 1 ) / log ( A ) ) for 0.0 <= X 1.0 < A 0.0 < B Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Johnson, Kotz, and Balakrishnan, Continuous Univariate Distributions, Volume 2, second edition, Wiley, 1994, pages 25-26. Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 1 < A, 0 < B. Output, double GOMPERTZ_PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 ) { pdf = 0.0; } else if ( 1.0 < a ) { pdf = exp ( log ( b ) + x * log ( a ) - ( b / log ( a ) ) * ( pow ( a, x ) - 1.0 ) ); } return pdf; } /******************************************************************************/ double gompertz_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: GOMPERTZ_SAMPLE samples the Gompertz PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 1 < A, 0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double GOMPERTZ_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = gompertz_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double gumbel_cdf ( double x ) /******************************************************************************/ /* Purpose: GUMBEL_CDF evaluates the Gumbel CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Output, double GUMBEL_CDF, the value of the CDF. */ { double cdf; cdf = exp ( - exp ( - x ) ); return cdf; } /******************************************************************************/ double gumbel_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: GUMBEL_CDF_INV inverts the Gumbel CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double GUMBEL_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "GUMBEL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = - log ( - log ( cdf ) ); return x; } /******************************************************************************/ double gumbel_mean ( ) /******************************************************************************/ /* Purpose: GUMBEL_MEAN returns the mean of the Gumbel PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Output, double GUMBEL_MEAN, the mean of the PDF. */ { double mean; mean = euler_constant ( ); return mean; } /******************************************************************************/ double gumbel_pdf ( double x ) /******************************************************************************/ /* Purpose: GUMBEL_PDF evaluates the Gumbel PDF. Discussion: PDF(X) = EXP ( - X - EXP ( - X ) ). GUMBEL_PDF(X) = EXTREME_PDF(0,1;X) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Eric Weisstein, editor, CRC Concise Encylopedia of Mathematics, CRC Press, 1998. Parameters: Input, double X, the argument of the PDF. Output, double GUMBEL_PDF, the value of the PDF. */ { double pdf; pdf = exp ( - x - exp ( - x ) ); return pdf; } /******************************************************************************/ double gumbel_sample ( int *seed ) /******************************************************************************/ /* Purpose: GUMBEL_SAMPLE samples the Gumbel PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double GUMBEL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = gumbel_cdf_inv ( cdf ); return x; } /******************************************************************************/ double gumbel_variance ( ) /******************************************************************************/ /* Purpose: GUMBEL_VARIANCE returns the variance of the Gumbel PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Output, double GUMBEL_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = r8_pi * r8_pi / 6.0; return variance; } /******************************************************************************/ double half_normal_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_CDF evaluates the Half Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double HALF_NORMAL_CDF, the value of the CDF. */ { double cdf; double cdf2; if ( x <= a ) { cdf = 0.0; } else { cdf2 = normal_cdf ( x, a, b ); cdf = 2.0 * cdf2 - 1.0; } return cdf; } /******************************************************************************/ double half_normal_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_CDF_INV inverts the Half Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double HALF_NORMAL_CDF_INV, the corresponding argument. */ { double cdf2; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "HALF_NORMAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cdf2 = 0.5 * ( cdf + 1.0 ); x = normal_cdf_inv ( cdf2, a, b ); return x; } /******************************************************************************/ int half_normal_check ( double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_CHECK checks the parameters of the Half Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int HALF_NORMAL_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "HALF_NORMAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double half_normal_mean ( double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_MEAN returns the mean of the Half Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double HALF_NORMAL_MEAN, the mean of the PDF. */ { double mean; const double r8_pi = 3.14159265358979323; mean = a + b * sqrt ( 2.0 / r8_pi ); return mean; } /******************************************************************************/ double half_normal_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_PDF evaluates the Half Normal PDF. Discussion: PDF(A,B;X) = sqrt ( 2 / PI ) * ( 1 / B ) * exp ( - 0.5 * ( ( X - A ) / B )^2 ) for A <= X The Half Normal PDF is a special case of both the Chi PDF and the Folded Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double HALF_NORMAL_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; if ( x <= a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = sqrt ( 2.0 / r8_pi ) * ( 1.0 / b ) * exp ( - 0.5 * y * y ); } return pdf; } /******************************************************************************/ double half_normal_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: HALF_NORMAL_SAMPLE samples the Half Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double HALF_NORMAL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = half_normal_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double half_normal_variance ( double a, double b ) /******************************************************************************/ /* Purpose: HALF_NORMAL_VARIANCE returns the variance of the Half Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double HALF_NORMAL_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = b * b * ( 1.0 - 2.0 / r8_pi ); return variance; } /******************************************************************************/ double hypergeometric_cdf ( int x, int n, int m, int l ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_CDF evaluates the Hypergeometric CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the CDF. Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Output, double HYPERGEOMETRIC_CDF, the value of the CDF. */ { double cdf; double c1_log; double c2_log; double pdf; int x2; c1_log = i4_choose_log ( l - m, n ); c2_log = i4_choose_log ( l, n ); pdf = exp ( c1_log - c2_log ); cdf = pdf; for ( x2 = 0; x2 <= x - 1; x2++ ) { pdf = pdf * ( double ) ( ( m - x2 ) * ( n - x2 ) ) / ( double ) ( ( x2 + 1 ) * ( l - m - n + x2 + 1 ) ); cdf = cdf + pdf; } return cdf; } /******************************************************************************/ void hypergeometric_cdf_values ( int *n_data, int *sam, int *suc, int *pop, int *n, double *fx ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_CDF_VALUES returns some values of the hypergeometric CDF. Discussion: CDF(X)(A,B) is the probability of at most X successes in A trials, given that the probability of success on a single trial is B. In Mathematica, the function can be evaluated by: Needs["Statistics`DiscreteDistributions`] dist = HypergeometricDistribution [ sam, suc, pop ] CDF [ dist, n ] Licensing: This code is distributed under the MIT license. Modified: 05 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Daniel Zwillinger, CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC Press, 1996, pages 651-652. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *SAM, int *SUC, int *POP, the sample size, success size, and population parameters of the function. Output, int *N, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 16 double fx_vec[N_MAX] = { 0.6001858177500578E-01, 0.2615284665839845, 0.6695237889132748, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5332595856827856, 0.1819495964117640, 0.4448047017527730E-01, 0.9999991751316731, 0.9926860896560750, 0.8410799901444538, 0.3459800113391901, 0.0000000000000000, 0.2088888139634505E-02, 0.3876752992448843, 0.9135215248834896 }; int n_vec[N_MAX] = { 7, 8, 9, 10, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0 }; int pop_vec[N_MAX] = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 90, 200, 1000, 10000 }; int sam_vec[N_MAX] = { 10, 10, 10, 10, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10 }; int suc_vec[N_MAX] = { 90, 90, 90, 90, 90, 90, 90, 90, 10, 30, 50, 70, 90, 90, 90, 90 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *sam = 0; *suc = 0; *pop = 0; *n = 0; *fx = 0.0; } else { *sam = sam_vec[*n_data-1]; *suc = suc_vec[*n_data-1]; *pop = pop_vec[*n_data-1]; *n = n_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int hypergeometric_check ( int n, int m, int l ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_CHECK checks the parameters of the Hypergeometric CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Output, int HYPERGEOMETRIC_CHECK, is true if the parameters are legal. */ { if ( n < 0 || l < n ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "HYPERGEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " Input N is out of range.\n" ); return 0; } if ( m < 0 || l < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "HYPERGEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " Input M is out of range.\n" ); return 0; } if ( l < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "HYPERGEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " Input L is out of range.\n" ); return 0; } return 1; } /******************************************************************************/ double hypergeometric_mean ( int n, int m, int l ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_MEAN returns the mean of the Hypergeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Output, double HYPERGEOMETRIC_MEAN, the mean of the PDF. */ { double mean; mean = ( double ) ( n * m ) / ( double ) ( l ); return mean; } /******************************************************************************/ double hypergeometric_pdf ( int x, int n, int m, int l ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_PDF evaluates the Hypergeometric PDF. Discussion: PDF(N,M,L;X) = C(M,X) * C(L-M,N-X) / C(L,N). PDF(N,M,L;X) is the probability of drawing X white balls in a single random sample of size N from a population containing M white balls and a total of L balls. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int X, the desired number of white balls. 0 <= X <= N, usually, although any value of X can be given. Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Output, double HYPERGEOMETRIC_PDF, the probability of exactly K white balls. */ { double c1; double c2; double c3; double pdf; double pdf_log; /* Special cases. */ if ( x < 0 ) { pdf = 1.0; } else if ( n < x ) { pdf = 0.0; } else if ( m < x ) { pdf = 0.0; } else if ( l < x ) { pdf = 0.0; } else if ( n == 0 ) { if ( x == 0 ) { pdf = 1.0; } else { pdf = 0.0; } } else { c1 = i4_choose_log ( m, x ); c2 = i4_choose_log ( l - m, n - x ); c3 = i4_choose_log ( l, n ); pdf_log = c1 + c2 - c3; pdf = exp ( pdf_log ); } return pdf; } /******************************************************************************/ int hypergeometric_sample ( int n, int m, int l, int *seed ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_SAMPLE samples the Hypergeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 165. Parameters: Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Input/output, int *SEED, a seed for the random number generator. Output, int HYPERGEOMETRIC_SAMPLE, a sample of the PDF. */ { double a; double b; double c1_log; double c2_log; double u; int x; c1_log = i4_choose_log ( l - m, n ); c2_log = i4_choose_log ( l, n ); a = exp ( c1_log - c2_log ); b = a; u = r8_uniform_01 ( seed ); x = 0; while ( a < u ) { b = b * ( double ) ( ( m - x ) * ( n - x ) ) / ( double ) ( ( x + 1 ) * ( l - m - n + x + 1 ) ); a = a + b; x = x + 1; } return x; } /******************************************************************************/ double hypergeometric_variance ( int n, int m, int l ) /******************************************************************************/ /* Purpose: HYPERGEOMETRIC_VARIANCE returns the variance of the Hypergeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int N, the number of balls selected. 0 <= N <= L. Input, int M, the number of white balls in the population. 0 <= M <= L. Input, int L, the number of balls to select from. 0 <= L. Output, double HYPERGEOMETRIC_VARIANCE, the variance of the PDF. */ { double variance; variance = ( double ) ( n * m * ( l - m ) * ( l - n ) ) / ( double ) ( l * l * ( l - 1 ) ); return variance; } /******************************************************************************/ int i4_choose ( int n, int k ) /******************************************************************************/ /* Purpose: I4_CHOOSE computes the binomial coefficient C(N,K). Discussion: The value is calculated in such a way as to avoid overflow and roundoff. The calculation is done in integer arithmetic. The formula used is: C(N,K) = N! / ( K! * (N-K)! ) Licensing: This code is distributed under the MIT license. Modified: 09 December 2013 Author: John Burkardt Reference: ML Wolfson, HV Wright, Algorithm 160: Combinatorial of M Things Taken N at a Time, Communications of the ACM, Volume 6, Number 4, April 1963, page 161. Parameters: Input, int N, K, are the values of N and K. Output, int I4_CHOOSE, the number of combinations of N things taken K at a time. */ { int i; int mn; int mx; int value; if ( k < n - k ) { mn = k; mx = n - k; } else { mn = n - k; mx = k; } if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } /******************************************************************************/ double i4_choose_log ( int n, int k ) /******************************************************************************/ /* Purpose: I4_CHOOSE_LOG computes the logarithm of the Binomial coefficient. Discussion: I4_CHOOSE_LOG(N,K) = LOG ( C(N,K) ) = LOG ( N! / ( K! * (N-K)! ) ). Licensing: This code is distributed under the MIT license. Modified: 05 March 2016 Author: John Burkardt Parameters: Input, int N, K, are the values of N and K. Output, double I4_CHOOSE_LOG, the logarithm of C(N,K). */ { double value; value = lgamma ( ( double ) ( n + 1 ) ) - lgamma ( ( double ) ( k + 1 ) ) - lgamma ( ( double ) ( n - k + 1 ) ); return value; } /******************************************************************************/ int i4_factorial ( int n ) /******************************************************************************/ /* Purpose: i4_factorial() computes the factorial of N. Discussion: factorial ( N ) = product ( 1 <= I <= N ) I Licensing: This code is distributed under the MIT license. Modified: 26 June 2008 Author: John Burkardt Input: int N, the argument of the factorial function. If N is less than 1, the function value is returned as 1. 0 <= N <= 13 is required. Output: int I4_FACTORIAL, the factorial of N. */ { int i; int value; value = 1; if ( 13 < n ) { value = - 1; printf ( "I4_FACTORIAL - Fatal error!\n" ); printf ( " I4_FACTORIAL(N) cannot be computed as an integer\n" ); printf ( " for 13 < N.\n" ); printf ( " Input value N = %d\n", n ); exit ( 1 ); } for ( i = 1; i <= n; i++ ) { value = value * i; } return value; } /******************************************************************************/ int i4_huge ( ) /******************************************************************************/ /* Purpose: i4_huge() returns a "huge" I4 Licensing: This code is distributed under the MIT license. Modified: 16 May 2003 Author: John Burkardt Parameters: Output, int I4_HUGE, a "huge" integer. */ { int value; value = 2147483647; return value; } /******************************************************************************/ int i4_is_power_of_10 ( int n ) /******************************************************************************/ /* Purpose: i4_is_power_of_10() reports whether an I4 is a power of 10. Discussion: The powers of 10 are 1, 10, 100, 1000, 10000, and so on. Licensing: This code is distributed under the MIT license. Modified: 02 March 2016 Author: John Burkardt Input: int N, the integer to be tested. Output: int I4_IS_POWER_OF_10, is TRUE if N is a power of 10. */ { int value; if ( n <= 0 ) { value = 0; return value; } while ( 1 < n ) { if ( ( n % 10 ) != 0 ) { value = 0; return value; } n = n / 10; } value = 1; return value; } /******************************************************************************/ int i4_max ( int i1, int i2 ) /******************************************************************************/ /* Purpose: i4_max() returns the maximum of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, are two integers to be compared. Output, int I4_MAX, the larger of I1 and I2. */ { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_min ( int i1, int i2 ) /******************************************************************************/ /* Purpose: i4_min() returns the smaller of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, two integers to be compared. Output, int I4_MIN, the smaller of I1 and I2. */ { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_mop ( int i ) /******************************************************************************/ /* Purpose: i4_mop() returns the I-th power of -1 as an I4 value. Discussion: An I4 is an int value. Licensing: This code is distributed under the MIT license. Modified: 16 November 2007 Author: John Burkardt Input: int I, the power of -1. Output: int I4_MOP, the I-th power of -1. */ { int value; if ( ( i % 2 ) == 0 ) { value = 1; } else { value = -1; } return value; } /******************************************************************************/ int i4_uniform_ab ( int a, int b, int *seed ) /******************************************************************************/ /* Purpose: i4_uniform_ab() returns a scaled pseudorandom I4 between A and B. Discussion: The pseudorandom number should be uniformly distributed between A and B. Licensing: This code is distributed under the MIT license. Modified: 24 May 2012 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, int A, B, the limits of the interval. Input/output, int *SEED, the "seed" value, which should NOT be 0. On output, SEED has been updated. Output, int I4_UNIFORM_AB, a number between A and B. */ { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( *seed == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_UNIFORM_AB - Fatal error!\n" ); fprintf ( stderr, " Input value of SEED = 0.\n" ); exit ( 1 ); } /* Guaranteee A <= B. */ if ( b < a ) { c = a; a = b; b = c; } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r = ( float ) ( *seed ) * 4.656612875E-10; /* Scale R to lie between A-0.5 and B+0.5. */ r = ( 1.0 - r ) * ( ( float ) ( a ) - 0.5 ) + r * ( ( float ) ( b ) + 0.5 ); /* Round R to the nearest integer. */ value = round ( r ); /* Guarantee that A <= VALUE <= B. */ if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } /******************************************************************************/ int *i4row_max ( int m, int n, int a[] ) /******************************************************************************/ /* Purpose: i4row_max() returns the maximums of an I4ROW. Example: A = 1 2 3 2 6 7 MAX = 3 7 Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, int A[M*N], the array to be examined. Output, int I4ROW_AMAX[M], the maximums of the rows. */ { int i; int j; int *amax; amax = ( int * ) malloc ( m * sizeof ( int ) ); for ( i = 0; i < m; i++ ) { amax[i] = a[i+0*m]; for ( j = 1; j < n; j++ ) { if ( amax[i] < a[i+j*m] ) { amax[i] = a[i+j*m]; } } } return amax; } /******************************************************************************/ double *i4row_mean ( int m, int n, int a[] ) /******************************************************************************/ /* Purpose: i4row_mean() returns the means of an I4ROW. Example: A = 1 2 3 2 6 7 MEAN = 2 5 Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, int A[M*N], the array to be examined. Output, double I4ROW_MEAN[M], the means, or averages, of the rows. */ { int i; int j; double *mean; mean = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { mean[i] = 0.0; for ( j = 0; j < n; j++ ) { mean[i] = mean[i] + ( double ) a[i+j*m]; } mean[i] = mean[i] / ( double ) ( n ); } return mean; } /******************************************************************************/ int *i4row_min ( int m, int n, int a[] ) /******************************************************************************/ /* Purpose: i4row_min() returns the minimums of an I4ROW. Example: A = 1 2 3 2 6 7 MIN = 1 2 Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, int A[M*N], the array to be examined. Output, int I4ROW_AMIN[M], the minimums of the rows. */ { int i; int j; int *amin; amin = ( int * ) malloc ( m * sizeof ( int ) ); for ( i = 0; i < m; i++ ) { amin[i] = a[i+0*m]; for ( j = 1; j < n; j++ ) { if ( a[i+j*m] < amin[i] ) { amin[i] = a[i+j*m]; } } } return amin; } /******************************************************************************/ double *i4row_variance ( int m, int n, int a[] ) /******************************************************************************/ /* Purpose: i4row_variance() returns the variances of an I4ROW. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, int A[M*N], the array whose variances are desired. Output, double I4ROW_VARIANCE[M], the variances of the rows. */ { int i; int j; double mean; double *variance; variance = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { mean = 0.0; for ( j = 0; j < n; j++ ) { mean = mean + ( double ) a[i+j*m]; } mean = mean / ( double ) ( n ); variance[i] = 0.0; for ( j = 0; j < n; j++ ) { variance[i] = variance[i] + pow ( ( ( double ) a[i+j*m] - mean ), 2 ); } if ( 1 < n ) { variance[i] = variance[i] / ( double ) ( n - 1 ); } else { variance[i] = 0.0; } } return variance; } /******************************************************************************/ int i4vec_max ( int n, int x[] ) /******************************************************************************/ /* Purpose: i4vec_max() returns the maximum of an I4VEC Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int X[N], the vector whose maximum is desired. Output, int I4VEC_MAX, the maximum of the vector entries. */ { int i; int value; value = x[0]; for ( i = 1; i < n; i++ ) { if ( value < x[i] ) { value = x[i]; } } return value; } /******************************************************************************/ double i4vec_mean ( int n, int x[] ) /******************************************************************************/ /* Purpose: i4vec_mean() returns the mean of an I4VEC. Licensing: This code is distributed under the MIT license. Modified: 01 May 1999 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int X[N], the vector whose mean is desired. Output, double I4VEC_MEAN, the mean, or average, of the vector entries. */ { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + ( double ) x[i]; } mean = mean / ( double ) n; return mean; } /******************************************************************************/ int i4vec_min ( int n, int x[] ) /******************************************************************************/ /* Purpose: i4vec_min() returns the minimum of an I4VEC. Licensing: This code is distributed under the MIT license. Modified: 22 May 2004 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int X[N], the vector whose minimum is desired. Output, int I4VEC_MIN, the minimum of the vector entries. */ { int i; int value; value = x[0]; for ( i = 1; i < n; i++ ) { if ( x[i] < value ) { value = x[i]; } } return value; } /******************************************************************************/ void i4vec_print ( int n, int a[], char *title ) /******************************************************************************/ /* Purpose: i4vec_print() prints an I4VEC. Licensing: This code is distributed under the MIT license. Modified: 25 February 2003 Author: John Burkardt Parameters: Input, int N, the number of components of the vector. Input, int A[N], the vector to be printed. Input, char *TITLE, a title to be printed first. TITLE may be blank. */ { int i; if ( s_len_trim ( title ) != 0 ) { printf ( "\n" ); printf ( "%s\n", title ); } printf ( "\n" ); for ( i = 0; i <= n-1; i++ ) { printf ( "%6d %8d\n", i, a[i] ); } return; } /******************************************************************************/ int i4vec_run_count ( int n, int a[] ) /******************************************************************************/ /* Purpose: i4vec_run_count() counts runs of equal values in an I4VEC. Discussion: An I4VEC is a vector of integer values. A run is a sequence of equal values. Licensing: This code is distributed under the MIT license. Modified: 26 January 2007 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int A[N], the vector to be examined. Output, int I4VEC_RUN_COUNT, the number of runs. */ { int i; int run_count; int test; run_count = 0; if ( n < 1 ) { return run_count; } test = 0; for ( i = 0; i < n; i++ ) { if ( i == 0 || a[i] != test ) { run_count = run_count + 1; test = a[i]; } } return run_count; } /******************************************************************************/ int i4vec_sum ( int n, int a[] ) /******************************************************************************/ /* Purpose: i4vec_sum() sums the entries of an I4VEC. Example: Input: A = ( 1, 2, 3, 4 ) Output: I4VEC_SUM = 10 Licensing: This code is distributed under the MIT license. Modified: 26 May 1999 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int A[N], the vector to be summed. Output, int I4VEC_SUM, the sum of the entries of A. */ { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } /******************************************************************************/ int *i4vec_uniform_ab_new ( int n, int a, int b, int *seed ) /******************************************************************************/ /* Purpose: I4VEC_UNIFORM_AB_NEW returns a scaled pseudorandom I4VEC. Discussion: The pseudorandom numbers should be uniformly distributed between A and B. Licensing: This code is distributed under the MIT license. Modified: 13 January 2014 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, integer N, the dimension of the vector. Input, int A, B, the limits of the interval. Input/output, int *SEED, the "seed" value, which should NOT be 0. On output, SEED has been updated. Output, int I4VEC_UNIFORM_AB_NEW[N], a vector of random values between A and B. */ { int c; int i; const int i4_huge = 2147483647; int k; float r; int value; int *x; if ( *seed == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4VEC_UNIFORM_AB_NEW - Fatal error!\n" ); fprintf ( stderr, " Input value of SEED = 0.\n" ); exit ( 1 ); } /* Guaranteee A <= B. */ if ( b < a ) { c = a; a = b; b = c; } x = ( int * ) malloc ( n * sizeof ( int ) ); for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r = ( float ) ( *seed ) * 4.656612875E-10; /* Scale R to lie between A-0.5 and B+0.5. */ r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); /* Use rounding to convert R to an integer between A and B. */ value = round ( r ); /* Guarantee A <= VALUE <= B. */ if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i] = value; } return x; } /******************************************************************************/ int i4vec_unique_count ( int n, int a[] ) /******************************************************************************/ /* Purpose: I4VEC_UNIQUE_COUNT counts the unique elements in an unsorted I4VEC. Discussion: An I4VEC is a vector of I4's. Because the array is unsorted, this algorithm is O(N^2). Licensing: This code is distributed under the MIT license. Modified: 25 July 2010 Author: John Burkardt Parameters: Input, int N, the number of elements of A. Input, int A[N], the array to examine, which does NOT have to be sorted. Output, int I4VEC_UNIQUE_COUNT, the number of unique elements of A. */ { int i; int j; int unique_num; unique_num = 0; for ( i = 0; i < n; i++ ) { unique_num = unique_num + 1; for ( j = 0; j < i; j++ ) { if ( a[i] == a[j] ) { unique_num = unique_num - 1; break; } } } return unique_num; } /******************************************************************************/ double i4vec_variance ( int n, int x[] ) /******************************************************************************/ /* Purpose: I4VEC_VARIANCE returns the variance of an I4VEC. Licensing: This code is distributed under the MIT license. Modified: 01 May 1999 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, int X[N], the vector whose variance is desired. Output, double I4VEC_VARIANCE, the variance of the vector entries. */ { int i; double mean; double variance; mean = i4vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( ( double ) x[i] - mean ) * ( ( double ) x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } /******************************************************************************/ double inverse_gaussian_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_CDF evaluates the Inverse Gaussian CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. 0.0 < X. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double INVERSE_GAUSSIAN_CDF, the value of the CDF. */ { double cdf; double cdf1; double cdf2; double x1; double x2; if ( x <= 0.0 ) { cdf = 0.0; } else { x1 = sqrt ( b / x ) * ( x - a ) / a; cdf1 = normal_01_cdf ( x1 ); x2 = - sqrt ( b / x ) * ( x + a ) / a; cdf2 = normal_01_cdf ( x2 ); cdf = cdf1 + exp ( 2.0 * b / a ) * cdf2; } return cdf; } /******************************************************************************/ int inverse_gaussian_check ( double a, double b ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_CHECK checks the parameters of the Inverse Gaussian CDF. Licensing: This code is distributed under the MIT license. Modified: 22 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int INVERSE_GAUSSIAN_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "INVERSE_GAUSSIAN_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "INVERSE_GAUSSIAN_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double inverse_gaussian_mean ( double a, double b ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_MEAN returns the mean of the Inverse Gaussian PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double INVERSE_GAUSSIAN_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double inverse_gaussian_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_PDF evaluates the Inverse Gaussian PDF. Discussion: The Inverse Gaussian PDF is also known as the Wald PDF and the Inverse Normal PDF. PDF(A,B;X) = sqrt ( B / ( 2 * PI * X^3 ) ) * exp ( - B * ( X - A )^2 / ( 2.0 * A^2 * X ) ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 < X Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double INVERSE_GAUSSIAN_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( x <= 0.0 ) { pdf = 0.0; } else { pdf = sqrt ( b / ( 2.0 * r8_pi * pow ( x, 3 ) ) ) * exp ( - b * ( x - a ) * ( x - a ) / ( 2.0 * a * a * x ) ); } return pdf; } /******************************************************************************/ double inverse_gaussian_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_SAMPLE samples the Inverse Gaussian PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double INVERSE_GAUSSIAN_SAMPLE, a sample of the PDF. */ { double phi; double t; double u; double x; double y; double z; phi = b / a; z = normal_01_sample ( seed ); y = z * z; t = 1.0 + 0.5 * ( y - sqrt ( 4.0 * phi * y + y * y ) ) / phi; u = r8_uniform_01 ( seed ); if ( u * ( 1.0 + t ) <= 1.0 ) { x = a * t; } else { x = a / t; } return x; } /******************************************************************************/ double inverse_gaussian_variance ( double a, double b ) /******************************************************************************/ /* Purpose: INVERSE_GAUSSIAN_VARIANCE returns the variance of the Inverse Gaussian PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double INVERSE_GAUSSIAN_VARIANCE, the variance of the PDF. */ { double variance; variance = a * a * a / b; return variance; } /******************************************************************************/ void laplace_cdf_values ( int *n_data, double *mu, double *beta, double *x, double *fx ) /******************************************************************************/ /* Purpose: LAPLACE_CDF_VALUES returns some values of the Laplace CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = LaplaceDistribution [ mu, beta ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *BETA, the shape parameter. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double beta_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double fx_vec[N_MAX] = { 0.5000000000000000, 0.8160602794142788, 0.9323323583816937, 0.9751064658160680, 0.6967346701436833, 0.6417343447131054, 0.6105996084642976, 0.5906346234610091, 0.5000000000000000, 0.3032653298563167, 0.1839397205857212, 0.1115650800742149 }; double mu_vec[N_MAX] = { 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01 }; double x_vec[N_MAX] = { 0.0000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *beta = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *beta = beta_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double laplace_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_CDF evaluates the Laplace CDF. Licensing: This code is distributed under the MIT license. Modified: 16 February 1999 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LAPLACE_CDF, the value of the PDF. */ { double cdf; double y; y = ( x - a ) / b; if ( x <= a ) { cdf = 0.5 * exp ( y ); } else { cdf = 1.0 - 0.5 * exp ( - y ); } return cdf; } /******************************************************************************/ double laplace_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_CDF_INV inverts the Laplace CDF. Licensing: This code is distributed under the MIT license. Modified: 17 February 1999 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LAPLACE_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LAPLACE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf <= 0.5 ) { x = a + b * log ( 2.0 * cdf ); } else { x = a - b * log ( 2.0 * ( 1.0 - cdf ) ); } return x; } /******************************************************************************/ int laplace_check ( double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_CHECK checks the parameters of the Laplace PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int LAPLACE_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LAPLACE_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double laplace_mean ( double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_MEAN returns the mean of the Laplace PDF. Licensing: This code is distributed under the MIT license. Modified: 15 February 1999 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LAPLACE_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double laplace_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_PDF evaluates the Laplace PDF. Discussion: PDF(A,B;X) = exp ( - abs ( X - A ) / B ) / ( 2 * B ) Discussion: The Laplace PDF is also known as the Double Exponential PDF. Licensing: This code is distributed under the MIT license. Modified: 09 February 1999 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LAPLACE_PDF, the value of the PDF. */ { double pdf; pdf = exp ( - fabs ( x - a ) / b ) / ( 2.0 * b ); return pdf; } /******************************************************************************/ double laplace_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: LAPLACE_SAMPLE samples the Laplace PDF. Licensing: This code is distributed under the MIT license. Modified: 16 February 1999 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double LAPLACE_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = laplace_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double laplace_variance ( double a, double b ) /******************************************************************************/ /* Purpose: LAPLACE_VARIANCE returns the variance of the Laplace PDF. Licensing: This code is distributed under the MIT license. Modified: 15 February 1999 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LAPLACE_VARIANCE, the variance of the PDF. */ { double variance; variance = 2.0 * b * b; return variance; } /******************************************************************************/ double lerch ( double a, double b, double c ) /******************************************************************************/ /* Purpose: LERCH estimates the Lerch transcendent function. Discussion: The Lerch transcendent function is defined as: LERCH ( A, B, C ) = Sum ( 0 <= K < Infinity ) A^K / ( C + K )^B excluding any term with ( C + K ) = 0. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Reference: Eric Weisstein, editor, CRC Concise Encylopedia of Mathematics, CRC Press, 1998. Thanks: Oscar van Vlijmen Parameters: Input, double A, B, C, the parameters of the function. Output, double LERCH, an approximation to the Lerch transcendent function. */ { double a_k; int k; double sum2; double sum2_old; sum2 = 0.0; k = 0; a_k = 1.0; for ( ; ; ) { sum2_old = sum2; if ( c + ( double ) ( k ) == 0.0 ) { k = k + 1; a_k = a_k * a; continue; } sum2 = sum2 + a_k / pow ( c + ( double ) ( k ), b ); if ( sum2 <= sum2_old ) { break; } k = k + 1; a_k = a_k * a; } return sum2; } /******************************************************************************/ double levy_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LEVY_CDF evaluates the Levy CDF. Licensing: This code is distributed under the MIT license. Modified: 23 April 2007 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Normally, A <= X. Input, double A, B, the parameters of the PDF. 0 < B. Output, double LEVY_CDF, the value of the PDF. */ { double cdf; if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LEVY_CDF - Fatal error!\n" ); fprintf ( stderr, " B <= 0.0.\n" ); exit ( 1 ); } if ( x <= a ) { cdf = 0.0; } else { cdf = 1.0 - r8_error_f ( sqrt ( b / ( 2.0 * ( x - a ) ) ) ); } return cdf; } /******************************************************************************/ double levy_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: LEVY_CDF_INV inverts the Levy CDF. Licensing: This code is distributed under the MIT license. Modified: 24 April 2007 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0 < B. Output, double LEVY_CDF_INV, the corresponding argument. */ { double cdf1; double x; double x1; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LEVY_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LEVY_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " B <= 0.0.\n" ); exit ( 1 ); } cdf1 = 1.0 - 0.5 * cdf; x1 = normal_01_cdf_inv ( cdf1 ); x = a + b / ( x1 * x1 ); return x; } /******************************************************************************/ double levy_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LEVY_PDF evaluates the Levy PDF. Discussion: PDF(A,B;X) = sqrt ( B / ( 2 * PI ) ) * exp ( - B / ( 2 * ( X - A ) ) / ( X - A )^(3/2) for A <= X. Note that the Levy PDF does not have a finite mean or variance. Licensing: This code is distributed under the MIT license. Modified: 24 April 2007 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Normally, A <= X. Input, double A, B, the parameters of the PDF. 0 < B. Output, double LEVY_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.141592653589793; if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LEVY_PDF - Fatal error!\n" ); fprintf ( stderr, " B <= 0.0.\n" ); exit ( 1 ); } if ( x <= a ) { pdf = 0.0; } else { pdf = sqrt ( b / ( 2.0 * r8_pi ) ) * exp ( - b / ( 2.0 * ( x - a ) ) ) / sqrt ( pow ( x - a, 3 ) ); } return pdf; } /******************************************************************************/ double levy_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: LEVY_SAMPLE samples the Levy PDF. Licensing: This code is distributed under the MIT license. Modified: 24 April 2007 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double LEVY_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = levy_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double log_normal_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_CDF evaluates the Lognormal CDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 < X. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double CDF, the value of the CDF. */ { double cdf; double logx; if ( x <= 0.0 ) { cdf = 0.0; } else { logx = log ( x ); cdf = normal_cdf ( logx, a, b ); } return cdf; } /******************************************************************************/ double log_normal_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_CDF_INV inverts the Lognormal CDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Input, double LOG_NORMAL_CDF_INV, the corresponding argument. */ { double logx; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_NORMAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } logx = normal_cdf_inv ( cdf, a, b ); x = exp ( logx ); return x; } /******************************************************************************/ void log_normal_cdf_values ( int *n_data, double *mu, double *sigma, double *x, double *fx ) /******************************************************************************/ /* Purpose: LOG_NORMAL_CDF_VALUES returns some values of the Log Normal CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = LogNormalDistribution [ mu, sigma ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *SIGMA, the shape parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double fx_vec[N_MAX] = { 0.2275013194817921E-01, 0.2697049307349095, 0.5781741008028732, 0.7801170895122241, 0.4390310097476894, 0.4592655190218048, 0.4694258497695908, 0.4755320473858733, 0.3261051056816658, 0.1708799040927608, 0.7343256357952060E-01, 0.2554673736161761E-01 }; double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double sigma_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *sigma = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *sigma = sigma_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int log_normal_check ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_CHECK checks the parameters of the Lognormal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int LOG_NORMAL_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_NORMAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double log_normal_mean ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_MEAN returns the mean of the Lognormal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double MEAN, the mean of the PDF. */ { double mean; mean = exp ( a + 0.5 * b * b ); return mean; } /******************************************************************************/ double log_normal_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_PDF evaluates the Lognormal PDF. Discussion: PDF(A,B;X) = exp ( - 0.5 * ( ( log ( X ) - A ) / B )^2 ) / ( B * X * sqrt ( 2 * PI ) ) The Lognormal PDF is also known as the Cobb-Douglas PDF, and as the Antilog_normal PDF. The Lognormal PDF describes a variable X whose logarithm is normally distributed. The special case A = 0, B = 1 is known as Gilbrat's PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 < X Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; if ( x <= 0.0 ) { pdf = 0.0; } else { y = ( log ( x ) - a ) / b; pdf = exp ( - 0.5 * y * y ) / ( b * x * sqrt ( 2.0 * r8_pi ) ); } return pdf; } /******************************************************************************/ double log_normal_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: LOG_NORMAL_SAMPLE samples the Lognormal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double LOG_NORMAL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = log_normal_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double log_normal_variance ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_NORMAL_VARIANCE returns the variance of the Lognormal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = exp ( 2.0 * a + b * b ) * ( exp ( b * b ) - 1.0 ); return variance; } /******************************************************************************/ double log_series_cdf ( double x, double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_CDF evaluates the Logarithmic Series CDF. Discussion: Simple summation is used, with a recursion to generate successive values of the PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Thanks: Oscar van Vlijmen Parameters: Input, int X, the argument of the PDF. 0 < X Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, double LOG_SERIES_CDF, the value of the CDF. */ { double cdf; double pdf; int x2; cdf = 0.0; for ( x2 = 1; x2 <= x; x2++ ) { if ( x2 == 1 ) { pdf = - a / log ( 1.0 - a ); } else { pdf = ( double ) ( x2 - 1 ) * a * pdf / ( double ) ( x2 ); } cdf = cdf + pdf; } return cdf; } /******************************************************************************/ int log_series_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_CDF_INV inverts the Logarithmic Series CDF. Discussion: Simple summation is used. The only protection against an infinite loop caused by roundoff is that X cannot be larger than 1000. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, double LOG_SERIES_CDF_INV, the argument X of the CDF for which CDF(X-1) <= CDF <= CDF(X). */ { double cdf2; double pdf; int x; int xmax = 1000; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_SERIES_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cdf2 = 0.0; x = 1; while ( cdf2 < cdf && x < xmax ) { if ( x == 1 ) { pdf = - a / log ( 1.0 - a ); } else { pdf = ( double ) ( x - 1 ) * a * pdf / ( double ) ( x ); } cdf2 = cdf2 + pdf; x = x + 1; } return x; } /******************************************************************************/ void log_series_cdf_values ( int *n_data, double *t, int *n, double *fx ) /******************************************************************************/ /* Purpose: LOG_SERIES_CDF_VALUES returns some values of the log series CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`DiscreteDistributions`] dist = LogSeriesDistribution [ t ] CDF [ dist, n ] Licensing: This code is distributed under the MIT license. Modified: 27 August 2004 Author: John Burkardt Reference: Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *T, the parameter of the function. Output, int *N, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 29 double fx_vec[N_MAX] = { 0.9491221581029903, 0.9433541128559735, 0.9361094611773272, 0.9267370278044118, 0.9141358246245129, 0.8962840235449100, 0.8690148741955517, 0.8221011541254772, 0.7213475204444817, 0.6068261510845583, 0.5410106403333613, 0.4970679476476894, 0.4650921887927060, 0.4404842934597863, 0.4207860535926143, 0.4045507673897055, 0.3908650337129266, 0.2149757685421097, 0.0000000000000000, 0.2149757685421097, 0.3213887739704539, 0.3916213575531612, 0.4437690508633213, 0.4850700239649681, 0.5191433267738267, 0.5480569580144867, 0.5731033910767085, 0.5951442521714636, 0.6147826594068904 }; int n_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; double t_vec[N_MAX] = { 0.1000000000000000, 0.1111111111111111, 0.1250000000000000, 0.1428571428571429, 0.1666666666666667, 0.2000000000000000, 0.2500000000000000, 0.3333333333333333, 0.5000000000000000, 0.6666666666666667, 0.7500000000000000, 0.8000000000000000, 0.8333333333333333, 0.8571485714857149, 0.8750000000000000, 0.8888888888888889, 0.9000000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000, 0.9900000000000000 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *t = 0.0; *n = 0; *fx = 0.0; } else { *t = t_vec[*n_data-1]; *n = n_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int log_series_check ( double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_CHECK checks the parameter of the Logarithmic Series PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, int LOG_SERIES_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 || 1.0 <= a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_SERIES_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.0 or 1.0 <= A\n" ); return 0; } return 1; } /******************************************************************************/ double log_series_mean ( double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_MEAN returns the mean of the Logarithmic Series PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, double LOG_SERIES_MEAN, the mean of the PDF. */ { double mean; mean = - a / ( ( 1.0 - a ) * log ( 1.0 - a ) ); return mean; } /******************************************************************************/ double log_series_pdf ( int x, double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_PDF evaluates the Logarithmic Series PDF. Discussion: PDF(A;X) = - A**X / ( X * log ( 1 - A ) ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the PDF. 0 < X Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, double LOG_SERIES_PDF, the value of the PDF. */ { double pdf; if ( x <= 0 ) { pdf = 0.0; } else { pdf = - pow ( a, x ) / ( ( double ) ( x ) * log ( 1.0 - a ) ); } return pdf; } /******************************************************************************/ int log_series_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: LOG_SERIES_SAMPLE samples the Logarithmic Series PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986, page 547. Parameters: Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int LOG_SERIES_SAMPLE, a sample of the PDF. */ { double u; double v; int x; u = r8_uniform_01 ( seed ); v = r8_uniform_01 ( seed ); x = ( int ) ( 1.0 + log ( v ) / ( log ( 1.0 - pow ( 1.0 - a, u ) ) ) ); return x; } /******************************************************************************/ double log_series_variance ( double a ) /******************************************************************************/ /* Purpose: LOG_SERIES_VARIANCE returns the variance of the Logarithmic Series PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A < 1.0. Output, double LOG_SERIES_VARIANCE, the variance of the PDF. */ { double alpha; double variance; alpha = - 1.0 / log ( 1.0 - a ); variance = a * alpha * ( 1.0 - alpha * a ) / pow ( ( 1.0 - a ), 2 ); return variance; } /******************************************************************************/ double log_uniform_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_CDF evaluates the Log Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else if ( x < b ) { cdf = ( log ( x ) - log ( a ) ) / ( log ( b ) - log ( a ) ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double log_uniform_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_CDF_INV inverts the Log Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOG_UNIFORM_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_UNIFORM_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a * exp ( ( log ( b ) - log ( a ) ) * cdf ); return x; } /******************************************************************************/ int log_uniform_check ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_CHECK checks the parameters of the Log Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 1.0 < A < B. Output, int LOG_UNIFORM_CHECK, is true if the parameters are legal. */ { if ( a <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_UNIFORM_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 1.\n" ); return 0; } if ( b <= a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOG_UNIFORM_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= A.\n" ); return 0; } return 1; } /******************************************************************************/ double log_uniform_mean ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_MEAN returns the mean of the Log Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 1.0 < A < B. Output, double MEAN, the mean of the PDF. */ { double mean; mean = ( b - a ) / ( log ( b ) - log ( a ) ); return mean; } /******************************************************************************/ double log_uniform_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_PDF evaluates the Log Uniform PDF. Discussion: PDF(A,B;X) = ( log ( B ) - log ( A ) ) / X for A <= X <= B Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 1.0 < A < B. Output, double PDF, the value of the PDF. */ { double pdf; if ( x < a ) { pdf = 0.0; } else if ( x <= b ) { pdf = 1.0 / ( x * ( log ( b ) - log ( a ) ) ); } else { pdf = 0.0; } return pdf; } /******************************************************************************/ double log_uniform_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_SAMPLE samples the Log Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 20 September 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 1.0 < A < B. Input/output, int *SEED, a seed for the random number generator. Output, double LOG_UNIFORM_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = log_uniform_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double log_uniform_variance ( double a, double b ) /******************************************************************************/ /* Purpose: LOG_UNIFORM_VARIANCE returns the variance of the Log Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 01 November 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 1.0 < A < B. Output, double LOG_UNIFORM_VARIANCE, the variance of the PDF. */ { double mean; double variance; mean = log_uniform_mean ( a, b ); variance = ( ( 0.5 * b * b - 2.0 * mean * b + mean * mean * log ( b ) ) - ( 0.5 * a * a - 2.0 * mean * a + mean * mean * log ( a ) ) ) / ( log ( b ) - log ( a ) ); return variance; } /******************************************************************************/ double logistic_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_CDF evaluates the Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOGISTIC_CDF, the value of the CDF. */ { double cdf; cdf = 1.0 / ( 1.0 + exp ( ( a - x ) / b ) ); return cdf; } /******************************************************************************/ double logistic_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_CDF_INV inverts the Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOGISTIC_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOGISTIC_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a - b * log ( ( 1.0 - cdf ) / cdf ); return x; } /******************************************************************************/ void logistic_cdf_values ( int *n_data, double *mu, double *beta, double *x, double *fx ) /******************************************************************************/ /* Purpose: LOGISTIC_CDF_VALUES returns some values of the Logistic CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = LogisticDistribution [ mu, beta ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 30 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *BETA, the shape parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double beta_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double fx_vec[N_MAX] = { 0.5000000000000000, 0.8807970779778824, 0.9820137900379084, 0.9975273768433652, 0.6224593312018546, 0.5825702064623147, 0.5621765008857981, 0.5498339973124779, 0.6224593312018546, 0.5000000000000000, 0.3775406687981454, 0.2689414213699951 }; double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *beta = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *beta = beta_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int logistic_check ( double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_CHECK checks the parameters of the Logistic CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, int LOGISTIC_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LOGISTIC_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double logistic_mean ( double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_MEAN returns the mean of the Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOGISTIC_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double logistic_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_PDF evaluates the Logistic PDF. Discussion: PDF(A,B;X) = exp ( ( A - X ) / B ) / ( B * ( 1 + exp ( ( A - X ) / B ) )^2 ) The Logistic PDF is also known as the Sech-Squared PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOGISTIC_PDF, the value of the PDF. */ { double pdf; double temp; temp = exp ( ( a - x ) / b ); pdf = temp / ( b * ( 1.0 + temp ) * ( 1.0 + temp ) ); return pdf; } /******************************************************************************/ double logistic_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: LOGISTIC_SAMPLE samples the Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double LOGISTIC_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = logistic_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double logistic_variance ( double a, double b ) /******************************************************************************/ /* Purpose: LOGISTIC_VARIANCE returns the variance of the Logistic PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double LOGISTIC_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = r8_pi * r8_pi * b * b / 3.0; return variance; } /******************************************************************************/ double lorentz_cdf ( double x ) /******************************************************************************/ /* Purpose: LORENTZ_CDF evaluates the Lorentz CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Output, double LORENTZ_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; cdf = 0.5 + atan ( x ) / r8_pi; return cdf; } /******************************************************************************/ double lorentz_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: LORENTZ_CDF_INV inverts the Lorentz CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double LORENTZ_CDF_INV, the corresponding argument. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "LORENTZ_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = tan ( r8_pi * ( cdf - 0.5 ) ); return x; } /******************************************************************************/ double lorentz_mean ( ) /******************************************************************************/ /* Purpose: LORENTZ_MEAN returns the mean of the Lorentz PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Output, double LORENTZ_MEAN, the mean of the PDF. */ { double mean; mean = 0.0; return mean; } /******************************************************************************/ double lorentz_pdf ( double x ) /******************************************************************************/ /* Purpose: LORENTZ_PDF evaluates the Lorentz PDF. Discussion: PDF(X) = 1 / ( PI * ( 1 + X^2 ) ) The chief interest of the Lorentz PDF is that it is easily inverted, and can be used to dominate other PDF's in an acceptance/rejection method. LORENTZ_PDF(X) = CAUCHY_PDF(0,1;X) Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Output, double LORENTZ_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; pdf = 1.0 / ( r8_pi * ( 1.0 + x * x ) ); return pdf; } /******************************************************************************/ double lorentz_sample ( int *seed ) /******************************************************************************/ /* Purpose: LORENTZ_SAMPLE samples the Lorentz PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double LORENTZ_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = lorentz_cdf_inv ( cdf ); return x; } /******************************************************************************/ double lorentz_variance ( ) /******************************************************************************/ /* Purpose: LORENTZ_VARIANCE returns the variance of the Lorentz PDF. Discussion: The variance of the Lorentz PDF is not well defined. This routine is made available for completeness only, and simply returns a "very large" number. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Output, double LORENTZ_VARIANCE, the mean of the PDF. */ { double variance; variance = HUGE_VAL; return variance; } /******************************************************************************/ double maxwell_cdf ( double x, double a ) /******************************************************************************/ /* Purpose: MAXWELL_CDF evaluates the Maxwell CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, double A, the parameter of the PDF. 0 < A. Output, double MAXWELL_CDF, the value of the CDF. */ { double cdf; double p2; double x2; if ( x <= 0.0 ) { cdf = 0.0; } else { x2 = x / a; p2 = 1.5; cdf = r8_gamma_inc ( p2, x2 ); } return cdf; } /******************************************************************************/ double maxwell_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: MAXWELL_CDF_INV inverts the Maxwell CDF. Discussion: A simple bisection method is used. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, the parameter of the PDF. 0 < A. Output, double MAXWELL_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MAXWELL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = 0.0; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } x1 = 0.0; cdf1 = 0.0; x2 = 1.0; for ( ; ; ) { cdf2 = maxwell_cdf ( x2, a ); if ( cdf < cdf2 ) { break; } x2 = 2.0 * x2; if ( 1000000.0 < x2 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MAXWELL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Initial bracketing effort fails.\n" ); exit ( 1 ); } } /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = maxwell_cdf ( x3, a ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MAXWELL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); exit ( 1 ); } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int maxwell_check ( double a ) /******************************************************************************/ /* Purpose: MAXWELL_CHECK checks the parameters of the Maxwell CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Output, int MAXWELL_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MAXWELL_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.0.\n" ); return 0; } return 1; } /******************************************************************************/ double maxwell_mean ( double a ) /******************************************************************************/ /* Purpose: MAXWELL_MEAN returns the mean of the Maxwell PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Output, double MAXWELL_MEAN, the mean value. */ { double mean; mean = sqrt ( 2.0 ) * a * tgamma ( 2.0 ) / tgamma ( 1.5 ); return mean; } /******************************************************************************/ double maxwell_pdf ( double x, double a ) /******************************************************************************/ /* Purpose: MAXWELL_PDF evaluates the Maxwell PDF. Discussion: PDF(A;X) = EXP ( - 0.5 * ( X / A )^2 ) * ( X / A )^2 / ( sqrt ( 2 ) * A * GAMMA ( 1.5 ) ) MAXWELL_PDF(A;X) = CHI_PDF(0,A,3;X) Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0 < X Input, double A, the parameter of the PDF. 0 < A. Output, double MAXWELL_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= 0.0 ) { pdf = 0.0; } else { y = x / a; pdf = exp ( - 0.5 * y * y ) * y * y / ( sqrt ( 2.0 ) * a * tgamma ( 1.5 ) ); } return pdf; } /******************************************************************************/ double maxwell_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: MAXWELL_SAMPLE samples the Maxwell PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Input/output, int *SEED, a seed for the random number generator. Output, double MAXWELL_SAMPLE, a sample of the PDF. */ { double a2; double x; a2 = 3.0; x = chi_square_sample ( a2, seed ); x = a * sqrt ( x ); return x; } /******************************************************************************/ double maxwell_variance ( double a ) /******************************************************************************/ /* Purpose: MAXWELL_VARIANCE returns the variance of the Maxwell PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Output, double MAXWELL_VARIANCE, the variance of the PDF. */ { double temp; double variance; temp = tgamma ( 2.0 ) / tgamma ( 1.5 ); variance = a * a * ( 3.0 - 2.0 * temp * temp ); return variance; } /******************************************************************************/ int multicoef_check ( int nfactor, int factor[] ) /******************************************************************************/ /* Purpose: MULTICOEF_CHECK checks the parameters of the multinomial coefficient. Licensing: This code is distributed under the MIT license. Modified: 22 September 2004 Author: John Burkardt Parameters: Input, int NFACTOR, the number of factors. 1 <= NFACTOR. Input, int FACTOR(NFACTOR), contains the factors. 0.0 <= FACTOR(I). Output, int MULTICOEF_CHECK, is true if the parameters are legal. */ { int i; if ( nfactor < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTICOEF_CHECK(): Warning!\n" ); fprintf ( stderr, " NFACTOR < 1.\n" ); return 0; } for ( i = 0; i < nfactor; i++ ) { if ( factor[i] < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTICOEF_CHECK(): Warning\n" ); fprintf ( stderr, " Factor[%d] = %d\n", i, factor[i] ); fprintf ( stderr, " But this value must be nonnegative.\n" ); return 0; } } return 1; } /******************************************************************************/ int multinomial_coef1 ( int nfactor, int factor[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_COEF1 computes a Multinomial coefficient. Discussion: The multinomial coefficient is a generalization of the binomial coefficient. It may be interpreted as the number of combinations of N objects, where FACTOR(1) objects are indistinguishable of type 1, ... and FACTOR(NFACTOR) are indistinguishable of type NFACTOR, and N is the sum of FACTOR(1) through FACTOR(NFACTOR). NCOMB = N! / ( FACTOR(1)! FACTOR(2)! ... FACTOR(NFACTOR)! ) The log of the gamma function is used, to avoid overflow. Licensing: This code is distributed under the MIT license. Modified: 02 February 1999 Author: John Burkardt Parameters: Input, int NFACTOR, the number of factors. 1 <= NFACTOR. Input, int FACTOR(NFACTOR), contains the factors. 0.0 <= FACTOR(I). Output, int MULTINOMIAL_COEF1, the value of the multinomial coefficient. */ { double facn; int i; int n; int ncomb; if ( !multicoef_check ( nfactor, factor ) ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTINOMIAL_COEF1 - Fatal error!\n" ); fprintf ( stderr, " MULTICOEF_CHECK failed.\n" ); ncomb = - i4_huge ( ); return ncomb; } /* The factors sum to N. */ n = i4vec_sum ( nfactor, factor ); facn = lgamma ( ( double ) ( n + 1 ) ); for ( i = 0; i < nfactor; i++ ) { facn = facn - lgamma ( ( double ) ( factor[i] + 1 ) ); } ncomb = r8_nint ( exp ( facn ) ); return ncomb; } /******************************************************************************/ int multinomial_coef2 ( int nfactor, int factor[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_COEF2 computes a Multinomial coefficient. Discussion: The multinomial coefficient is a generalization of the binomial coefficient. It may be interpreted as the number of combinations of N objects, where FACTOR(1) objects are indistinguishable of type 1, ... and FACTOR(NFACTOR) are indistinguishable of type NFACTOR, and N is the sum of FACTOR(1) through FACTOR(NFACTOR). NCOMB = N! / ( FACTOR(1)! FACTOR(2)! ... FACTOR(NFACTOR)! ) A direct method is used, which should be exact. However, there is a possibility of intermediate overflow of the result. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int NFACTOR, the number of factors. 1 <= NFACTOR. Input, int FACTOR[NFACTOR], contains the factors. 0 <= FACTOR(I). Output, int MULTINOMIAL_COEF2, the value of the multinomial coefficient. */ { int i; int j; int k; int ncomb; if ( !multicoef_check ( nfactor, factor ) ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTINOMIAL_COEF2 - Fatal error!\n" ); fprintf ( stderr, " MULTICOEF_CHECK failed.\n" ); ncomb = - i4_huge ( ); return ncomb; } ncomb = 1; k = 0; for ( i = 0; i < nfactor; i++ ) { for ( j = 1; j <= factor[i]; j++ ) { k = k + 1; ncomb = ( ncomb * k ) / j; } } return ncomb; } /******************************************************************************/ int multinomial_check ( int a, int b, double c[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_CHECK checks the parameters of the Multinomial PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of trials. Input, int B, the number of outcomes possible on one trial. 1 <= B. Input, double C(B). C(I) is the probability of outcome I on any trial. 0.0 <= C(I) <= 1.0, Sum ( 1 <= I <= B ) C(I) = 1.0. Output, int MULTINOMIAL_CHECK, is true if the parameters are legal. */ { double c_sum; int i; if ( b < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B < 1.\n" ); return 0; } for ( i = 0; i < b; i++ ) { if ( c[i] < 0.0 || 1.0 < c[i] ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " Input C(I) is out of range.\n" ); return 0; } } c_sum = r8vec_sum ( b, c ); if ( 0.0001 < fabs ( 1.0 - c_sum ) ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "MULTINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " The probabilities do not sum to 1.\n" ); return 0; } return 1; } /******************************************************************************/ double *multinomial_covariance ( int a, int b, double c[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_COVARIANCE returns the covariances of the Multinomial PDF. Licensing: This code is distributed under the MIT license. Modified: 14 February 1999 Author: John Burkardt Parameters: Input, int A, the number of trials. Input, int B, the number of outcomes possible on one trial. 1 <= B. Input, double C(B). C(I) is the probability of outcome I on any trial. 0.0 <= C(I) <= 1.0, SUM ( 1 <= I <= B) C(I) = 1.0. Output, double MULTINOMIAL_COVARIANCE[B*B], the covariance matrix. */ { double *covariance; int i; int j; covariance = ( double * ) malloc ( b * b * sizeof ( double ) ); for ( i = 0; i < b; i++) { for ( j = 0; j < b; j++ ) { if ( i == j ) { covariance[i+j*b] = ( double ) ( a ) * c[i] * ( 1.0 - c[i] ); } else { covariance[i+j*b] = - ( double ) ( a ) * c[i] * c[j]; } } } return covariance; } /******************************************************************************/ double *multinomial_mean ( int a, int b, double c[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_MEAN returns the means of the Multinomial PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of trials. Input, int B, the number of outcomes possible on one trial. 1 <= B. Input, double C(B). C(I) is the probability of outcome I on any trial. 0.0 <= C(I) <= 1.0, SUM ( 1 <= I <= B) C(I) = 1.0. Output, double MEAN(B), MEAN(I) is the expected value of the number of outcome I in N trials. */ { int i; double *mean; mean = ( double * ) malloc ( b * sizeof ( double ) ); for ( i = 0; i < b; i++ ) { mean[i] = ( double ) ( a ) * c[i]; } return mean; } /******************************************************************************/ double multinomial_pdf ( int x[], int a, int b, double c[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_PDF computes a Multinomial PDF. Discussion: PDF(A,B,C;X) = Comb(A,B,X) * Product ( 1 <= I <= B ) C(I)^X(I) where Comb(A,B,X) is the multinomial coefficient C( A; X(1), X(2), ..., X(B) ) PDF(A,B,C;X) is the probability that in A trials there will be exactly X(I) occurrences of event I, whose probability on one trial is C(I), for I from 1 to B. As soon as A or B gets large, the number of possible X's explodes, and the probability of any particular X can become extremely small. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int X[B]; X(I) counts the number of occurrences of outcome I, out of the total of A trials. Input, int A, the total number of trials. Input, int B, the number of different possible outcomes on one trial. Input, double C[B]; C(I) is the probability of outcome I on any one trial. Output, double MULTINOMIAL_PDF, the value of the multinomial PDF. */ { int i; double pdf; double pdf_log; /* To try to avoid overflow, do the calculation in terms of logarithms. Note that Gamma(A+1) = A factorial. */ pdf_log = lgamma ( ( double ) ( a + 1 ) ); for ( i = 0; i < b; i++ ) { pdf_log = pdf_log + x[i] * log ( c[i] ) - lgamma ( ( double ) ( x[i] + 1 ) ); } pdf = exp ( pdf_log ); return pdf; } /******************************************************************************/ int *multinomial_sample ( int a, int b, double c[], int *seed ) /******************************************************************************/ /* Purpose: MULTINOMIAL_SAMPLE samples the Multinomial PDF. Licensing: This code is distributed under the MIT license. Modified: 22 November 2004 Author: John Burkardt Reference: Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986, page 559. Parameters: Input, int A, the total number of trials. 0 <= A. Input, int B, the number of outcomes possible on one trial. 1 <= B. Input, double C[B]. C(I) is the probability of outcome I on any trial. 0.0 <= C(I) <= 1.0, SUM ( 1 <= I <= B) C(I) = 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int MULTINOMIAL_SAMPLE[B]; Entry I is the number of occurrences of event I during the N trials. */ { int i; int ifactor; int ntot; double prob; double sum2; int *x; x = ( int * ) malloc ( b * sizeof ( int ) ); ntot = a; sum2 = 1.0; for ( i = 0; i < b; i++ ) { x[i] = 0; } for ( ifactor = 0; ifactor < b-1; ifactor++ ) { prob = c[ifactor] / sum2; /* Generate a binomial random deviate for NTOT trials with single trial success probability PROB. */ x[ifactor] = binomial_sample ( ntot, prob, seed ); ntot = ntot - x[ifactor]; if ( ntot <= 0 ) { return x; } sum2 = sum2 - c[ifactor]; } /* The last factor gets what's left. */ x[b-1] = ntot; return x; } /******************************************************************************/ double *multinomial_variance ( int a, int b, double c[] ) /******************************************************************************/ /* Purpose: MULTINOMIAL_VARIANCE returns the variances of the Multinomial PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int A, the number of trials. Input, int B, the number of outcomes possible on one trial. 1 <= B. Input, double C[B]. C(I) is the probability of outcome I on any trial. 0.0 <= C(I) <= 1.0, SUM ( 1 <= I <= B ) C(I) = 1.0. Output, double VARIANCE(B), VARIANCE(I) is the variance of the total number of events of type I. */ { int i; double *variance; variance = ( double * ) malloc ( b * sizeof ( double ) ); for ( i = 0; i < b; i++ ) { variance[i] = ( double ) ( a ) * c[i] * ( 1.0 - c[i] ); } return variance; } /******************************************************************************/ double multinoulli_pdf ( int x, int n, double theta[] ) /******************************************************************************/ /* Purpose: MULTINOULLI_PDF evaluates the Multinoulli PDF. Discussion: PDF(X) = THETA(X) for 0 <= X < N. = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 19 September 2018 Author: John Burkardt Parameters: Input, int X, the index of the outcome. 0 <= X < N. Input, int N, the number of legal outcomes. Input, double THETA[N], the probability of each outcome. Output, double MULTINOULLI_PDF, the probability of outcome X. */ { double value; if ( 0 <= x && x < n ) { value = theta[x]; } else { value = 0.0; } return value; } /******************************************************************************/ double *multivariate_normal_sample ( int n, double mean[], double covar_factor[], int *seed ) /******************************************************************************/ /* Purpose: MULTIVARIATE_NORMAL_SAMPLE samples the Multivariate Normal PDF. Discussion: PDF ( Mean(1:N), S(1:N,1:N); X(1:N) ) = 1 / ( 2 * pi ) ^ ( N / 2 ) * 1 / det ( S ) * exp ( - ( X - Mean )' * inverse ( S ) * ( X - Mean ) / 2 ) Here, X is the argument vector of length N, Mean is the mean vector of length N, S is an N by N positive definite symmetric covariance matrix. The properties of S guarantee that it has a lower triangular matrix L, the Cholesky factor, such that S = L * L'. It is the matrix L, rather than S, that is required by this routine. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 167. Parameters: Input, int N, the spatial dimension. Input, double MEAN[N], the mean vector. Input, double COVAR_FACTOR[N*N], the lower triangular Cholesky factor L of the covariance matrix S. Input/output, int *SEED, a seed for the random number generator. Output, double MULTIVARIATE_NORMAL_SAMPLE[N], a sample point of the distribution. */ { int i; int j; double *x; double z; x = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { z = normal_01_sample ( seed ); x[i] = mean[i]; for ( j = 0; j <= i; j++ ) { x[i] = x[i] + covar_factor[i+j*n] * z; } } return x; } /******************************************************************************/ double nakagami_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_CDF evaluates the Nakagami CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B 0.0 < C. Output, double NAKAGAMI_CDF, the value of the CDF. */ { double cdf; double p2; double x2; double y; if ( x <= 0.0 ) { cdf = 0.0; } else if ( 0.0 < x ) { y = ( x - a ) / b; x2 = c * y * y; p2 = c; cdf = r8_gamma_inc ( p2, x2 ); } return cdf; } /******************************************************************************/ double nakagami_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_CDF_INV inverts the Nakagami CDF. Discussion: A simple bisection method is used. Licensing: This code is distributed under the MIT license. Modified: 08 April 2016 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B. 0.0 < C. Output, double NAKAGAMI_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf2; double cdf3; int it; int it_max = 100; double tol = 0.0000001; double x = 0.0; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NAKAGAMI_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = c * a * a; return x; } else if ( 1.0 == cdf ) { x = HUGE_VAL; return x; } x1 = a; cdf1 = 0.0; x2 = a + 1.0; for ( ; ; ) { cdf2 = nakagami_cdf ( x2, a, b, c ); if ( cdf < cdf2 ) { break; } x2 = a + 2.0 * ( x2 - a ); } /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = nakagami_cdf ( x3, a, b, c ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NAKAGAMI_CDF_INV(): Warning!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); return x; } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; cdf2 = cdf3; } } return x; } /******************************************************************************/ int nakagami_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_CHECK checks the parameters of the Nakagami PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, int NAKAGAMI_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NAKAGAMI_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NAKAGAMI_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double nakagami_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_MEAN returns the mean of the Nakagami PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B 0.0 < C Output, double NAKAGAMI_MEAN, the mean of the PDF. */ { double mean; mean = a + b * tgamma ( c + 0.5 ) / ( sqrt ( c ) * tgamma ( c ) ); return mean; } /******************************************************************************/ double nakagami_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_PDF evaluates the Nakagami PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, C, the parameters of the PDF. 0.0 < B 0.0 < C. Output, double NAKAGAMI_PDF, the value of the PDF. */ { double pdf; double y; if ( x <= 0.0 ) { pdf = 0.0; } else if ( 0.0 < x ) { y = ( x - a ) / b; pdf = 2.0 * pow ( c, c ) / ( b * tgamma ( c ) ) * pow ( y, ( 2.0 * c - 1.0 ) ) * exp ( - c * y * y ); } return pdf; } /******************************************************************************/ double nakagami_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: NAKAGAMI_VARIANCE returns the variance of the Nakagami PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B 0.0 < C Output, double NAKAGAMI_VARIANCE, the variance of the PDF. */ { double t1; double t2; double variance; t1 = tgamma ( c + 0.5 ); t2 = tgamma ( c ); variance = b * b * ( 1.0 - t1 * t1 / ( c * t2 * t2 ) ); return variance; } /******************************************************************************/ double negative_binomial_cdf ( int x, int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_CDF evaluates the Negative Binomial CDF. Discussion: A simple summing approach is used. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the CDF. Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Output, double NEGATIVE_BINOMIAL_CDF, the value of the CDF. */ { double cdf; int cnk; double pdf; int y; cdf = 0.0; for ( y = a; y <= x; y++ ) { cnk = i4_choose ( y - 1, a - 1 ); pdf = ( double ) ( cnk ) * pow ( b, a ) * pow ( 1.0 - b, y - a ); cdf = cdf + pdf; } return cdf; } /******************************************************************************/ int negative_binomial_cdf_inv ( double cdf, int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_CDF_INV inverts the Negative Binomial CDF. Discussion: A simple discrete approach is used. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Output, int NEGATIVE_BINOMIAL_CDF_INV, the smallest X whose cumulative density function is greater than or equal to CDF. */ { double cum; double pdf; int x; int x_max = 1000; /**/ if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NEGATIVE_BINOMIAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } cum = 0.0; x = a; for ( ; ; ) { pdf = negative_binomial_pdf ( x, a, b ); cum = cum + pdf; if ( cdf <= cum || x_max <= x ) { break; } x = x + 1; } return x; } /******************************************************************************/ void negative_binomial_cdf_values ( int *n_data, int *f, int *s, double *p, double *cdf ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_CDF_VALUES returns values of the negative binomial CDF. Discussion: Assume that a coin has a probability P of coming up heads on any one trial. Suppose that we plan to flip the coin until we achieve a total of S heads. If we let F represent the number of tails that occur in this process, then the value of F satisfies a negative binomial PDF: PDF(F,S,P) = Choose ( F from F+S-1 ) * P^S * (1-P)^F The negative binomial CDF is the probability that there are F or fewer failures upon the attainment of the S-th success. Thus, CDF(F,S,P) = sum ( 0 <= G <= F ) PDF(G,S,P) In Mathematica, the function can be evaluated by: Needs["Statistics`DiscreteDistributions`] dist = NegativeBinomialDistribution [ s, p ] CDF [ dist, f ] Licensing: This code is distributed under the MIT license. Modified: 24 August 2004 Author: John Burkardt Reference: F C Powell, Statistical Tables for Sociology, Biology and Physical Sciences, Cambridge University Press, 1982. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *F, the maximum number of failures. Output, int *S, the number of successes. Output, double *P, the probability of a success on one trial. Output, double *CDF, the probability of at most F failures before the S-th success. */ { # define N_MAX 27 double cdf_vec[N_MAX] = { 0.6367187500000000, 0.3632812500000000, 0.1445312500000000, 0.5000000000000000, 0.2265625000000000, 0.6250000000000000E-01, 0.3437500000000000, 0.1093750000000000, 0.1562500000000000E-01, 0.1792000000000000, 0.4096000000000000E-01, 0.4096000000000000E-02, 0.7047000000000000E-01, 0.1093500000000000E-01, 0.7290000000000000E-03, 0.9861587127990000, 0.9149749500510000, 0.7471846521450000, 0.8499053647030009, 0.5497160941090026, 0.2662040052146710, 0.6513215599000000, 0.2639010709000000, 0.7019082640000000E-01, 0.1000000000000000E+01, 0.1990000000000000E-01, 0.1000000000000000E-03 }; int f_vec[N_MAX] = { 4, 3, 2, 3, 2, 1, 2, 1, 0, 2, 1, 0, 2, 1, 0, 11, 10, 9, 17, 16, 15, 9, 8, 7, 2, 1, 0 }; double p_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.40, 0.40, 0.40, 0.30, 0.30, 0.30, 0.30, 0.30, 0.30, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10E-01, 0.10E-01, 0.10E-01 }; int s_vec[N_MAX] = { 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 1, 2, 3, 1, 2, 3, 1, 2, 3, 0, 1, 2 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *f = 0; *s = 0; *p = 0.0; *cdf = 0.0; } else { *f = f_vec[*n_data-1]; *s = s_vec[*n_data-1]; *p = p_vec[*n_data-1]; *cdf = cdf_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int negative_binomial_check ( int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_CHECK checks parameters of the Negative Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Output, int NEGATIVE_BINOMIAL_CHECK, is true if the parameters are legal. */ { if ( a < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NEGATIVE_BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 0.\n" ); return 0; } if ( b <= 0.0 || 1.0 < b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NEGATIVE_BINOMIAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0 or 1 < B.\n" ); return 0; } return 1; } /******************************************************************************/ double negative_binomial_mean ( int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_MEAN returns the mean of the Negative Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Output, double NEGATIVE_BINOMIAL_MEAN, the mean of the PDF. */ { double mean; mean = ( double ) ( a ) / b; return mean; } /******************************************************************************/ double negative_binomial_pdf ( int x, int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_PDF evaluates the Negative Binomial PDF. Discussion: PDF(A,B;X) = C(X-1,A-1) * B^A * ( 1 - B )^(X-A) PDF(A,B;X) is the probability that the A-th success will occur on the X-th trial, given that the probability of a success on a single trial is B. The Negative Binomial PDF is also known as the Pascal PDF or the "Polya" PDF. NEGATIVE_BINOMIAL_PDF(1,B;X) = GEOMETRIC_PDF(B;X) Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int X, the number of trials. A <= X. Input, int A, the number of successes required. 0 <= A <= X, normally. Input, double B, the probability of a success on a single trial. 0.0 < B <= 1.0. Output, double NEGATIVE_BINOMIAL_PDF, the value of the PDF. */ { int cnk; double pdf; if ( x < a ) { pdf = 0.0; } else { cnk = i4_choose ( x - 1, a - 1 ); pdf = ( double ) ( cnk ) * pow ( b, a ) * pow ( 1.0 - b, x - a ); } return pdf; } /******************************************************************************/ int negative_binomial_sample ( int a, double b, int *seed ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_SAMPLE samples the Negative Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Input/output, int *SEED, a seed for the random number generator. Output, int NEGATIVE_BINOMIAL_SAMPLE, a sample of the PDF. */ { int num_success; double r; int x; if ( b == 1.0 ) { x = a; return x; } else if ( b == 0.0 ) { x = i4_huge ( ); return x; } x = 0; num_success = 0; while ( num_success < a ) { x = x + 1; r = r8_uniform_01 ( seed ); if ( r <= b ) { num_success = num_success + 1; } } return x; } /******************************************************************************/ double negative_binomial_variance ( int a, double b ) /******************************************************************************/ /* Purpose: NEGATIVE_BINOMIAL_VARIANCE returns the variance of the Negative Binomial PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, int A, double B, parameters of the PDF. 0 <= A, 0 < B <= 1. Output, double NEGATIVE_BINOMIAL_VARIANCE, the variance of the PDF. */ { double variance; variance = ( double ) ( a ) * ( 1.0 - b ) / ( b * b ); return variance; } /******************************************************************************/ double normal_01_cdf ( double x ) /******************************************************************************/ /* Purpose: NORMAL_01_CDF evaluates the Normal 01 CDF. Licensing: This code is distributed under the MIT license. Modified: 10 February 1999 Author: John Burkardt Reference: A G Adams, Areas Under the Normal Curve, Algorithm 39, Computer j., Volume 12, pages 197-198, 1969. Parameters: Input, double X, the argument of the CDF. Output, double CDF, the value of the CDF. */ { double a1 = 0.398942280444; double a2 = 0.399903438504; double a3 = 5.75885480458; double a4 = 29.8213557808; double a5 = 2.62433121679; double a6 = 48.6959930692; double a7 = 5.92885724438; double b0 = 0.398942280385; double b1 = 3.8052E-08; double b2 = 1.00000615302; double b3 = 3.98064794E-04; double b4 = 1.98615381364; double b5 = 0.151679116635; double b6 = 5.29330324926; double b7 = 4.8385912808; double b8 = 15.1508972451; double b9 = 0.742380924027; double b10 = 30.789933034; double b11 = 3.99019417011; double cdf; double q; double y; /* |X| <= 1.28. */ if ( fabs ( x ) <= 1.28 ) { y = 0.5 * x * x; q = 0.5 - fabs ( x ) * ( a1 - a2 * y / ( y + a3 - a4 / ( y + a5 + a6 / ( y + a7 ) ) ) ); /* 1.28 < |X| <= 12.7 */ } else if ( fabs ( x ) <= 12.7 ) { y = 0.5 * x * x; q = exp ( - y ) * b0 / ( fabs ( x ) - b1 + b2 / ( fabs ( x ) + b3 + b4 / ( fabs ( x ) - b5 + b6 / ( fabs ( x ) + b7 - b8 / ( fabs ( x ) + b9 + b10 / ( fabs ( x ) + b11 ) ) ) ) ) ); /* 12.7 < |X| */ } else { q = 0.0; } /* Take account of negative X. */ if ( x < 0.0 ) { cdf = q; } else { cdf = 1.0 - q; } return cdf; } /******************************************************************************/ double normal_01_cdf_inv ( double p ) /******************************************************************************/ /* Purpose: NORMAL_01_CDF_INV inverts the standard normal CDF. Discussion: The result is accurate to about 1 part in 10**16. Licensing: This code is distributed under the MIT license. Modified: 27 December 2004 Author: Original FORTRAN77 version by Michael Wichura. This version by John Burkardt. Reference: Michael Wichura, The Percentage Points of the Normal Distribution, Algorithm AS 241, Applied Statistics, Volume 37, Number 3, pages 477-484, 1988. Parameters: Input, double P, the value of the cumulative probability densitity function. 0 < P < 1. If P is outside this range, an "infinite" value is returned. Output, double NORMAL_01_CDF_INV, the normal deviate value with the property that the probability of a standard normal deviate being less than or equal to this value is P. */ { double a[8] = { 3.3871328727963666080, 1.3314166789178437745e+2, 1.9715909503065514427e+3, 1.3731693765509461125e+4, 4.5921953931549871457e+4, 6.7265770927008700853e+4, 3.3430575583588128105e+4, 2.5090809287301226727e+3 }; double b[8] = { 1.0, 4.2313330701600911252e+1, 6.8718700749205790830e+2, 5.3941960214247511077e+3, 2.1213794301586595867e+4, 3.9307895800092710610e+4, 2.8729085735721942674e+4, 5.2264952788528545610e+3 }; double c[8] = { 1.42343711074968357734, 4.63033784615654529590, 5.76949722146069140550, 3.64784832476320460504, 1.27045825245236838258, 2.41780725177450611770e-1, 2.27238449892691845833e-2, 7.74545014278341407640e-4 }; double const1 = 0.180625; double const2 = 1.6; double d[8] = { 1.0, 2.05319162663775882187, 1.67638483018380384940, 6.89767334985100004550e-1, 1.48103976427480074590e-1, 1.51986665636164571966e-2, 5.47593808499534494600e-4, 1.05075007164441684324e-9 }; double e[8] = { 6.65790464350110377720, 5.46378491116411436990, 1.78482653991729133580, 2.96560571828504891230e-1, 2.65321895265761230930e-2, 1.24266094738807843860e-3, 2.71155556874348757815e-5, 2.01033439929228813265e-7 }; double f[8] = { 1.0, 5.99832206555887937690e-1, 1.36929880922735805310e-1, 1.48753612908506148525e-2, 7.86869131145613259100e-4, 1.84631831751005468180e-5, 1.42151175831644588870e-7, 2.04426310338993978564e-15 }; double q; double r; double split1 = 0.425; double split2 = 5.0; double value; if ( p <= 0.0 ) { value = - HUGE_VAL; return value; } if ( 1.0 <= p ) { value = HUGE_VAL; return value; } q = p - 0.5; if ( fabs ( q ) <= split1 ) { r = const1 - q * q; value = q * r8poly_value_horner ( 7, a, r ) / r8poly_value_horner ( 7, b, r ); } else { if ( q < 0.0 ) { r = p; } else { r = 1.0 - p; } if ( r <= 0.0 ) { value = HUGE_VAL; } else { r = sqrt ( - log ( r ) ); if ( r <= split2 ) { r = r - const2; value = r8poly_value_horner ( 7, c, r ) / r8poly_value_horner ( 7, d, r ); } else { r = r - split2; value = r8poly_value_horner ( 7, e, r ) / r8poly_value_horner ( 7, f, r ); } } if ( q < 0.0 ) { value = - value; } } return value; } /******************************************************************************/ void normal_01_cdf_values ( int *n_data, double *x, double *fx ) /******************************************************************************/ /* Purpose: NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NormalDistribution [ 0, 1 ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 17 double fx_vec[N_MAX] = { 0.5000000000000000, 0.5398278372770290, 0.5792597094391030, 0.6179114221889526, 0.6554217416103242, 0.6914624612740131, 0.7257468822499270, 0.7580363477769270, 0.7881446014166033, 0.8159398746532405, 0.8413447460685429, 0.9331927987311419, 0.9772498680518208, 0.9937903346742239, 0.9986501019683699, 0.9997673709209645, 0.9999683287581669 }; double x_vec[N_MAX] = { 0.0000000000000000, 0.1000000000000000, 0.2000000000000000, 0.3000000000000000, 0.4000000000000000, 0.5000000000000000, 0.6000000000000000, 0.7000000000000000, 0.8000000000000000, 0.9000000000000000, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double normal_01_mean ( ) /******************************************************************************/ /* Purpose: NORMAL_01_MEAN returns the mean of the Normal 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Output, double MEAN, the mean of the PDF. */ { double mean; mean = 0.0; return mean; } /******************************************************************************/ double normal_01_pdf ( double x ) /******************************************************************************/ /* Purpose: NORMAL_01_PDF evaluates the Normal 01 PDF. Discussion: The Normal 01 PDF is also called the "Standard Normal" PDF, or the Normal PDF with 0 mean and variance 1. PDF(X) = exp ( - 0.5 * X^2 ) / sqrt ( 2 * PI ) Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; pdf = exp ( - 0.5 * x * x ) / sqrt ( 2.0 * r8_pi ); return pdf; } /******************************************************************************/ double normal_01_sample ( int *seed ) /******************************************************************************/ /* Purpose: NORMAL_01_SAMPLE samples the standard normal probability distribution. Discussion: The standard normal probability distribution function (PDF) has mean 0 and standard deviation 1. The Box-Muller method is used. Licensing: This code is distributed under the MIT license. Modified: 26 August 2013 Author: John Burkardt Parameters: Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_01_SAMPLE, a normally distributed random value. */ { const double r8_pi = 3.14159265358979323; double r1; double r2; double x; r1 = r8_uniform_01 ( seed ); r2 = r8_uniform_01 ( seed ); x = sqrt ( - 2.0 * log ( r1 ) ) * cos ( 2.0 * r8_pi * r2 ); return x; } /******************************************************************************/ double *normal_01_samples ( int n, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_01_SAMPLES returns samples of the standard normal probability distribution. Discussion: The standard normal probability distribution function (PDF) has mean 0 and standard deviation 1. The Box-Muller method is used. Licensing: This code is distributed under the MIT license. Modified: 26 September 2018 Author: John Burkardt Parameters: Input, int N, the number of samples. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_01_SAMPLE[N], samples of the PDF. */ { int i; double *r1; double *r2; const double r8_pi = 3.14159265358979323; double *x; r1 = r8vec_uniform_01_new ( n, seed ); r2 = r8vec_uniform_01_new ( n, seed ); x = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { x[i] = sqrt ( - 2.0 * log ( r1[i] ) ) * cos ( 2.0 * r8_pi * r2[i] ); } free ( r1 ); free ( r2 ); return x; } /******************************************************************************/ double normal_01_variance ( ) /******************************************************************************/ /* Purpose: NORMAL_01_VARIANCE returns the variance of the Normal 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = 1.0; return variance; } /******************************************************************************/ double *normal_01_vector ( int n, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_01_VECTOR samples the standard normal probability distribution. Discussion: The standard normal probability distribution function (PDF) has mean 0 and standard deviation 1. This routine can generate a vector of values on one call. It has the feature that it should provide the same results in the same order no matter how we break up the task. Before calling this routine, the user may call RANDOM_SEED in order to set the seed of the random number generator. The Box-Muller method is used. Licensing: This code is distributed under the MIT license. Modified: 26 August 2013 Author: John Burkardt Parameters: Input, int N, the number of values desired. Input/output, int *SEED, a seed for the random number generator. Output, double X(N), a sample of the standard normal PDF. Local parameters: Local, real R(N+1), is used to store some uniform random values. Its dimension is N+1, but really it is only needed to be the smallest even number greater than or equal to N. Local, int X_LO, X_HI, records the range of entries of X that we need to compute. */ { int i; int m; const double r8_pi = 3.14159265358979323; double *r; double *x; int x_hi; int x_lo; x = ( double * ) malloc ( n * sizeof ( double ) ); /* Record the range of X we need to fill in. */ x_lo = 1; x_hi = n; /* If we need just one new value, do that here to avoid null arrays. */ if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( - 2.0 * log ( r[0] ) ) * cos ( 2.0 * r8_pi * r[1] ); free ( r ); } /* If we require an even number of values, that's easy. */ else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( - 2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( - 2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } free ( r ); } /* If we require an odd number of values, we generate an even number, and handle the last pair specially. */ else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); free ( r ); } return x; } /******************************************************************************/ double normal_cdf ( double x, double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_CDF evaluates the Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, double CDF, the value of the CDF. */ { double cdf; double y; y = ( x - mu ) / sigma; cdf = normal_01_cdf ( y ); return cdf; } /******************************************************************************/ double normal_cdf_inv ( double cdf, double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_CDF_INV inverts the Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Reference: Algorithm AS 111, Applied Statistics, Volume 26, pages 118-121, 1977. Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, double NORMAL_CDF_INV, the corresponding argument. */ { double x; double x2; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NORMAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x2 = normal_01_cdf_inv ( cdf ); x = mu + sigma * x2; return x; } /******************************************************************************/ void normal_cdf_values ( int *n_data, double *mu, double *sigma, double *x, double *fx ) /******************************************************************************/ /* Purpose: NORMAL_CDF_VALUES returns some values of the Normal CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NormalDistribution [ mu, sigma ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 05 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *MU, the mean of the distribution. Output, double *SIGMA, the variance of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double fx_vec[N_MAX] = { 0.5000000000000000, 0.9772498680518208, 0.9999683287581669, 0.9999999990134124, 0.6914624612740131, 0.6305586598182364, 0.5987063256829237, 0.5792597094391030, 0.6914624612740131, 0.5000000000000000, 0.3085375387259869, 0.1586552539314571 }; double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double sigma_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *mu = 0.0; *sigma = 0.0; *x = 0.0; *fx = 0.0; } else { *mu = mu_vec[*n_data-1]; *sigma = sigma_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int normal_check ( double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_CHECK checks the parameters of the Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, int NORMAL_CHECK, is true if the parameters are legal. */ { if ( sigma == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NORMAL_CHECK(): Warning!\n" ); fprintf ( stderr, " SIGMA == 0.\n" ); return 0; } return 1; } /******************************************************************************/ double normal_mean ( double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_MEAN returns the mean of the Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, double MEAN, the mean of the PDF. */ { return mu; } /******************************************************************************/ double normal_pdf ( double x, double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_PDF evaluates the Normal PDF. Discussion: PDF(X;MU,SIGMA) = exp ( - 0.5 * ( ( X - MU ) / SIGMA )^2 ) / SQRT ( 2 * PI * SIGMA^2 ) The normal PDF is also known as the Gaussian PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - mu ) / sigma; pdf = exp ( - 0.5 * y * y ) / sqrt ( 2.0 * r8_pi * sigma * sigma ); return pdf; } /******************************************************************************/ double normal_sample ( double mu, double sigma, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_SAMPLE retursn a sample of the Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 20 November 2004 Author: John Burkardt Parameters: Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_SAMPLE, a sample of the PDF. */ { double x; x = normal_01_sample ( seed ); x = mu + sigma * x; return x; } /******************************************************************************/ double *normal_samples ( int n, double mu, double sigma, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_SAMPLES returns multiple samples of the Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 26 September 2018 Author: John Burkardt Parameters: Input, int N, the number of samples. Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_SAMPLE[N], the samples of the PDF. */ { int i; double *x; x = normal_01_samples ( n, seed ); for ( i = 0; i < n; i++ ) { x[i] = mu + sigma * x[i]; } return x; } /******************************************************************************/ double normal_variance ( double mu, double sigma ) /******************************************************************************/ /* Purpose: NORMAL_VARIANCE returns the variance of the Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 19 September 2004 Author: John Burkardt Parameters: Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = sigma * sigma; return variance; } /******************************************************************************/ double *normal_vector ( int n, double mu, double sigma, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_VECTOR samples the normal probability distribution. Discussion: The normal probability distribution function (PDF) has a user-specified mean and standard deviation. This routine can generate a vector of values on one call. It has the feature that it should provide the same results in the same order no matter how we break up the task. Before calling this routine, the user may call RANDOM_SEED in order to set the seed of the random number generator. The Box-Muller method is used. Licensing: This code is distributed under the MIT license. Modified: 26 August 2013 Author: John Burkardt Parameters: Input, int N, the number of values desired. Input, double MU, SIGMA the parameters of the PDF. SIGMA must be nonzero. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_VECTOR[N], a sample of the normal PDF. */ { int i; double *x; x = normal_01_vector ( n, seed ); for ( i = 0; i < n; i++ ) { x[i] = mu + sigma * x[i]; } return x; } /******************************************************************************/ double normal_truncated_ab_cdf ( double x, double mu, double s, double a, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_CDF evaluates the truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Output, double NORMAL_TRUNCATED_AB_CDF, the value of the CDF. */ { double alpha; double alpha_cdf; double beta; double beta_cdf; double cdf; double xi; double xi_cdf; alpha = ( a - mu ) / s; beta = ( b - mu ) / s; xi = ( x - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_cdf = normal_01_cdf ( xi ); cdf = ( xi_cdf - alpha_cdf ) / ( beta_cdf - alpha_cdf ); return cdf; } /******************************************************************************/ double normal_truncated_ab_cdf_inv ( double cdf, double mu, double s, double a, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_CDF_INV inverts the truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0D+00 <= CDF <= 1.0. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Output, double NORMAL_TRUNCATED_AB_CDF_INV, the corresponding argument. */ { double alpha; double alpha_cdf; double beta; double beta_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NORMAL_TRUNCATED_AB_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } alpha = ( a - mu ) / s; beta = ( b - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_cdf = ( beta_cdf - alpha_cdf ) * cdf + alpha_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_ab_mean ( double mu, double s, double a, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_MEAN returns the mean of the truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviatione of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Output, double NORMAL_TRUNCATED_AB_MEAN, the mean of the PDF. */ { double alpha; double alpha_cdf; double alpha_pdf; double beta; double beta_cdf; double beta_pdf; double mean; alpha = ( a - mu ) / s; beta = ( b - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); alpha_pdf = normal_01_pdf ( alpha ); beta_pdf = normal_01_pdf ( beta ); mean = mu + s * ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ); return mean; } /******************************************************************************/ double normal_truncated_ab_pdf ( double x, double mu, double s, double a, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_PDF evaluates the truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Output, double NORMAL_TRUNCATED_AB_PDF, the value of the PDF. */ { double alpha; double alpha_cdf; double beta; double beta_cdf; double pdf; double xi; double xi_pdf; alpha = ( a - mu ) / s; beta = ( b - mu ) / s; xi = ( x - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / ( beta_cdf - alpha_cdf ) / s; return pdf; } /******************************************************************************/ double normal_truncated_ab_sample ( double mu, double s, double a, double b, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_SAMPLE samples the truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_TRUNCATED_AB_SAMPLE, a sample of the PDF. */ { double alpha; double alpha_cdf; double beta; double beta_cdf; double u; double x; double xi; double xi_cdf; alpha = ( a - mu ) / s; beta = ( b - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); u = r8_uniform_01 ( seed ); xi_cdf = alpha_cdf + u * ( beta_cdf - alpha_cdf ); xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_ab_variance ( double mu, double s, double a, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_AB_VARIANCE returns the variance of the truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 14 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, B, the lower and upper truncation limits. Output, double NORMAL_TRUNCATED_AB_VARIANCE, the variance of the PDF. */ { double alpha; double alpha_cdf; double alpha_pdf; double beta; double beta_cdf; double beta_pdf; double variance; alpha = ( a - mu ) / s; beta = ( b - mu ) / s; alpha_pdf = normal_01_pdf ( alpha ); beta_pdf = normal_01_pdf ( beta ); alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); variance = s * s * ( 1.0 + ( alpha * alpha_pdf - beta * beta_pdf ) / ( beta_cdf - alpha_cdf ) - pow ( ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ), 2 ) ); return variance; } /******************************************************************************/ double normal_truncated_a_cdf ( double x, double mu, double s, double a ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_CDF evaluates the lower truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, the lower truncation limit. Output, double NORMAL_TRUNCATED_A_CDF, the value of the CDF. */ { double alpha; double alpha_cdf; double cdf; double xi; double xi_cdf; alpha = ( a - mu ) / s; xi = ( x - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); xi_cdf = normal_01_cdf ( xi ); cdf = ( xi_cdf - alpha_cdf ) / ( 1.0 - alpha_cdf ); return cdf; } /******************************************************************************/ double normal_truncated_a_cdf_inv ( double cdf, double mu, double s, double a ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_CDF_INV inverts the lower truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0D+00 <= CDF <= 1.0. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, the lower truncation limit. Output, double NORMAL_TRUNCATED_A_CDF_INV, the corresponding argument. */ { double alpha; double alpha_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NORMAL_TRUNCATED_A_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } alpha = ( a - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); xi_cdf = ( 1.0 - alpha_cdf ) * cdf + alpha_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_a_mean ( double mu, double s, double a ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_MEAN returns the mean of the lower truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviatione of the parent Normal distribution. Input, double A, the lower truncation limit. Output, double NORMAL_TRUNCATED_A_MEAN, the mean of the PDF. */ { double alpha; double alpha_cdf; double alpha_pdf; double mean; alpha = ( a - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); alpha_pdf = normal_01_pdf ( alpha ); mean = mu + s * alpha_pdf / ( 1.0 - alpha_cdf ); return mean; } /******************************************************************************/ double normal_truncated_a_pdf ( double x, double mu, double s, double a ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_PDF evaluates the lower truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, the lower truncation limit. Output, double NORMAL_TRUNCATED_A_PDF, the value of the PDF. */ { double alpha; double alpha_cdf; double pdf; double xi; double xi_pdf; alpha = ( a - mu ) / s; xi = ( x - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / ( 1.0 - alpha_cdf ) / s; return pdf; } /******************************************************************************/ double normal_truncated_a_sample ( double mu, double s, double a, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_SAMPLE samples the lower truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, the lower truncation limit. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_TRUNCATED_A_SAMPLE, a sample of the PDF. */ { double alpha; double alpha_cdf; double u; double x; double xi; double xi_cdf; alpha = ( a - mu ) / s; alpha_cdf = normal_01_cdf ( alpha ); u = r8_uniform_01 ( seed ); xi_cdf = alpha_cdf + u * ( 1.0 - alpha_cdf ); xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_a_variance ( double mu, double s, double a ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_A_VARIANCE: variance of the lower truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double A, the lower truncation limit. Output, double NORMAL_TRUNCATED_A_VARIANCE, the variance of the PDF. */ { double alpha; double alpha_cdf; double alpha_pdf; double variance; alpha = ( a - mu ) / s; alpha_pdf = normal_01_pdf ( alpha ); alpha_cdf = normal_01_cdf ( alpha ); variance = s * s * ( 1.0 + alpha * alpha_pdf / ( 1.0 - alpha_cdf ) - pow ( alpha_pdf / ( 1.0 - alpha_cdf ), 2 ) ); return variance; } /******************************************************************************/ double normal_truncated_b_cdf ( double x, double mu, double s, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_CDF evaluates the upper truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double B, the upper truncation limit. Output, double NORMAL_TRUNCATED_B_CDF, the value of the CDF. */ { double beta; double beta_cdf; double cdf; double xi; double xi_cdf; beta = ( b - mu ) / s; xi = ( x - mu ) / s; beta_cdf = normal_01_cdf ( beta ); xi_cdf = normal_01_cdf ( xi ); cdf = xi_cdf / beta_cdf; return cdf; } /******************************************************************************/ double normal_truncated_b_cdf_inv ( double cdf, double mu, double s, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_CDF_INV inverts the upper truncated Normal CDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0D+00 <= CDF <= 1.0. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double B, the upper truncation limit. Output, double NORMAL_TRUNCATED_B_CDF_INV, the corresponding argument. */ { double beta; double beta_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "NORMAL_TRUNCATED_B_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } beta = ( b - mu ) / s; beta_cdf = normal_01_cdf ( beta ); xi_cdf = beta_cdf * cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_b_mean ( double mu, double s, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_MEAN returns the mean of the upper truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviatione of the parent Normal distribution. Input, double B, the upper truncation limit. Output, double NORMAL_TRUNCATED_B_MEAN, the mean of the PDF. */ { double beta; double beta_cdf; double beta_pdf; double mean; beta = ( b - mu ) / s; beta_cdf = normal_01_cdf ( beta ); beta_pdf = normal_01_pdf ( beta ); mean = mu - s * beta_pdf / beta_cdf; return mean; } /******************************************************************************/ double normal_truncated_b_pdf ( double x, double mu, double s, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_PDF evaluates the upper truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double B, the upper truncation limit. Output, double NORMAL_TRUNCATED_B_PDF, the value of the PDF. */ { double beta; double beta_cdf; double pdf; double xi; double xi_pdf; beta = ( b - mu ) / s; xi = ( x - mu ) / s; beta_cdf = normal_01_cdf ( beta ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / beta_cdf / s; return pdf; } /******************************************************************************/ double normal_truncated_b_sample ( double mu, double s, double b, int *seed ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_SAMPLE samples the upper truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double B, the upper truncation limit. Input/output, int *SEED, a seed for the random number generator. Output, double NORMAL_TRUNCATED_B_SAMPLE, a sample of the PDF. */ { double beta; double beta_cdf; double u; double x; double xi; double xi_cdf; beta = ( b - mu ) / s; beta_cdf = normal_01_cdf ( beta ); u = r8_uniform_01 ( seed ); xi_cdf = u * beta_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + s * xi; return x; } /******************************************************************************/ double normal_truncated_b_variance ( double mu, double s, double b ) /******************************************************************************/ /* Purpose: NORMAL_TRUNCATED_B_VARIANCE: variance of the upper truncated Normal PDF. Licensing: This code is distributed under the MIT license. Modified: 21 August 2013 Author: John Burkardt Parameters: Input, double MU, S, the mean and standard deviation of the parent Normal distribution. Input, double B, the upper truncation limit. Output, double NORMAL_TRUNCATED_B_VARIANCE, the variance of the PDF. */ { double beta; double beta_cdf; double beta_pdf; double variance; beta = ( b - mu ) / s; beta_pdf = normal_01_pdf ( beta ); beta_cdf = normal_01_cdf ( beta ); variance = s * s * ( 1.0 - beta * beta_pdf / beta_cdf - pow ( beta_pdf / beta_cdf, 2 ) ); return variance; } /******************************************************************************/ void owen_values ( int *n_data, double *h, double *a, double *t ) /******************************************************************************/ /* Purpose: OWEN_VALUES returns some values of Owen's T function. Discussion: Owen's T function is useful for computation of the bivariate normal distribution and the distribution of a skewed normal distribution. Although it was originally formulated in terms of the bivariate normal function, the function can be defined more directly as T(H,A) = 1 / ( 2 * pi ) * Integral ( 0 <= X <= A ) e^(H^2*(1+X^2)/2) / (1+X^2) dX In Mathematica, the function can be evaluated by: fx = 1/(2*Pi) * Integrate [ E^(-h^2*(1+x^2)/2)/(1+x^2), {x,0,a} ] Licensing: This code is distributed under the MIT license. Modified: 10 December 2004 Author: John Burkardt Reference: Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *H, a parameter. Output, double *A, the upper limit of the integral. Output, double *T, the value of the function. */ { # define N_MAX 22 double a_vec[N_MAX] = { 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.1000000000000000E+02, 0.1000000000000000E+03 }; double h_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2500000000000000, 0.2500000000000000, 0.2500000000000000, 0.2500000000000000, 0.1250000000000000, 0.1250000000000000, 0.1250000000000000, 0.1250000000000000, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02 }; double t_vec[N_MAX] = { 0.4306469112078537E-01, 0.6674188216570097E-01, 0.7846818699308410E-01, 0.7929950474887259E-01, 0.6448860284750376E-01, 0.1066710629614485, 0.1415806036539784, 0.1510840430760184, 0.7134663382271778E-01, 0.1201285306350883, 0.1666128410939293, 0.1847501847929859, 0.7317273327500385E-01, 0.1237630544953746, 0.1737438887583106, 0.1951190307092811, 0.7378938035365546E-01, 0.1249951430754052, 0.1761984774738108, 0.1987772386442824, 0.2340886964802671, 0.2479460829231492 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *h = 0.0; *a = 0.0; *t = 0.0; } else { *h = h_vec[*n_data-1]; *a = a_vec[*n_data-1]; *t = t_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double pareto_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: PARETO_CDF evaluates the Pareto CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PARETO_CDF, the value of the CDF. */ { double cdf; if ( x < a ) { cdf = 0.0; } else { cdf = 1.0 - pow ( ( a / x ), b ); } return cdf; } /******************************************************************************/ double pareto_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: PARETO_CDF_INV inverts the Pareto CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PARETO_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PARETO_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a / pow ( 1.0 - cdf, 1.0 / b ); return x; } /******************************************************************************/ int pareto_check ( double a, double b ) /******************************************************************************/ /* Purpose: PARETO_CHECK checks the parameters of the Pareto CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int PARETO_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PARETO_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PARETO_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double pareto_mean ( double a, double b ) /******************************************************************************/ /* Purpose: PARETO_MEAN returns the mean of the Pareto PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PARETO_MEAN, the mean of the PDF. */ { double mean; if ( b <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PARETO_MEAN - Fatal error!\n" ); fprintf ( stderr, " For B <= 1, the mean does not exist.\n" ); mean = 0.0; return mean; } mean = b * a / ( b - 1.0 ); return mean; } /******************************************************************************/ double pareto_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: PARETO_PDF evaluates the Pareto PDF. Discussion: PDF(A,B;X) = B * A^B / X^(B+1). Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, the parameters of the PDF. 0.0 < A. 0.0 < B. Output, double PARETO_PDF, the value of the PDF. */ { double pdf; if ( x < a ) { pdf = 0.0; } else { pdf = b * pow ( a, b ) / pow ( x, ( b + 1.0 ) ); } return pdf; } /******************************************************************************/ double pareto_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: PARETO_SAMPLE samples the Pareto PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double PARETO_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = pareto_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double pareto_variance ( double a, double b ) /******************************************************************************/ /* Purpose: PARETO_VARIANCE returns the variance of the Pareto PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PARETO_VARIANCE, the variance of the PDF. */ { double variance; if ( b <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PARETO_VARIANCE(): Warning!\n" ); fprintf ( stderr, " For B <= 2, the variance does not exist.\n" ); variance = 0.0; return variance; } variance = a * a * b / ( pow ( ( b - 1.0 ), 2 ) * ( b - 2.0 ) ); return variance; } /******************************************************************************/ int pearson_05_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: PEARSON_05_CHECK checks the parameters of the Pearson 5 PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int PEARSON_05_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PEARSON_05_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PEARSON_05_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double pearson_05_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: PEARSON_05_MEAN evaluates the mean of the Pearson 5 PDF. Discussion: The mean is undefined for B <= 1. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PEARSON_05_MEAN, the mean of the PDF. */ { double mean; if ( b <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PEARSON_05_MEAN(): Warning!\n" ); fprintf ( stderr, " MEAN undefined for B <= 1.\n" ); mean = c; return mean; } mean = c + a / ( b - 1.0 ); return mean; } /******************************************************************************/ double pearson_05_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: PEARSON_05_PDF evaluates the Pearson 5 PDF. Discussion: PDF(A,B;X) = A^B * ( X - C )^(-B-1) * exp ( - A / ( X - C ) ) / Gamma ( B ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. C < X Input, double A, B, C, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; if ( x <= c ) { pdf = 0.0; } else { pdf = pow ( a, b ) * pow ( x - c, - b - 1.0 ) * exp ( - a / ( x - c ) ) / tgamma ( b ); } return pdf; } /******************************************************************************/ double pearson_05_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: PEARSON_05_SAMPLE samples the Pearson 5 PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < A, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double PEARSON_05_SAMPLE, a sample of the PDF. */ { double a2; double b2; double c2; double x; double x2; a2 = 0.0; b2 = b; c2 = 1.0 / a; x2 = gamma_sample ( a2, b2, c2, seed ); x = c + 1.0 / x2; return x; } /******************************************************************************/ int planck_check ( double a, double b ) /******************************************************************************/ /* Purpose: PLANCK_CHECK checks the parameters of the Planck PDF. Licensing: This code is distributed under the MIT license. Modified: 26 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int PLANCK_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PLANCK_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "PLANCK_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double planck_mean ( double a, double b ) /******************************************************************************/ /* Purpose: PLANCK_MEAN returns the mean of the Planck PDF. Licensing: This code is distributed under the MIT license. Modified: 26 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PLANCK_MEAN, the mean of the PDF. */ { double mean; mean = ( b + 1.0 ) * r8_zeta ( b + 2.0 ) / r8_zeta ( b + 1.0 ); return mean; } /******************************************************************************/ double planck_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: PLANCK_PDF evaluates the Planck PDF. Discussion: The Planck PDF has the form PDF(A,B;X) = A^(B+1) * X^B / ( exp ( A * X ) - 1 ) / K where K is the normalization constant, and has the value K = Gamma ( B + 1 ) * Zeta ( B + 1 ). The original Planck distribution governed the frequencies in blackbody radiation at a given temperature T, and has the form PDF(A;X) = K * X^3 / ( exp ( A * X ) - 1 ) where K = 15 / PI^4. Thus, in terms of the Planck PDF, the original Planck distribution has A = 1, B = 3. Licensing: This code is distributed under the MIT license. Modified: 26 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PLANCK_PDF, the value of the PDF. */ { double k; double pdf; if ( x < 0.0 ) { pdf = 0.0; } else { k = tgamma ( b + 1.0 ) * r8_zeta ( b + 1.0 ); pdf = pow ( a, b + 1.0 ) * pow ( x, b ) / ( exp ( a * x ) - 1.0 ) / k; } return pdf; } /******************************************************************************/ double planck_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: PLANCK_SAMPLE samples the Planck PDF. Licensing: This code is distributed under the MIT license. Modified: 26 October 2004 Author: John Burkardt Reference: Luc Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986, pages 552. Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double PLANCK_SAMPLE, a sample of the PDF. */ { double a2; double b2; double c2; double g; double x; int z; a2 = 0.0; b2 = 1.0; c2 = b + 1.0; g = gamma_sample ( a2, b2, c2, seed ); z = zipf_sample ( c2, seed ); x = g / ( a * ( double ) ( z ) ); return x; } /******************************************************************************/ double planck_variance ( double a, double b ) /******************************************************************************/ /* Purpose: PLANCK_VARIANCE returns the variance of the Planck PDF. Licensing: This code is distributed under the MIT license. Modified: 26 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double PLANCK_VARIANCE, the variance of the PDF. */ { double variance; variance = 0.0; return variance; } /******************************************************************************/ double point_distance_1d_pdf ( double x, int a, double b ) /******************************************************************************/ /* Purpose: POINT_DISTANCE_1D_PDF evaluates the point distance PDF in 1D. Discussion: It is assumed that a set of points has been generated in 1D according to a Poisson process. The number of points in a region of size LENGTH is a Poisson variate with mean value B * LENGTH. For a point chosen at random, we may now find the nearest Poisson point, the second nearest and so on. We are interested in the PDF that governs the expected behavior of the distances of rank A = 1, 2, 3, ... with Poisson density B. Note that this PDF is a form of the Gamma PDF.??? PDF(A,B;X) = B^A * X^( A - 1 ) * EXP ( - B * X ) / ( A - 1 )! Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X. Input, int A, indicates the degree of nearness of the point. A = 1 means the nearest point, A = 2 the second nearest, and so on. 0 < A. Input, double B, the point density. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; if ( a < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_1D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter A < 1.\n" ); exit ( 1 ); } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_1D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter B <= 0.0.\n" ); exit ( 1 ); } if ( x < 0.0 ) { pdf = 0.0; } else { pdf = pow ( b, a ) * pow ( x, a - 1 ) * exp ( - b * x ) / r8_factorial ( a - 1 ); } return pdf; } /******************************************************************************/ double point_distance_2d_pdf ( double x, int a, double b ) /******************************************************************************/ /* Purpose: POINT_DISTANCE_2D_PDF evaluates the point distance PDF in 2D. Discussion: It is assumed that a set of points has been generated in 2D according to a Poisson process. The number of points in a region of size AREA is a Poisson variate with mean value B * AREA. For a point chosen at random, we may now find the nearest Poisson point, the second nearest and so on. We are interested in the PDF that governs the expected behavior of the distances of rank A = 1, 2, 3, ... with Poisson density B. PDF(A,B;X) = 2 * ( B * PI )^A * X^( 2 * A - 1 ) * EXP ( - B * PI * X * X ) / ( A - 1 )! Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Daniel Zwillinger, editor, CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC Press, 1996, pages 579. Parameters: Input, double X, the argument of the PDF. 0.0 <= X. Input, int A, indicates the degree of nearness of the point. A = 1 means the nearest point, A = 2 the second nearest, and so on. 0 < A. Input, double B, the point density. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( a < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_2D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter A < 1.\n" ); exit ( 1 ); } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_2D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter B <= 0.0.\n" ); exit ( 1 ); } if ( x < 0.0 ) { pdf = 0.0; } else { pdf = 2.0 * pow ( b * r8_pi, a ) * pow ( x, 2 * a - 1 ) * exp ( - b * r8_pi * x * x ) / r8_factorial ( a - 1 ); } return pdf; } /******************************************************************************/ double point_distance_3d_pdf ( double x, int a, double b ) /******************************************************************************/ /* Purpose: POINT_DISTANCE_3D_PDF evaluates the point distance PDF in the 3D. Discussion: It is assumed that a set of points has been generated in 3D according to a Poisson process. The number of points in a region of size VOLUME is a Poisson variate with mean value B * VOLUME. For a point chosen at random, we may now find the nearest Poisson point, the second nearest and so on. We are interested in the PDF that governs the expected behavior of the distances of rank A = 1, 2, 3, ... with Poisson density B. PDF(A,B;X) = 3 * ( (4/3) * B * PI )^A * X^( 3 * A - 1 ) * EXP ( - (4/3) * B * PI * X * X * X ) / ( A - 1 )! Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Daniel Zwillinger, editor, CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC Press, 1996, pages 580. Parameters: Input, double X, the argument of the PDF. 0.0 <= X. Input, int A, indicates the degree of nearness of the point. A = 1 means the nearest point, A = 2 the second nearest, and so on. 0 < A. Input, double B, the Poisson point density. 0.0 < B. Output, double PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( a < 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_3D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter A < 1.\n" ); exit ( 1 ); } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POINT_DISTANCE_3D_PDF - Fatal error!\n" ); fprintf ( stderr, " Input parameter B <= 0.0.\n" ); exit ( 1 ); } if ( x < 0.0 ) { pdf = 0.0; } else { pdf = 3.0 * pow ( ( ( 4.0 / 3.0 ) * b * r8_pi ), a ) * pow ( x, 3 * a - 1 ) * exp ( - ( 4.0 / 3.0 ) * b * r8_pi * x * x * x ) / r8_factorial ( a - 1 ); } return pdf; } /******************************************************************************/ double poisson_cdf ( int k, double a ) /******************************************************************************/ /* Purpose: POISSON_CDF evaluates the Poisson CDF. Discussion: CDF(K,A) is the probability that the number of events observed in a unit time period will be no greater than K, given that the expected number of events in a unit time period is A. Licensing: This code is distributed under the MIT license. Modified: 28 January 1999 Author: John Burkardt Parameters: Input, int K, the argument of the CDF. Input, double A, the parameter of the PDF. 0 < A. Output, double POISSON_CDF, the value of the CDF. */ { double cdf; int i; double last; double next; /* Check. */ if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_CDF - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } /* Special cases. */ if ( k < 0 ) { cdf = 0.0; return cdf; } /* General case. */ next = exp ( - a ); cdf = next; for ( i = 1; i <= k; i++ ) { last = next; next = last * a / ( double ) i; cdf = cdf + next; } return cdf; } /******************************************************************************/ int poisson_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: POISSON_CDF_INV inverts the Poisson CDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double CDF, a value of the CDF. 0 <= CDF < 1. Input, double A, the parameter of the PDF. 0.0 < A. Output, int POISSON_CDF_INV, the corresponding argument. */ { int i; double last; double newval; double sum2; double sumold; int x; int xmax = 100; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } /* Now simply start at X = 0, and find the first value for which CDF(X-1) <= CDF <= CDF(X). */ sum2 = 0.0; for ( i = 0; i <= xmax; i++ ) { sumold = sum2; if ( i == 0 ) { newval = exp ( - a ); sum2 = newval; } else { last = newval; newval = last * a / ( double ) ( i ); sum2 = sum2 + newval; } if ( sumold <= cdf && cdf <= sum2 ) { x = i; return x; } } fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_CDF_INV(): Warning!\n" ); fprintf ( stderr, " Exceeded XMAX = %d\n", xmax ); x = xmax; return x; } /******************************************************************************/ void poisson_cdf_values ( int *n_data, double *a, int *x, double *fx ) /******************************************************************************/ /* Purpose: POISSON_CDF_VALUES returns some values of the Poisson CDF. Discussion: CDF(X)(A) is the probability of at most X successes in unit time, given that the expected mean number of successes is A. In Mathematica, the function can be evaluated by: Needs["Statistics`DiscreteDistributions`] dist = PoissonDistribution [ a ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 20 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Daniel Zwillinger, CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC Press, 1996, pages 653-658. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, the parameter of the function. Output, int *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 21 double a_vec[N_MAX] = { 0.02, 0.10, 0.10, 0.50, 0.50, 0.50, 1.00, 1.00, 1.00, 1.00, 2.00, 2.00, 2.00, 2.00, 5.00, 5.00, 5.00, 5.00, 5.00, 5.00, 5.00 }; double fx_vec[N_MAX] = { 0.9801986733067553, 0.9048374180359596, 0.9953211598395555, 0.6065306597126334, 0.9097959895689501, 0.9856123220330293, 0.3678794411714423, 0.7357588823428846, 0.9196986029286058, 0.9810118431238462, 0.1353352832366127, 0.4060058497098381, 0.6766764161830635, 0.8571234604985470, 0.6737946999085467E-02, 0.4042768199451280E-01, 0.1246520194830811, 0.2650259152973617, 0.4404932850652124, 0.6159606548330631, 0.7621834629729387 }; int x_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *x = 0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int poisson_check ( double a ) /******************************************************************************/ /* Purpose: POISSON_CHECK checks the parameter of the Poisson PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A. Output, int POISSON_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double poisson_kernel ( double r, int n, double c[], double x[], double y[] ) /******************************************************************************/ /* Purpose: POISSON_KERNEL evaluates the Poisson kernel. Discussion: P(X,Y) = ( R^2 - |X-C|^2 ) / ( R * A * |X-Y|^N ) where the N-dimensional ball has radius R and center C, and A is the area of the unit sphere. Licensing: This code is distributed under the MIT license. Modified: 22 November 2011 Author: John Burkardt Parameters: Input, double R, the radius of the ball. Input, int N, the spatial dimension. Input, double C(N), the center of the ball. Input, double X(N), a point inside the ball. Input, double Y(N), a point on the surface of the ball. Output, double POISSON_KERNEL, the Poisson kernel function P(X,Y). */ { double area; double b; double p; double t; double xc_diff_norm; double xy_diff_norm; xc_diff_norm = r8vec_diff_norm ( n, x, c ); xy_diff_norm = r8vec_diff_norm ( n, x, y ); area = sphere_unit_area_nd ( n ); t = ( r + xc_diff_norm ) * ( r - xc_diff_norm ); b = r * area * pow ( xy_diff_norm, n ); p = t / b; return p; } /******************************************************************************/ double poisson_mean ( double a ) /******************************************************************************/ /* Purpose: POISSON_MEAN returns the mean of the Poisson PDF. Licensing: This code is distributed under the MIT license. Modified: 01 February 1999 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Output, double POISSON_MEAN, the mean of the PDF. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_MEAN - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } return a; } /******************************************************************************/ double poisson_pdf ( int k, double a ) /******************************************************************************/ /* Purpose: POISSON_PDF evaluates the Poisson PDF. Discussion: PDF(K,A) is the probability that the number of events observed in a unit time period will be K, given the expected number of events in a unit time. The parameter A is the expected number of events per unit time. The Poisson PDF is a discrete version of the exponential PDF. The time interval between two Poisson events is a random variable with the exponential PDF. Licensing: This code is distributed under the MIT license. Modified: 01 February 1999 Author: John Burkardt Parameters: Input, int K, the argument of the PDF. Input, double A, the parameter of the PDF. 0 < A. Output, double POISSON_PDF, the value of the PDF. */ { double pdf; /* Check. */ if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_PDF - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); return (0.0); } pdf = exp ( - a ) * pow ( a, ( double ) k ) / r8_factorial ( k ); return pdf; } /******************************************************************************/ int poisson_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: POISSON_SAMPLE samples the Poisson PDF. Licensing: This code is distributed under the MIT license. Modified: 02 February 1999 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Input/output, int *SEED, the random number generator seed. Output, int POISSON_SAMPLE, a sample of the PDF. */ { double cdf; int i; int KMAX = 100; double last; double next; double sum; double sumold; /* Check. */ if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } /* Pick a random value of CDF. */ cdf = uniform_01_sample ( seed ); /* Now simply start at K = 0, and find the first value for which CDF(K-1) <= CDF <= CDF(K). */ sum = 0.0; for ( i = 0; i <= KMAX; i++ ) { sumold = sum; if ( i == 0 ) { next = exp ( -a ); sum = next; } else { last = next; next = last * a / ( double ) i; sum = sum + next; } if ( sumold <= cdf && cdf <= sum ) { return i; } } fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_SAMPLE(): Warning!\n" ); fprintf ( stderr, " Exceeded KMAX = %d\n", KMAX ); return KMAX; } /******************************************************************************/ double poisson_variance ( double a ) /******************************************************************************/ /* Purpose: POISSON_VARIANCE returns the variance of the Poisson PDF. Licensing: This code is distributed under the MIT license. Modified: 01 February 1999 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0 < A. Output, double POISSON_VARIANCE, the variance of the PDF. */ { /* Check. */ if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POISSON_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " A <= 0.\n" ); return (0.0); } return a; } /******************************************************************************/ double power_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: power_cdf() evaluates the Power CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Input: double X, the argument of the CDF. double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B, Output: double POWER_CDF, the value of the CDF. */ { double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else if ( x <= b ) { cdf = pow ( ( x / b ), a ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double power_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: power_cdf_inv() inverts the Power CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double POWER_CDF_INV, the argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = 0.0; } else if ( cdf < 1.0 ) { x = b * exp ( log ( cdf ) / a ); } else { x = b; } return x; } /******************************************************************************/ int power_check ( double a, double b ) /******************************************************************************/ /* Purpose: power_check() checks the parameter of the Power PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, int POWER_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double power_mean ( double a, double b ) /******************************************************************************/ /* Purpose: power_mean() returns the mean of the Power PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output, double POWER_MEAN, the mean of the PDF. */ { double mean; mean = a * b / ( a + 1.0 ); return mean; } /******************************************************************************/ double power_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: power_pdf() evaluates the Power PDF. Discussion: PDF(A;X) = (A/B) * (X/B)^(A-1) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: Daniel Zwillinger and Stephen Kokoska, CRC Standard Probability and Statistics Tables and Formulae, Chapman and Hall/CRC, 2000, pages 152-153. Input: double X, the argument of the PDF. 0.0 <= X <= B. double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output: double POWER_PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 || b < x ) { pdf = 0.0; } else { pdf = ( a / b ) * pow ( x / b, a - 1.0 ); } return pdf; } /******************************************************************************/ double power_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: power_sample() samples the Power PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double POWER_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = power_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double power_variance ( double a, double b ) /******************************************************************************/ /* Purpose: power_variance() returns the variance of the Power PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Input: double A, B, the parameters of the PDF. 0.0 < A, 0.0 < B. Output: double POWER_VARIANCE, the variance of the PDF. */ { double variance; variance = b * b * a / ( ( a + 1.0 ) * ( a + 1.0 ) * ( a + 2.0 ) ); return variance; } /******************************************************************************/ void psi_values ( int *n_data, double *x, double *fx ) /******************************************************************************/ /* Purpose: PSI_VALUES returns some values of the Psi or Digamma function. Discussion: In Mathematica, the function can be evaluated by: PolyGamma[x] or Polygamma[0,x] PSI(X) = d ln ( Gamma ( X ) ) / d X = Gamma'(X) / Gamma(X) PSI(1) = -Euler's constant. PSI(X+1) = PSI(X) + 1 / X. Licensing: This code is distributed under the MIT license. Modified: 17 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 11 double fx_vec[N_MAX] = { -0.5772156649015329, -0.4237549404110768, -0.2890398965921883, -0.1691908888667997, -0.6138454458511615E-01, 0.3648997397857652E-01, 0.1260474527734763, 0.2085478748734940, 0.2849914332938615, 0.3561841611640597, 0.4227843350984671 }; double x_vec[N_MAX] = { 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double quasigeometric_cdf ( int x, double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_CDF evaluates the Quasigeometric CDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, int X, the maximum number of trials. Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, double QUASIGEOMETRIC_CDF, the value of the CDF. */ { double cdf; if ( x < 0 ) { cdf = 0.0; } else if ( x == 0 ) { cdf = a; } else if ( b == 0.0 ) { cdf = 1.0; } else { cdf = a + ( 1.0 - a ) * ( 1.0 - pow ( b, x ) ); } return cdf; } /******************************************************************************/ int quasigeometric_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_CDF_INV inverts the Quasigeometric CDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0 Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, int QUASIGEOMETRIC_CDF_INV, the corresponding value of X. */ { int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "QUASIGEOMETRIC_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf < a ) { x = 0; } else if ( b == 0.0 ) { x = 1; } else { x = 1 + ( int ) ( ( log ( 1.0 - cdf ) - log ( 1.0 - a ) ) / log ( b ) ); } return x; } /******************************************************************************/ int quasigeometric_check ( double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_CHECK checks the parameters of the Quasigeometric CDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, int QUASIGEOMETRIC_CHECK, is true if the parameters are legal. */ { int check; if ( a < 0.0 || 1.0 < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "QUASIGEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 0 or 1 < A.\n" ); check = 0; exit ( 1 ); } if ( b < 0.0 || 1.0 <= b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "QUASIGEOMETRIC_CHECK(): Warning!\n" ); fprintf ( stderr, " B < 0 or 1 <= B.\n" ); check = 0; exit ( 1 ); } check = 1; return check; } /******************************************************************************/ double quasigeometric_mean ( double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_MEAN returns the mean of the Quasigeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, double MEAN, the mean of the PDF. */ { double mean; mean = ( 1.0 - a ) / ( 1.0 - b ); return mean; } /******************************************************************************/ double quasigeometric_pdf ( int x, double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_PDF evaluates the Quasigeometric PDF. Discussion: PDF(A,B;X) = A if 0 = X; = (1-A) * (1-B) * B^(X-1) if 1 <= X. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Reference: Darren Glass, Philip Lowry, Quasiquasigeometric Distributions and Extra Inning Baseball Games, Mathematics Magazine, Volume 81, Number 2, April 2008, pages 127-137. Paul Nahin, Digital Dice: Computational Solutions to Practical Probability Problems, Princeton University Press, 2008, ISBN13: 978-0-691-12698-2, LC: QA273.25.N34. Parameters: Input, int X, the independent variable. 0 <= X Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, double PDF, the value of the PDF. */ { double pdf; if ( x < 0 ) { pdf = 0.0; } else if ( x == 0 ) { pdf = a; } else if ( b == 0.0 ) { if ( x == 1 ) { pdf = 1.0; } else { pdf = 0.0; } } else { pdf = ( 1.0 - a ) * ( 1.0 - b ) * pow ( b, x - 1 ); } return pdf; } /******************************************************************************/ int quasigeometric_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_SAMPLE samples the Quasigeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Input/output, int *SEED, a seed for the random number generator. Output, int QUASIGEOMETRIC_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = quasigeometric_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double quasigeometric_variance ( double a, double b ) /******************************************************************************/ /* Purpose: QUASIGEOMETRIC_VARIANCE returns the variance of the Quasigeometric PDF. Licensing: This code is distributed under the MIT license. Modified: 29 January 2009 Author: John Burkardt Parameters: Input, double A, the probability of 0 successes. 0.0 <= A <= 1.0. Input, double B, the depreciation constant. 0.0 <= B < 1.0. Output, double QUASIGEOMETRIC_VARIANCE, the variance of the PDF. */ { double variance; variance = ( 1.0 - a ) * ( a + b ) / ( 1.0 - b ) / ( 1.0 - b ); return variance; } /******************************************************************************/ double r8_beta ( double x, double y ) /******************************************************************************/ /* Purpose: R8_BETA returns the value of the Beta function. Discussion: BETA(X,Y) = ( GAMMA(X) * GAMMA(Y) ) / GAMMA(X+Y) BETA(X,Y) = BETA(Y,X). BETA(X,Y) = Integral ( 0 <= T <= 1 ) T^(X-1) (1-T)^(Y-1) dT. BETA(X,Y) = GAMMA(X) * GAMMA(Y) / GAMMA(X+Y) Both X and Y must be greater than 0. Licensing: This code is distributed under the MIT license. Modified: 09 May 2003 Author: John Burkardt Parameters: Input, double X, Y, the two parameters that define the Beta function. X and Y must be greater than 0. Output, double R8_BETA, the value of the Beta function. */ { double value; if ( x <= 0.0 || y <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_BETA - Fatal error!\n" ); fprintf ( stderr, " Both X and Y must be greater than 0.\n" ); exit ( 1 ); } value = exp ( lgamma ( x ) + lgamma ( y ) - lgamma ( x + y ) ); return value; } /******************************************************************************/ int r8_ceiling ( double r ) /******************************************************************************/ /* Purpose: R8_CEILING rounds an R8 "up" to the nearest integer. Example: R R8_CEILING -1.1 -1 -1.0 -1 -0.9 0 0.0 0 5.0 5 5.1 6 5.9 6 6.0 6 Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double R, the real value to be rounded up. Output, int R8_CEILING, the rounded value. */ { int value; value = ( int ) ( r ); if ( ( double ) value < r ) { value = value + 1; } return value; } /******************************************************************************/ double r8_csc ( double theta ) /******************************************************************************/ /* Purpose: R8_CSC returns the cosecant of X. Discussion: R8_CSC ( THETA ) = 1.0 / SIN ( THETA ) Licensing: This code is distributed under the MIT license. Modified: 05 March 2012 Author: John Burkardt Parameters: Input, double THETA, the angle, in radians, whose cosecant is desired. It must be the case that SIN ( THETA ) is not zero. Output, double R8_CSC, the cosecant of THETA. */ { double value; value = sin ( theta ); if ( value == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_CSC - Fatal error!\n" ); fprintf ( stderr, " Cosecant undefined for THETA = %g\n", theta ); exit ( 1 ); } value = 1.0 / value; return value; } /******************************************************************************/ double r8_error_f ( double x ) /******************************************************************************/ /* Purpose: R8_ERROR_F evaluates the error function ERF. Discussion: Since some compilers already supply a routine named ERF which evaluates the error function, this routine has been given a distinct, if somewhat unnatural, name. The function is defined by: ERF(X) = ( 2 / sqrt ( PI ) ) * Integral ( 0 <= T <= X ) EXP ( - T^2 ) dT. Properties of the function include: Limit ( X -> -Infinity ) ERF(X) = -1.0; ERF(0) = 0.0; ERF(0.476936...) = 0.5; Limit ( X -> +Infinity ) ERF(X) = +1.0. 0.5 * ( ERF(X/sqrt(2)) + 1 ) = Normal_01_CDF(X) Licensing: This code is distributed under the MIT license. Modified: 17 November 2006 Author: Original FORTRAN77 version by William Cody. This version by John Burkardt. Reference: William Cody, "Rational Chebyshev Approximations for the Error Function", Mathematics of Computation, 1969, pages 631-638. Parameters: Input, double X, the argument of the error function. Output, double R8_ERROR_F, the value of the error function. */ { double a[5] = { 3.16112374387056560, 1.13864154151050156E+02, 3.77485237685302021E+02, 3.20937758913846947E+03, 1.85777706184603153E-01 }; double b[4] = { 2.36012909523441209E+01, 2.44024637934444173E+02, 1.28261652607737228E+03, 2.84423683343917062E+03 }; double c[9] = { 5.64188496988670089E-01, 8.88314979438837594, 6.61191906371416295E+01, 2.98635138197400131E+02, 8.81952221241769090E+02, 1.71204761263407058E+03, 2.05107837782607147E+03, 1.23033935479799725E+03, 2.15311535474403846E-08 }; double d[8] = { 1.57449261107098347E+01, 1.17693950891312499E+02, 5.37181101862009858E+02, 1.62138957456669019E+03, 3.29079923573345963E+03, 4.36261909014324716E+03, 3.43936767414372164E+03, 1.23033935480374942E+03 }; double del; double erfxd; int i; double p[6] = { 3.05326634961232344E-01, 3.60344899949804439E-01, 1.25781726111229246E-01, 1.60837851487422766E-02, 6.58749161529837803E-04, 1.63153871373020978E-02 }; double q[5] = { 2.56852019228982242, 1.87295284992346047, 5.27905102951428412E-01, 6.05183413124413191E-02, 2.33520497626869185E-03 }; double sqrpi = 0.56418958354775628695; double thresh = 0.46875; double xabs; double xbig = 26.543; double xden; double xnum; double xsmall = 1.11E-16; double xsq; xabs = fabs ( ( x ) ); /* Evaluate ERF(X) for |X| <= 0.46875. */ if ( xabs <= thresh ) { if ( xsmall < xabs ) { xsq = xabs * xabs; } else { xsq = 0.0; } xnum = a[4] * xsq; xden = xsq; for ( i = 0; i < 3; i++ ) { xnum = ( xnum + a[i] ) * xsq; xden = ( xden + b[i] ) * xsq; } erfxd = x * ( xnum + a[3] ) / ( xden + b[3] ); } /* Evaluate ERFC(X) for 0.46875 <= |X| <= 4.0. */ else if ( xabs <= 4.0 ) { xnum = c[8] * xabs; xden = xabs; for ( i = 0; i < 7; i++ ) { xnum = ( xnum + c[i] ) * xabs; xden = ( xden + d[i] ) * xabs; } erfxd = ( xnum + c[7] ) / ( xden + d[7] ); xsq = ( ( double ) ( ( int ) ( xabs * 16.0 ) ) ) / 16.0; del = ( xabs - xsq ) * ( xabs + xsq ); erfxd = exp ( - xsq * xsq ) * exp ( -del ) * erfxd; erfxd = ( 0.5 - erfxd ) + 0.5; if ( x < 0.0 ) { erfxd = -erfxd; } } /* Evaluate ERFC(X) for 4.0 < |X|. */ else { if ( xbig <= xabs ) { if ( 0.0 < x ) { erfxd = 1.0; } else { erfxd = - 1.0; } } else { xsq = 1.0 / ( xabs * xabs ); xnum = p[5] * xsq; xden = xsq; for ( i = 0; i < 4; i++ ) { xnum = ( xnum + p[i] ) * xsq; xden = ( xden + q[i] ) * xsq; } erfxd = xsq * ( xnum + p[4] ) / ( xden + q[4] ); erfxd = ( sqrpi - erfxd ) / xabs; xsq = ( ( double ) ( ( int ) ( xabs * 16.0 ) ) ) / 16.0; del = ( xabs - xsq ) * ( xabs + xsq ); erfxd = exp ( - xsq * xsq ) * exp ( - del ) * erfxd; erfxd = ( 0.5 - erfxd ) + 0.5; if ( x < 0.0 ) { erfxd = -erfxd; } } } return erfxd; } /******************************************************************************/ double r8_error_f_inverse ( double y ) /******************************************************************************/ /* Purpose: R8_ERROR_F_INVERSE inverts the error function ERF. Licensing: This code is distributed under the MIT license. Modified: 05 August 2010 Author: John Burkardt Parameters: Input, double Y, the value of the error function. Output, double R8_ERROR_F_INVERSE, the value X such that ERF(X) = Y. */ { double value; double x; double z; z = ( y + 1.0 ) / 2.0; x = normal_01_cdf_inv ( z ); value = x / sqrt ( 2.0 ); return value; } /******************************************************************************/ double r8_factorial ( int n ) /******************************************************************************/ /* Purpose: R8_FACTORIAL computes the factorial of N. Discussion: factorial ( N ) = product ( 1 <= I <= N ) I Licensing: This code is distributed under the MIT license. Modified: 26 June 2008 Author: John Burkardt Parameters: Input, int N, the argument of the factorial function. If N is less than 1, the function value is returned as 1. Output, double R8_FACTORIAL, the factorial of N. */ { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } /******************************************************************************/ double r8_gamma_inc ( double p, double x ) /******************************************************************************/ /* Purpose: R8_GAMMA_INC computes the incomplete Gamma function. Discussion: GAMMA_INC(P, 0) = 0, GAMMA_INC(P,+oo) = 1. GAMMA_INC(P,X) = Integral ( 0 <= T <= X ) T^(P-1) EXP(-T) DT / GAMMA(P). Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: Original FORTRAN77 version by B L Shea. This version by John Burkardt. Reference: B L Shea, Chi-squared and Incomplete Gamma Integral, Algorithm AS239, Applied Statistics, Volume 37, Number 3, 1988, pages 466-473. Parameters: Input, double P, the exponent parameter. 0.0 < P. Input, double X, the integral limit parameter. If X is less than or equal to 0, the value is returned as 0. Output, double R8_GAMMA_INC, the value of the function. */ { double a; double arg; double b; double c; double exp_arg_min = -88.0; double overflow = 1.0E+37; double plimit = 1000.0; double pn1; double pn2; double pn3; double pn4; double pn5; double pn6; double rn; double value; double tol = 1.0E-07; double xbig = 1.0E+08; value = 0.0; if ( p <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_GAMMA_INC - Fatal error!\n" ); fprintf ( stderr, " Parameter P <= 0.\n" ); exit ( 1 ); } if ( x <= 0.0 ) { value = 0.0; return value; } /* Use a normal approximation if PLIMIT < P. */ if ( plimit < p ) { pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) + 1.0 / ( 9.0 * p ) - 1.0 ); value = normal_01_cdf ( pn1 ); return value; } /* Is X extremely large compared to P? */ if ( xbig < x ) { value = 1.0; return value; } /* Use Pearson's series expansion. (P is not large enough to force overflow in the log of Gamma. */ if ( x <= 1.0 || x < p ) { arg = p * log ( x ) - x - lgamma ( p + 1.0 ); c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= tol ) { break; } } arg = arg + log ( value ); if ( exp_arg_min <= arg ) { value = exp ( arg ); } else { value = 0.0; } } /* Use a continued fraction expansion. */ else { arg = p * log ( x ) - x - lgamma ( p ); a = 1.0 - p; b = a + x + 1.0; c = 0.0; pn1 = 1.0; pn2 = x; pn3 = x + 1.0; pn4 = x * b; value = pn3 / pn4; for ( ; ; ) { a = a + 1.0; b = b + 2.0; c = c + 1.0; pn5 = b * pn3 - a * c * pn1; pn6 = b * pn4 - a * c * pn2; if ( 0.0 < fabs ( pn6 ) ) { rn = pn5 / pn6; if ( fabs ( value - rn ) <= fmin ( tol, tol * rn ) ) { arg = arg + log ( value ); if ( exp_arg_min <= arg ) { value = 1.0 - exp ( arg ); } else { value = 1.0; } return value; } value = rn; } pn1 = pn3; pn2 = pn4; pn3 = pn5; pn4 = pn6; /* Rescale terms in continued fraction if terms are large. */ if ( overflow <= fabs ( pn5 ) ) { pn1 = pn1 / overflow; pn2 = pn2 / overflow; pn3 = pn3 / overflow; pn4 = pn4 / overflow; } } } return value; } /******************************************************************************/ double r8_modp ( double x, double y ) /******************************************************************************/ /* Purpose: R8_MODP returns the nonnegative remainder of R8 division. Discussion: If REM = R8_MODP ( X, Y ) RMULT = ( X - REM ) / Y then X = Y * RMULT + REM where REM is always nonnegative. The MOD function computes a result with the same sign as the quantity being divided. Thus, suppose you had an angle A, and you wanted to ensure that it was between 0 and 360. Then mod(A,360.0) would do, if A was positive, but if A was negative, your result would be between -360 and 0. On the other hand, R8_MODP(A,360.0) is between 0 and 360, always. Example: I J MOD R8_MODP R8_MODP Factorization 107 50 7 7 107 = 2 * 50 + 7 107 -50 7 7 107 = -2 * -50 + 7 -107 50 -7 43 -107 = -3 * 50 + 43 -107 -50 -7 43 -107 = 3 * -50 + 43 Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the number to be divided. Input, double Y, the number that divides X. Output, double R8_MODP, the nonnegative remainder when X is divided by Y. */ { double value; if ( y == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_MODP - Fatal error!\n" ); fprintf ( stderr, " R8_MODP ( X, Y ) called with Y = %g\n", y ); exit ( 1 ); } value = x - ( ( double ) ( ( int ) ( x / y ) ) ) * y; if ( value < 0.0 ) { value = value + fabs ( y ); } return value; } /******************************************************************************/ int r8_nint ( double x ) /******************************************************************************/ /* Purpose: R8_NINT returns the nearest integer to an R8. Example: X R8_NINT 1.3 1 1.4 1 1.5 1 or 2 1.6 2 0.0 0 -0.7 -1 -1.1 -1 -1.6 -2 Licensing: This code is distributed under the MIT license. Modified: 26 August 2004 Author: John Burkardt Parameters: Input, double X, the value. Output, int R8_NINT, the nearest integer to X. */ { int s; if ( x < 0.0 ) { s = -1; } else { s = 1; } return ( s * ( int ) ( fabs ( x ) + 0.5 ) ); } /******************************************************************************/ double r8_pi ( ) /******************************************************************************/ /* Purpose: R8_PI returns the value of PI. Licensing: This code is distributed under the MIT license. Modified: 06 May 2003 Author: John Burkardt Parameters: Output, double R8_PI, the value of PI. */ { const double pi = 3.14159265358979323; return pi; } /******************************************************************************/ double r8_sign ( double x ) /******************************************************************************/ /* Purpose: R8_SIGN returns the sign of an R8. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the number whose sign is desired. Output, double R8_SIGN, the sign of X. */ { if ( x < 0.0 ) { return ( -1.0 ); } else { return ( 1.0 ); } } /******************************************************************************/ double r8_uniform_01 ( int *seed ) /******************************************************************************/ /* Purpose: R8_UNIFORM_01 returns a unit pseudorandom R8. Discussion: This routine implements the recursion seed = 16807 * seed mod ( 2^31 - 1 ) unif = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. Licensing: This code is distributed under the MIT license. Modified: 11 August 2004 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Springer Verlag, pages 201-202, 1983. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Parameters: Input/output, int *SEED, the "seed" value. Normally, this value should not be 0. On output, SEED has been updated. Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between 0 and 1. */ { int k; double r; k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } /* Although SEED can be represented exactly as a 32 bit integer, it generally cannot be represented exactly as a 32 bit real number! */ r = ( double ) ( *seed ) * 4.656612875E-10; return r; } /******************************************************************************/ double r8_zeta ( double p ) /******************************************************************************/ /* Purpose: R8_ZETA estimates the Riemann Zeta function. Discussion: For 1 < P, the Riemann Zeta function is defined as: ZETA ( P ) = Sum ( 1 <= N < Infinity ) 1 / N^P Licensing: This code is distributed under the MIT license. Modified: 09 March 2016 Author: John Burkardt Reference: Daniel Zwillinger, editor, CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC Press, 1996. Parameters: Input, double P, the power to which the integers are raised. P must be greater than 1. For integral P up to 20, a precomputed value of ZETA is returned; otherwise the infinite sum is approximated. Output, double R8_ZETA, an approximation to the Riemann Zeta function. */ { int n; const double r8_pi = 3.14159265358979323; double value; double zsum; double zsum_old; if ( p <= 1.0 ) { value = HUGE_VAL; } else if ( p == 2.0 ) { value = pow ( r8_pi, 2 ) / 6.0; } else if ( p == 3.0 ) { value = 1.2020569032; } else if ( p == 4.0 ) { value = pow ( r8_pi, 4 ) / 90.0; } else if ( p == 5.0 ) { value = 1.0369277551; } else if ( p == 6.0 ) { value = pow ( r8_pi, 6 ) / 945.0; } else if ( p == 7.0 ) { value = 1.0083492774; } else if ( p == 8.0 ) { value = pow ( r8_pi, 8 ) / 9450.0; } else if ( p == 9.0 ) { value = 1.0020083928; } else if ( p == 10.0 ) { value = pow ( r8_pi, 10 ) / 93555.0; } else if ( p == 11.0 ) { value = 1.0004941886; } else if ( p == 12.0 ) { value = 1.0002460866; } else if ( p == 13.0 ) { value = 1.0001227133; } else if ( p == 14.0 ) { value = 1.0000612482; } else if ( p == 15.0 ) { value = 1.0000305882; } else if ( p == 16.0 ) { value = 1.0000152823; } else if ( p == 17.0 ) { value = 1.0000076372; } else if ( p == 18.0 ) { value = 1.0000038173; } else if ( p == 19.0 ) { value = 1.0000019082; } else if ( p == 20.0 ) { value = 1.0000009540; } else { zsum = 0.0; n = 0; for ( ; ; ) { n = n + 1; zsum_old = zsum; zsum = zsum + 1.0 / pow ( ( double ) n, p ); if ( zsum <= zsum_old ) { break; } } value = zsum; } return value; } /******************************************************************************/ void r8mat_print ( int m, int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8MAT_PRINT prints an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Entry A(I,J) is stored as A[I+J*M] Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, int M, the number of rows in A. Input, int N, the number of columns in A. Input, double A[M*N], the M by N matrix. Input, char *TITLE, a title. */ { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } /******************************************************************************/ void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: R8MAT_PRINT_SOME prints some of an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 26 June 2013 Author: John Burkardt Parameters: Input, int M, the number of rows of the matrix. M must be positive. Input, int N, the number of columns of the matrix. N must be positive. Input, double A[M*N], the matrix. Input, int ILO, JLO, IHI, JHI, designate the first row and column, and the last row and column to be printed. Input, char *TITLE, a title. */ { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); if ( m <= 0 || n <= 0 ) { fprintf ( stdout, "\n" ); fprintf ( stdout, " (None)\n" ); return; } /* Print the columns of the matrix, in strips of 5. */ for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } fprintf ( stdout, "\n" ); /* For each column J in the current range... Write the header. */ fprintf ( stdout, " Col: "); for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, " %7d ", j - 1 ); } fprintf ( stdout, "\n" ); fprintf ( stdout, " Row\n" ); fprintf ( stdout, "\n" ); /* Determine the range of the rows in this strip. */ if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( m < ihi ) { i2hi = m; } else { i2hi = ihi; } for ( i = i2lo; i <= i2hi; i++ ) { /* Print out (up to) 5 entries in row I, that lie in the current strip. */ fprintf ( stdout, "%5d:", i - 1 ); for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, " %14f", a[i-1+(j-1)*m] ); } fprintf ( stdout, "\n" ); } } return; # undef INCX } /******************************************************************************/ double r8poly_value_horner ( int m, double c[], double x ) /******************************************************************************/ /* Purpose: R8POLY_VALUE_HORNER evaluates a polynomial using Horner's method. Discussion: The polynomial p(x) = c0 + c1 * x + c2 * x^2 + ... + cm * x^m is to be evaluated at the value X. Licensing: This code is distributed under the MIT license. Modified: 02 January 2015 Author: John Burkardt Parameters: Input, int M, the degree of the polynomial. Input, double C[M+1], the coefficients of the polynomial. C[0] is the constant term. Input, double X, the point at which the polynomial is to be evaluated. Output, double R8POLY_VALUE_HORNER, the value of the polynomial at X. */ { int i; double value; value = c[m]; for ( i = m - 1; 0 <= i; i-- ) { value = value * x + c[i]; } return value; } /******************************************************************************/ double *r8row_max ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8ROW_MAX returns the maximums of an R8ROW. Example: A = 1 2 3 2 6 7 MAX = 3 7 Licensing: This code is distributed under the MIT license. Modified: 29 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, double A[M*N], the array to be examined. Output, double R8ROW_MAX[M], the maximums of the rows. */ { int i; int j; double *amax; amax = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { amax[i] = a[i+0*m]; for ( j = 1; j < n; j++ ) { if ( amax[i] < a[i+j*m] ) { amax[i] = a[i+j*m]; } } } return amax; } /******************************************************************************/ double *r8row_mean ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8ROW_MEAN returns the means of an R8ROW. Example: A = 1 2 3 2 6 7 MEAN = 2 5 Licensing: This code is distributed under the MIT license. Modified: 29 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, double A[M*N], the array to be examined. Output, double R8ROW_MEAN[M], the means, or averages, of the rows. */ { int i; int j; double *mean; mean = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { mean[i] = 0.0; for ( j = 0; j < n; j++ ) { mean[i] = mean[i] + a[i+j*m]; } mean[i] = mean[i] / ( double ) ( n ); } return mean; } /******************************************************************************/ double *r8row_min ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8ROW_MIN returns the minimums of an R8ROW. Example: A = 1 2 3 2 6 7 MIN = 1 2 Licensing: This code is distributed under the MIT license. Modified: 29 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, double A[M*N], the array to be examined. Output, double R8ROW_MIN[M], the minimums of the rows. */ { int i; int j; double *amin; amin = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { amin[i] = a[i+0*m]; for ( j = 1; j < n; j++ ) { if ( a[i+j*m] < amin[i] ) { amin[i] = a[i+j*m]; } } } return amin; } /******************************************************************************/ double *r8row_variance ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8ROW_VARIANCE returns the variances of an R8ROW. Licensing: This code is distributed under the MIT license. Modified: 29 October 2004 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns in the array. Input, double A[M*N], the array whose variances are desired. Output, double R8ROW_VARIANCE[M], the variances of the rows. */ { int i; int j; double mean; double *variance; variance = ( double * ) malloc ( m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { mean = 0.0; for ( j = 0; j < n; j++ ) { mean = mean + a[i+j*m]; } mean = mean / ( double ) ( n ); variance[i] = 0.0; for ( j = 0; j < n; j++ ) { variance[i] = variance[i] + pow ( ( a[i+j*m] - mean ), 2 ); } if ( 1 < n ) { variance[i] = variance[i] / ( double ) ( n - 1 ); } else { variance[i] = 0.0; } } return variance; } /******************************************************************************/ double r8vec_circular_variance ( int n, double x[] ) /******************************************************************************/ /* Purpose: R8VEC_CIRCULAR_VARIANCE returns the circular variance of an R8VEC Licensing: This code is distributed under the MIT license. Modified: 02 December 2004 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, double X(N), the vector whose variance is desired. Output, double R8VEC_CIRCULAR VARIANCE, the circular variance of the vector entries. */ { int i; double mean; double sum_c; double sum_s; double value; mean = r8vec_mean ( n, x ); sum_c = 0.0; for ( i = 0; i < n; i++ ) { sum_c = sum_c + cos ( x[i] - mean ); } sum_s = 0.0; for ( i = 0; i < n; i++ ) { sum_s = sum_s + sin ( x[i] - mean ); } value = sqrt ( sum_c * sum_c + sum_s * sum_s ) / ( double ) n; value = 1.0 - value; return value; } /******************************************************************************/ double r8vec_diff_norm ( int n, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8VEC_DIFF_NORM returns the L2 norm of the difference of R8VEC's. Discussion: An R8VEC is a vector of R8's. The vector L2 norm is defined as: R8VEC_NORM_L2 = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). Licensing: This code is distributed under the MIT license. Modified: 24 June 2011 Author: John Burkardt Parameters: Input, int N, the number of entries in A. Input, double A[N], B[N], the vectors. Output, double R8VEC_DIFF_NORM, the L2 norm of A - B. */ { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( a[i] - b[i] ) * ( a[i] - b[i] ); } value = sqrt ( value ); return value; } /******************************************************************************/ double r8vec_dot ( int n, double a1[], double a2[] ) /******************************************************************************/ /* Purpose: R8VEC_DOT computes the dot product of a pair of R8VEC's. Licensing: This code is distributed under the MIT license. Modified: 03 July 2005 Author: John Burkardt Parameters: Input, int N, the number of entries in the vectors. Input, double A1[N], A2[N], the two vectors to be considered. Output, double R8VEC_DOT, the dot product of the vectors. */ { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } /******************************************************************************/ double r8vec_length ( int dim_num, double x[] ) /******************************************************************************/ /* Purpose: R8VEC_LENGTH returns the Euclidean length of an R8VEC Licensing: This code is distributed under the MIT license. Modified: 08 August 2005 Author: John Burkardt Parameters: Input, int DIM_NUM, the spatial dimension. Input, double X[DIM_NUM], the vector. Output, double R8VEC_LENGTH, the Euclidean length of the vector. */ { int i; double value; value = 0.0; for ( i = 0; i < dim_num; i++ ) { value = value + pow ( x[i], 2 ); } value = sqrt ( value ); return value; } /******************************************************************************/ double r8vec_max ( int n, double *dvec ) /******************************************************************************/ /* Purpose: R8VEC_MAX returns the value of the maximum element in an R8VEC. Licensing: This code is distributed under the MIT license. Modified: 15 October 1998 Author: John Burkardt Parameters: Input, int N, the number of entries in the array. Input, double *RVEC, a pointer to the first entry of the array. Output, double R8VEC_MAX, the value of the maximum element. This is set to 0.0 if N <= 0. */ { int i; double rmax; double *r8vec_pointer; if ( n <= 0 ) { return 0.0; } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { rmax = *dvec; r8vec_pointer = dvec; } else { r8vec_pointer++; if ( rmax < *r8vec_pointer ) { rmax = *r8vec_pointer; } } } return rmax; } /******************************************************************************/ double r8vec_mean ( int n, double x[] ) /******************************************************************************/ /* Purpose: R8VEC_MEAN returns the mean of an R8VEC. Licensing: This code is distributed under the MIT license. Modified: 01 May 1999 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, double X[N], the vector whose mean is desired. Output, double R8VEC_MEAN, the mean, or average, of the vector entries. */ { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + x[i]; } mean = mean / ( double ) n; return mean; } /******************************************************************************/ double r8vec_min ( int n, double *dvec ) /******************************************************************************/ /* Purpose: R8VEC_MIN returns the value of the minimum element in an R8VEC. Licensing: This code is distributed under the MIT license. Modified: 15 October 1998 Author: John Burkardt Parameters: Input, int N, the number of entries in the array. Input, double *RVEC, a pointer to the first entry of the array. Output, double R8VEC_MIN, the value of the minimum element. This is set to 0.0 if N <= 0. */ { int i; double rmin; double *r8vec_pointer; if ( n <= 0 ) { return 0.0; } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { rmin = *dvec; r8vec_pointer = dvec; } else { r8vec_pointer++; if ( *r8vec_pointer < rmin ) { rmin = *r8vec_pointer; } } } return rmin; } /******************************************************************************/ void r8vec_print ( int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8VEC_PRINT prints an R8VEC Licensing: This code is distributed under the MIT license. Modified: 16 August 2004 Author: John Burkardt Parameters: Input, int N, the number of components of the vector. Input, double A[N], the vector to be printed. Input, char *TITLE, a title. */ { int i; printf ( "\n" ); printf ( "%s\n", title ); printf ( "\n" ); for ( i = 0; i <= n-1; i++ ) { printf ( "%6d %14g\n", i + 1, a[i] ); } return; } /******************************************************************************/ double r8vec_sum ( int n, double a[] ) /******************************************************************************/ /* Purpose: R8VEC_SUM returns the sum of an R8VEC. Licensing: This code is distributed under the MIT license. Modified: 15 October 2004 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, double A[N], the vector. Output, double R8VEC_SUM, the sum of the vector. */ { int i; float sum; sum = 0.0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } /******************************************************************************/ double *r8vec_uniform_01_new ( int n, int *seed ) /******************************************************************************/ /* Purpose: R8VEC_UNIFORM_01_NEW returns a unit pseudorandom R8VEC Discussion: This routine implements the recursion seed = 16807 * seed mod ( 2^31 - 1 ) unif = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. Licensing: This code is distributed under the MIT license. Modified: 19 August 2004 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Springer Verlag, pages 201-202, 1983. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Parameters: Input, int N, the number of entries in the vector. Input/output, int *SEED, a seed for the random number generator. Output, double R8VEC_UNIFORM_01[N], the vector of pseudorandom values. */ { int i; int k; double *r; r = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } /******************************************************************************/ void r8vec_unit_sum ( int n, double a[] ) /******************************************************************************/ /* Purpose: R8VEC_UNIT_SUM normalizes an R8VEC to have unit sum. Licensing: This code is distributed under the MIT license. Modified: 10 October 2004 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input/output, double A[N], the vector to be normalized. On output, the entries of A should have unit sum. However, if the input vector has zero sum, the routine halts. */ { double a_sum; int i; a_sum = 0.0; for ( i = 0; i < n; i++ ) { a_sum = a_sum + a[i]; } if ( a_sum == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8VEC_UNIT_SUM - Fatal error!\n" ); fprintf ( stderr, " The vector entries sum to 0.\n" ); exit ( 1 ); } for ( i = 0; i < n; i++ ) { a[i] = a[i] / a_sum; } return; } /******************************************************************************/ double r8vec_variance ( int n, double x[] ) /******************************************************************************/ /* Purpose: R8VEC_VARIANCE returns the variance of an R8VEC. Licensing: This code is distributed under the MIT license. Modified: 01 May 1999 Author: John Burkardt Parameters: Input, int N, the number of entries in the vector. Input, double X[N], the vector whose variance is desired. Output, double R8VEC_VARIANCE, the variance of the vector entries. */ { int i; double mean; double variance; mean = r8vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( x[i] - mean ) * ( x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } /******************************************************************************/ double rayleigh_cdf ( double x, double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_CDF evaluates the Rayleigh CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. 0.0 <= X. Input, double A, the parameter of the PDF. 0.0 < A. Output, double RAYLEIGH_CDF, the value of the CDF. */ { double cdf; if ( x < 0.0 ) { cdf = 0.0; } else { cdf = 1.0 - exp ( - x * x / ( 2.0 * a * a ) ); } return cdf; } /******************************************************************************/ double rayleigh_cdf_inv ( double cdf, double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_CDF_INV inverts the Rayleigh CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, the parameter of the PDF. 0.0 < A. Output, double RAYLEIGH_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RAYLEIGH_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = sqrt ( - 2.0 * a * a * log ( 1.0 - cdf ) ); return x; } /******************************************************************************/ void rayleigh_cdf_values ( int *n_data, double *sigma, double *x, double *fx ) /******************************************************************************/ /* Purpose: RAYLEIGH_CDF_VALUES returns some values of the Rayleigh CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = RayleighDistribution [ sigma ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 01 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *SIGMA, the shape parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 9 double fx_vec[N_MAX] = { 0.8646647167633873, 0.9996645373720975, 0.9999999847700203, 0.999999999999987, 0.8646647167633873, 0.3934693402873666, 0.1992625970831920, 0.1175030974154046, 0.7688365361336422E-01 }; double sigma_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *sigma = 0.0; *x = 0.0; *fx = 0.0; } else { *sigma = sigma_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int rayleigh_check ( double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_CHECK checks the parameter of the Rayleigh PDF. Licensing: This code is distributed under the MIT license. Modified: 16 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A. Output, int RAYLEIGH_CHECK, is true if the parameter is legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RAYLEIGH_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double rayleigh_mean ( double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_MEAN returns the mean of the Rayleigh PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A. Output, double RAYLEIGH_MEAN, the mean of the PDF. */ { double mean; const double r8_pi = 3.14159265358979323; mean = a * sqrt ( 0.5 * r8_pi ); return mean; } /******************************************************************************/ double rayleigh_pdf ( double x, double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_PDF evaluates the Rayleigh PDF. Discussion: PDF(A;X) = ( X / A^2 ) * EXP ( - X^2 / ( 2 * A^2 ) ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X Input, double A, the parameter of the PDF. 0 < A. Output, double RAYLEIGH_PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 ) { pdf = 0.0; } else { pdf = ( x / ( a * a ) ) * exp ( - x * x / ( 2.0 * a * a ) ); } return pdf; } /******************************************************************************/ double rayleigh_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: RAYLEIGH_SAMPLE samples the Rayleigh PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 0.0 < A. Input/output, int *SEED, a seed for the random number generator. Output, double RAYLEIGH_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = rayleigh_cdf_inv ( cdf, a ); return x; } /******************************************************************************/ double rayleigh_variance ( double a ) /******************************************************************************/ /* Purpose: RAYLEIGH_VARIANCE returns the variance of the Rayleigh PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, the parameters of the PDF. 0.0 < A. Output, double RAYLEIGH_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = 2.0 * a * a * ( 1.0 - 0.25 * r8_pi ); return variance; } /******************************************************************************/ double reciprocal_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_CDF evaluates the Reciprocal CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, double RECIPROCAL_CDF, the value of the CDF. */ { double cdf; if ( x <= 0.0 ) { cdf = 0.0; } else if ( 0.0 < x ) { cdf = log ( a / x ) / log ( a / b ); } return cdf; } /******************************************************************************/ double reciprocal_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_CDF_INV inverts the Reciprocal CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, double RECIPROCAL_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RECIPROCAL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = 0.0; } else if ( 0.0 < cdf ) { x = pow ( b, cdf ) / pow ( a, ( cdf - 1.0 ) ); } return x; } /******************************************************************************/ int reciprocal_check ( double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_CHECK checks the parameters of the Reciprocal CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, int RECIPROCAL_CHECK, is true if the parameters are legal. */ { if ( a <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RECIPROCAL_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 0.0\n" ); return 0; } if ( b < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RECIPROCAL_CHECK(): Warning!\n" ); fprintf ( stderr, " B < A\n" ); return 0; } return 1; } /******************************************************************************/ double reciprocal_mean ( double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_MEAN returns the mean of the Reciprocal PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, double RECIPROCAL_MEAN, the mean of the PDF. */ { double mean; mean = ( a - b ) / log ( a / b ); return mean; } /******************************************************************************/ double reciprocal_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_PDF evaluates the Reciprocal PDF. Discussion: PDF(A,B;X) = 1.0 / ( X * LOG ( B / A ) ) for 0.0 <= X Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, double RECIPROCAL_PDF, the value of the PDF. */ { double pdf; if ( x <= 0.0 ) { pdf = 0.0; } else if ( 0.0 < x ) { pdf = 1.0 / ( x * log ( b / a ) ); } return pdf; } /******************************************************************************/ double reciprocal_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: RECIPROCAL_SAMPLE samples the Reciprocal PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Input/output, int *SEED, a seed for the random number generator. Output, double RECIPROCAL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = pow ( b, cdf ) / pow ( a, ( cdf - 1.0 ) ); return x; } /******************************************************************************/ double reciprocal_variance ( double a, double b ) /******************************************************************************/ /* Purpose: RECIPROCAL_VARIANCE returns the variance of the Reciprocal PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < A <= B. Output, double RECIPROCAL_VARIANCE, the variance of the PDF. */ { double d; double variance; d = log ( a / b ); variance = ( a - b )* ( a * ( d - 2.0 ) + b * ( d + 2.0 ) ) / ( 2.0 * d * d ); return variance; } /******************************************************************************/ int ribesl ( double x, double alpha, int nb, int ize, double b[] ) /******************************************************************************/ /* Purpose: RIBESL calculates I Bessel function with non-integer orders. Discussion: This routine calculates Bessel functions I SUB(N+ALPHA) (X) for non-negative argument X, and non-negative order N+ALPHA, with or without exponential scaling. This program is based on a program written by David Sookne that computes values of the Bessel functions J or I of real argument and integer order. Modifications include the restriction of the computation to the I Bessel function of non-negative real argument, the extension of the computation to arbitrary positive order, the inclusion of optional exponential scaling, and the elimination of most underflow. In case of an error, NCALC will not equal NB, and not all I's are calculated to the desired accuracy. If NCALC < 0: An argument is out of range. For example, NB <= 0, IZE is not 1 or 2, or IZE = 1 and EXPARG <= ABS(X) In this case, the B-vector is not calculated, and NCALC is set to MIN(NB,0)-1 so that NCALC /= NB. If 0 < NCALC < NB, then not all requested function values could be calculated accurately. This usually occurs because NB is much larger than ABS(X). In this case, B(N) is calculated to the desired accuracy for N <= NCALC, but precision is lost for NCALC < N <= NB. If B(N) does not vanish for NCALC < N (because it is too small to be represented), and B(N)/B(NCALC) = 10**(-K), then only the first NSIG-K significant figures of B(N) can be trusted. Licensing: This code is distributed under the MIT license. Modified: 02 March 2007 Author: Original FORTRAN77 version by William Cody. This version by John Burkardt. Reference: Frank Olver, David Sookne, A Note on Backward Recurrence Algorithms, Mathematics of Computation, Volume 26, 1972, pages 941-947. David Sookne, Bessel Functions of Real Argument and Integer Order, NBS Journal of Research B, Volume 77B, 1973, pages 125-132. William Cody, Algorithm 597: Sequence of Modified Bessel Functions of the First Kind, ACM Transactions of Mathematical Software, Volume 9, Number 2, June 1983, pages 242-245. Parameters: Input, double X, the argument for which the functions are to be calculated. Input, double ALPHA,the fractional part of the order for which the functions are to be calculated. 0 <= ALPHA < 1.0. Input, int NB, the number of functions to be calculated. The first function calculated is of order ALPHA, and the last is of order (NB - 1 + ALPHA). 1 <= NB. Input, int IZE, scaling option. 1, unscaled I's are to calculated, 2, exponentially scaled I's are to be calculated. Output, double B[NB], the values of the functions I(ALPHA,X) through I(NB-1+ALPHA,X), with scaling if requested. Output, int RIBESL, the value of NCALC, the error indicator. If NCALC = NB, then all the requested values were calculated to the desired accuracy. Local Parameeters: BETA, the radix for the floating-point system. MINEXP, smallest representable power of BETA. MAXEXP, smallest power of BETA that overflows IT, number of bits in the mantissa of a working precision variable. NSIG, decimal significance desired. Should be set to INT(LOG10(2)*IT+1). Setting NSIG lower will result in decreased accuracy while setting NSIG higher will increase CPU time without increasing accuracy. The truncation error is limited to a relative error of T=.5*10^(-NSIG). ENTEN, 10.0^K, where K is the largest integer such that ENTEN is machine-representable in working precision ENSIG, 10.0^NSIG RTNSIG, 10.0^(-K) for the smallest integer K such that NSIG/4 <= K. ENMTEN, smallest ABS(X) such that X/4 does not underflow XLARGE, upper limit on the magnitude of X when IZE=2. Bear in mind that if ABS(X)=N, then at least N iterations of the backward recursion will be executed. The value of 10.0^4 is used on every machine. EXPARG, largest working precision argument that the library EXP routine can handle and upper limit on the magnitude of X when IZE=1; approximately log(BETA^MAXEXP). */ { double constant = 1.585; double em; double empal; double emp2al; double en; double enmten = 8.9E-308; double ensig = 1.0E+16; double enten = 1.0E+308; double exparg = 709.0; int flag; double half = 0.5; double halfx; int i; int k; int l; int magx; int n; int nbmx; int ncalc; int nend; int nsig = 16; int nstart; double one = 1.0; double p; double plast; double pold; double psave; double psavel; double rtnsig = 1.0E-04; double tempa; double tempb; double tempc; double test; double total; double tover; double two = 2.0; double xlarge = 1.0E+04; double zero = 0.0; /* Check for X, NB, OR IZE out of range. */ if ( nb <= 0 ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } if ( x < 0.0 ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } if ( alpha < 0.0 ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } if ( 1.0 <= alpha ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } if ( ize == 1 && exparg < x ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } if ( ize == 2 && xlarge < x ) { ncalc = i4_min ( nb, 0 ) - 1; return ncalc; } /* Use 2-term ascending series for small X. */ ncalc = nb; magx = ( int ) ( x ); /* Initialize the forward sweep, the P-sequence of Olver. */ if ( rtnsig <= x ) { nbmx = nb - magx; n = magx + 1; en = ( double ) ( n + n ) + ( alpha + alpha ); plast = one; p = en / x; /* Calculate general significance test. */ test = ensig + ensig; if ( 5 * nsig < 2 * magx ) { test = sqrt ( test * p ); } else { test = test / pow ( constant, magx ); } /* Calculate P-sequence until N = NB-1. Check for possible overflow. */ flag = 0; if ( 3 <= nbmx ) { tover = enten / ensig; nstart = magx + 2; nend = nb - 1; for ( k = nstart; k <= nend; k++ ) { n = k; en = en + two; pold = plast; plast = p; p = en * plast / x + pold; /* To avoid overflow, divide P-sequence by TOVER. Calculate P-sequence until 1 < ABS(P). */ if ( tover < p ) { tover = enten; p = p / tover; plast = plast / tover; psave = p; psavel = plast; nstart = n + 1; for ( ; ; ) { n = n + 1; en = en + two; pold = plast; plast = p; p = en * plast / x + pold; if ( 1.0 < p ) { break; } } tempb = en / x; /* Calculate backward test, and find NCALC, the highest N such that the test is passed. */ test = pold * plast / ensig; test = test * ( half - half / ( tempb * tempb ) ); p = plast * tover; n = n - 1; en = en - two; nend = i4_min ( nb, n ); ncalc = nend + 1; for ( l = nstart; l <= nend; l++ ) { pold = psavel; psavel = psave; psave = en * psavel / x + pold; if ( test < psave * psavel ) { ncalc = l; break; } } ncalc = ncalc - 1; flag = 1; break; } } if ( !flag ) { n = nend; en = ( double ) ( n + n ) + ( alpha + alpha ); /* Calculate special significance test for 2 < NBMX. */ test = fmax ( test, sqrt ( plast * ensig ) * sqrt ( p + p ) ); } } /* Calculate P-sequence until significance test passed. */ if ( ! flag ) { for ( ; ; ) { n = n + 1; en = en + two; pold = plast; plast = p; p = en * plast / x + pold; if ( test <= p ) { break; } } } /* Initialize the backward recursion and the normalization sum. */ n = n + 1; en = en + two; tempb = zero; tempa = one / p; em = ( double ) ( n ) - one; empal = em + alpha; emp2al = ( em - one ) + ( alpha + alpha ); total = tempa * empal * emp2al / em; nend = n - nb; /* N < NB, so store B(N) and set higher orders to zero. */ if ( nend < 0 ) { b[n-1] = tempa; nend = -nend; for ( l = 1; l <= nend; l++ ) { b[n+l-1] = zero; } nend = n - 2; /* Calculate via difference equation and store B(N), until N = 2. */ if ( 0 < nend ) { for ( l = 1; l <= nend; l++ ) { n = n - 1; en = en - two; b[n-1] = ( en * b[n] ) / x + b[n+1]; em = em - one; emp2al = emp2al - one; if ( n == 2 ) { emp2al = one; } empal = empal - one; total = ( total + b[n-1] * empal ) * emp2al / em; } } /* Calculate B(1). */ b[0] = two * empal * b[1] / x + b[2]; total = ( total + total ) + b[0]; } /* Recur backward via difference equation, calculating (but not storing) B(N), until N = NB. */ else { if ( 0 < nend ) { for ( l = 1; l <= nend; l++ ) { n = n - 1; en = en - two; tempc = tempb; tempb = tempa; tempa = ( en * tempb ) / x + tempc; em = em - one; emp2al = emp2al - one; if ( n == 1 ) { break; } if ( n == 2 ) { emp2al = one; } empal = empal - one; total = ( total + tempa * empal ) * emp2al / em; } } /* Store B(NB). */ b[n-1] = tempa; if ( nb <= 1 ) { total = ( total + total ) + tempa; } /* Calculate and Store B(NB-1). */ else { n = n - 1; en = en - two; b[n-1] = ( en * tempa ) / x + tempb; if ( 1 < n ) { em = em - one; emp2al = emp2al - one; if ( n == 2 ) { emp2al = one; } empal = empal - one; total = ( total + b[n-1] * empal ) * emp2al / em; nend = n - 2; /* Calculate via difference equation and store B(N), until N = 2. */ if ( 0 < nend ) { for ( l = 1; l <= nend; l++ ) { n = n - 1; en = en - two; b[n-1] = ( en * b[n] ) / x + b[n+1]; em = em - one; emp2al = emp2al - one; if ( n == 2 ) { emp2al = one; } empal = empal - one; total = ( total + b[n-1] * empal ) * emp2al / em; } } /* Calculate B(1). */ b[0] = two * empal * b[1] / x + b[2]; } total = ( total + total ) + b[0]; } } /* Normalize. Divide all B(N) by TOTAL. */ if ( alpha != zero ) { total = total * tgamma ( one + alpha ) * pow ( x * half, -alpha ); } if ( ize == 1 ) { total = total * exp ( -x ); } tempa = enmten; if ( 1.0 < total ) { tempa = tempa * total; } for ( n = 1; n <= nb; n++ ) { if ( b[n-1] < tempa ) { b[n-1] = zero; } b[n-1] = b[n-1] / total; } return ncalc; } /* Two-term ascending series for small X. */ else { tempa = one; empal = one + alpha; halfx = zero; if ( enmten < x ) { halfx = half * x; } if ( alpha != zero ) { tempa = pow ( halfx, alpha ) / tgamma ( empal ); } if ( ize == 2 ) { tempa = tempa * exp ( - x ); } tempb = zero; if ( one < x + one ) { tempb = halfx * halfx; } b[0] = tempa + tempa * tempb / empal; if ( x != zero && b[0] == zero ) { ncalc = 0; } if ( 1 < nb ) { if ( x == zero ) { for ( i = 1; i < nb; i++ ) { b[i] = zero; } } /* Calculate higher-order functions. */ else { tempc = halfx; tover = ( enmten + enmten ) / x; if ( tempb != zero ) { tover = enmten / tempb; } for ( n = 2; n <= nb; n++ ) { tempa = tempa / empal; empal = empal + one; tempa = tempa * tempc; if ( tempa <= tover * empal ) { tempa = zero; } b[n-1] = tempa + tempa * tempb / empal; if ( b[n-1] == zero && n < ncalc ) { ncalc = n - 1; } } } } } return ncalc; } /******************************************************************************/ double runs_mean ( int m, int n ) /******************************************************************************/ /* Purpose: RUNS_MEAN returns the mean of the Runs PDF. Licensing: This code is distributed under the MIT license. Modified: 23 January 2007 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. Output, double RUNS_MEAN, the mean of the PDF. */ { double mean; mean = ( double ) ( m + 2 * m * n + n ) / ( double ) ( m + n ); return mean; } /******************************************************************************/ double runs_pdf ( int m, int n, int r ) /******************************************************************************/ /* Purpose: RUNS_PDF evaluates the Runs PDF. Discussion: Suppose we have M symbols of one type and N of another, and we consider the various possible permutations of these symbols. Let "R" be the number of runs in a given permutation. By a "run", we mean a maximal sequence of identical symbols. Thus, for instance, the permutation ABBBAAAAAAAA has three runs. The probability that a permutation of M+N symbols, with M of one kind and N of another, will have exactly R runs is: PDF(M,N)(R) = 2 * C(M-1,R/2-1) * C(N-1,R/2-1) / C(M+N,N) for R even; = ( C(M-1,(R-1)/2) * C(N-1,(R-3)/2 ) + C(M-1,(R-3)/2) * C(N-1,(R-1)/2 ) ) / C(M+N,N) for R odd. Note that the maximum number of runs for a given M and N is: M + N, if M = N 2 * min ( M, N ) + 1 otherwise Licensing: This code is distributed under the MIT license. Modified: 23 January 2007 Author: John Burkardt Reference: Kalimutha Krishnamoorthy, Handbook of Statistical Distributions with Applications, Chapman and Hall, 2006, ISBN: 1-58488-635-8, LC: QA273.6.K75. Parameters: Input, int M, N, the parameters of the PDF. Input, int R, the number of runs. Output, double PDF, the value of the PDF. */ { double pdf; if ( m < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RUN_PDF - Fatal error!\n" ); fprintf ( stderr, " M must be at least 0.\n" ); fprintf ( stderr, " The input value of M = %d\n", m ); exit ( 1 ); } if ( n < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RUN_PDF - Fatal error!\n" ); fprintf ( stderr, " N must be at least 0.\n" ); fprintf ( stderr, " The input value of N = %d\n", n ); exit ( 1 ); } if ( n + m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "RUN_PDF - Fatal error!\n" ); fprintf ( stderr, " M+N must be at least 1.\n" ); fprintf ( stderr, " The input value of M+N = %d\n", m + n ); exit ( 1 ); } /* If all the symbols are of one type, there is always 1 run. */ if ( m == 0 || n == 0 ) { if ( r == 1 ) { pdf = 1.0; } else { pdf = 0.0; } return pdf; } /* Take care of extreme values of R. */ if ( r < 2 || m + n < r ) { pdf = 0.0; return pdf; } /* The normal cases. */ if ( ( r % 2 ) == 0 ) { pdf = ( double ) ( 2 * i4_choose ( m - 1, ( r / 2 ) - 1 ) * i4_choose ( n - 1, ( r / 2 ) - 1 ) ) / ( double ) ( i4_choose ( m + n, n ) ); } else { pdf = ( double ) ( i4_choose ( m - 1, ( r - 1 ) / 2 ) * i4_choose ( n - 1, ( r - 3 ) / 2 ) + i4_choose ( m - 1, ( r - 3 ) / 2 ) * i4_choose ( n - 1, ( r - 1 ) / 2 ) ) / ( double ) ( i4_choose ( m + n, n ) ); } return pdf; } /******************************************************************************/ int runs_sample ( int m, int n, int *seed ) /******************************************************************************/ /* Purpose: RUNS_SAMPLE samples the Runs PDF. Licensing: This code is distributed under the MIT license. Modified: 27 January 2007 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. Input/output, int *SEED, a seed for the random number generator. Output, int RUNS_SAMPLE, the number of runs. */ { int *a; int r; a = runs_simulate ( m, n, seed ); r = i4vec_run_count ( m+n, a ); free ( a ); return r; } /******************************************************************************/ int *runs_simulate ( int m, int n, int *seed ) /******************************************************************************/ /* Purpose: RUNS_SIMULATE simulates a case governed by the Runs PDF. Licensing: This code is distributed under the MIT license. Modified: 27 January 2007 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. Input/output, int *SEED, a seed for the random number generator. Output, int RUNS_SIMULATE[M+N], a sequence of M 0's and N 1's chosen uniformly at random. */ { int *a; int i; int j; int k; a = ( int * ) malloc ( ( m + n ) * sizeof ( int ) ); for ( i = 0; i < m; i++ ) { a[i] = 0; } for ( i = m; i < m + n; i++ ) { a[i] = 1; } for ( i = 1; i <= m+n-1; i++ ) { j = i4_uniform_ab ( i, m+n, seed ); k = a[i-1]; a[i-1] = a[j-1]; a[j-1] = k; } return a; } /******************************************************************************/ double runs_variance ( int m, int n ) /******************************************************************************/ /* Purpose: RUNS_VARIANCE returns the variance of the Runs PDF. Licensing: This code is distributed under the MIT license. Modified: 23 January 2007 Author: John Burkardt Parameters: Input, int M, N, the parameters of the PDF. Output, double RUNS_VARIANCE, the variance of the PDF. */ { double variance; variance = ( double ) ( 2 * m * n * ( 2 * m * n - m - n ) ) / ( double ) ( ( m + n ) * ( m + n ) * ( m + n - 1 ) ); return variance; } /******************************************************************************/ int s_len_trim ( char *s ) /******************************************************************************/ /* Purpose: S_LEN_TRIM returns the length of a string to the last nonblank. Discussion: It turns out that I also want to ignore the '\n' character! Licensing: This code is distributed under the MIT license. Modified: 05 October 2014 Author: John Burkardt Parameters: Input, char *S, a pointer to a string. Output, int S_LEN_TRIM, the length of the string to the last nonblank. If S_LEN_TRIM is 0, then the string is entirely blank. */ { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' && *t != '\n' ) { return n; } t--; n--; } return n; } /******************************************************************************/ double sech ( double x ) /******************************************************************************/ /* Purpose: SECH returns the hyperbolic secant. Discussion: SECH ( X ) = 1.0 / COSH ( X ) = 2.0 / ( EXP ( X ) + EXP ( - X ) ) SECH is not a built-in function in FORTRAN, and occasionally it is handier, or more concise, to be able to refer to it directly rather than through its definition in terms of the sine function. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument. Output, double SECH, the hyperbolic secant of X. */ { double value; value = 1.0 / cosh ( x ); return value; } /******************************************************************************/ double sech_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: SECH_CDF evaluates the Hyperbolic Secant CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameter of the PDF. 0.0 < B. Output, double SECH_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - a ) / b; cdf = 2.0 * atan ( exp ( y ) ) / r8_pi; return cdf; } /******************************************************************************/ double sech_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: SECH_CDF_INV inverts the Hyperbolic Secant CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SECH_CDF_INV, the corresponding argument of the CDF. */ { const double r8_pi = 3.14159265358979323; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SECH_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = - HUGE_VAL; } else if ( cdf < 1.0 ) { x = a + b * log ( tan ( 0.5 * r8_pi * cdf ) ); } else if ( 1.0 == cdf ) { x = HUGE_VAL; } return x; } /******************************************************************************/ int sech_check ( double a, double b ) /******************************************************************************/ /* Purpose: SECH_CHECK checks the parameters of the Hyperbolic Secant CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameter of the PDF. 0.0 < B. Output, int SECH_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SECH_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } return 1; } /******************************************************************************/ double sech_mean ( double a, double b ) /******************************************************************************/ /* Purpose: SECH_MEAN returns the mean of the Hyperbolic Secant PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SECH_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double sech_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: SECH_PDF evaluates the Hypebolic Secant PDF. Discussion: PDF(A,B;X) = sech ( ( X - A ) / B ) / ( PI * B ) Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SECH_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - a ) / b; pdf = sech ( y ) / ( r8_pi * b ); return pdf; } /******************************************************************************/ double sech_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: SECH_SAMPLE samples the Hyperbolic Secant PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double SECH_SAMPLE, a sample of the PDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double x; cdf = r8_uniform_01 ( seed ); x = a + b * log ( tan ( 0.5 * r8_pi * cdf ) ); return x; } /******************************************************************************/ double sech_variance ( double a, double b ) /******************************************************************************/ /* Purpose: SECH_VARIANCE returns the variance of the Hyperbolic Secant PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SECH_VARIANCE, the variance of the PDF. */ { const double r8_pi = 3.14159265358979323; double variance; variance = 0.25 * r8_pi * r8_pi * b * b; return variance; } /******************************************************************************/ double semicircular_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_CDF evaluates the Semicircular CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameter of the PDF. 0.0 < B. Output, double SEMICIRCULAR_CDF, the value of the CDF. */ { double cdf; const double r8_pi = 3.14159265358979323; double y; if ( x <= a - b ) { cdf = 0.0; } else if ( x <= a + b ) { y = ( x - a ) / b; cdf = 0.5 + ( y * sqrt ( 1.0 - y * y ) + asin ( y ) ) / r8_pi; } else if ( a + b < x ) { cdf = 1.0; } return cdf; } /******************************************************************************/ double semicircular_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_CDF_INV inverts the Semicircular CDF. Discussion: A simple bisection method is used on the interval [ A - B, A + B ]. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SEMICIRCULAR_CDF_INV, the corresponding argument of the CDF. */ { double cdf1; double cdf3; int it; int it_max = 100; double tol = 0.0001; double x; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SEMICIRCULAR_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = a - b; return x; } else if ( 1.0 == cdf ) { x = a + b; return x; } x1 = a - b; cdf1 = 0.0; x2 = a + b; /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = semicircular_cdf ( x3, a, b ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SEMICIRCULAR_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); exit ( 1 ); } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; } } return x; } /******************************************************************************/ int semicircular_check ( double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_CHECK checks the parameters of the Semicircular CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameter of the PDF. 0.0 < B. Output, int SEMICIRCULAR_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SEMICIRCULAR_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } return 1; } /******************************************************************************/ double semicircular_mean ( double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_MEAN returns the mean of the Semicircular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SEMICIRCULAR_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double semicircular_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_PDF evaluates the Semicircular PDF. Discussion: PDF(A,B;X) = ( 2 / ( B * PI ) ) * SQRT ( 1 - ( ( X - A ) / B )^2 ) for A - B <= X <= A + B Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SEMICIRCULAR_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; if ( x < a - b ) { pdf = 0.0; } else if ( x <= a + b ) { y = ( x - a ) / b; pdf = 2.0 / ( b * r8_pi ) * sqrt ( 1.0 - y * y ); } else if ( a + b < x ) { pdf = 0.0; } return pdf; } /******************************************************************************/ double semicircular_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_SAMPLE samples the Semicircular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double SEMICIRCULAR_SAMPLE, a sample of the PDF. */ { double angle; const double r8_pi = 3.14159265358979323; double radius; double x; radius = r8_uniform_01 ( seed ); radius = b * sqrt ( radius ); angle = r8_pi * r8_uniform_01 ( seed ); x = a + radius * cos ( angle ); return x; } /******************************************************************************/ double semicircular_variance ( double a, double b ) /******************************************************************************/ /* Purpose: SEMICIRCULAR_VARIANCE returns the variance of the Semicircular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 < B. Output, double SEMICIRCULAR_VARIANCE, the variance of the PDF. */ { double variance; variance = b * b / 4.0; return variance; } /******************************************************************************/ double sin_power_int ( double a, double b, int n ) /******************************************************************************/ /* Purpose: SIN_POWER_INT evaluates the sine power integral. Discussion: The function is defined by SIN_POWER_INT(A,B,N) = Integral ( A <= T <= B ) ( sin ( t ))^n dt The algorithm uses the following fact: Integral sin^n ( t ) = (1/n) * ( sin^(n-1)(t) * cos(t) + ( n-1 ) * Integral sin^(n-2) ( t ) dt ) Licensing: This code is distributed under the MIT license. Modified: 02 September 2004 Author: John Burkardt Parameters Input, double A, B, the limits of integration. Input, int N, the power of the sine function. Output, double SIN_POWER_INT, the value of the integral. */ { double ca; double cb; int m; int mlo; double sa; double sb; double value; if ( n < 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "SIN_POWER_INT - Fatal error!\n" ); fprintf ( stderr, " Power N < 0.\n" ); value = 0.0; exit ( 1 ); } sa = sin ( a ); sb = sin ( b ); ca = cos ( a ); cb = cos ( b ); if ( ( n % 2 ) == 0 ) { value = b - a; mlo = 2; } else { value = ca - cb; mlo = 3; } for ( m = mlo; m <= n; m = m + 2 ) { value = ( ( double ) ( m - 1 ) * value + pow ( sa, (m-1) ) * ca - pow ( sb, (m-1) ) * cb ) / ( double ) ( m ); } return value; } /******************************************************************************/ double sphere_unit_area_nd ( int dim_num ) /******************************************************************************/ /* Purpose: SPHERE_UNIT_AREA_ND computes the surface area of a unit sphere in ND. Discussion: The unit sphere in ND satisfies the equation: Sum ( 1 <= I <= DIM_NUM ) X(I) * X(I) = 1 DIM_NUM Area 2 2 * PI 3 4 * PI 4 ( 2 / 1) * PI^2 5 ( 8 / 3) * PI^2 6 ( 1 / 1) * PI^3 7 (16 / 15) * PI^3 8 ( 1 / 3) * PI^4 9 (32 / 105) * PI^4 10 ( 1 / 12) * PI^5 For the unit sphere, Area(DIM_NUM) = DIM_NUM * Volume(DIM_NUM) Sphere_Unit_Area ( DIM_NUM ) = 2 * PI^(DIM_NUM/2) / Gamma ( DIM_NUM / 2 ) Licensing: This code is distributed under the MIT license. Modified: 05 September 2003 Author: John Burkardt Parameters: Input, int DIM_NUM, the dimension of the space. Output, double SPHERE_UNIT_AREA_ND, the area of the sphere. */ { double area; int i; int m; const double r8_pi = 3.141592653589793; if ( ( dim_num % 2 ) == 0 ) { m = dim_num / 2; area = 2.0 * pow ( r8_pi, m ); for ( i = 1; i <= m - 1; i++ ) { area = area / ( ( double ) i ); } } else { m = ( dim_num - 1 ) / 2; area = pow ( 2.0, dim_num ) * pow ( r8_pi, m ); for ( i = m + 1; i <= 2 * m; i++ ) { area = area / ( ( double ) i ); } } return area; } /******************************************************************************/ int stirling2_number ( int n, int k ) /******************************************************************************/ /* Purpose: stirling2_number() evaluates the Stirling number S2(N,K) of the second kind. Discussion: S2(N,K) represents the number of distinct partitions of N elements into K nonempty sets. For a fixed N, the sum of the Stirling numbers S2(N,K) is represented by B(N), called "Bell's number", and represents the number of distinct partitions of N elements. For example, with 4 objects, there are: 1 partition into 1 set: (A,B,C,D) 7 partitions into 2 sets: (A,B,C) (D) (A,B,D) (C) (A,C,D) (B) (A) (B,C,D) (A,B) (C,D) (A,C) (B,D) (A,D) (B,C) 6 partitions into 3 sets: (A,B) (C) (D) (A) (B,C) (D) (A) (B) (C,D) (A,C) (B) (D) (A,D) (B) (C) (A) (B,D) (C) 1 partition into 4 sets: (A) (B) (C) (D) So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. First terms: N/K: 1 2 3 4 5 6 7 8 1 1 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 3 1 3 1 0 0 0 0 0 4 1 7 6 1 0 0 0 0 5 1 15 25 10 1 0 0 0 6 1 31 90 65 15 1 0 0 7 1 63 301 350 140 21 1 0 8 1 127 966 1701 1050 266 28 1 Recursion: S2(N,1) = 1 for all N. S2(I,I) = 1 for all I. S2(I,J) = 0 if I < J. S2(N,K) = K * S2(N-1,K) + S2(N-1,K-1) Properties: sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J) X^N = sum ( 0 <= K <= N ) S2(N,K) X_K where X_K is the falling factorial function. Licensing: This code is distributed under the MIT license. Modified: 14 July 2022 Author: John Burkardt Input: int N, the number of rows of the table. int K, the number of columns of the table. Output: int STIRLING2_NUMBER, the Stirling number S2(N,K). */ { int i; int s2; s2 = 0; for ( i = 0; i <= k; i++ ) { s2 = s2 + i4_mop ( i ) * i4_choose ( k, i ) * pow ( k - i, n ); } s2 = s2 / i4_factorial ( k ); return s2; } /******************************************************************************/ double student_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: STUDENT_CDF evaluates the central Student T CDF. Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Output, double STUDENT_CDF, the value of the CDF. */ { double a2; double b2; double c2; double cdf; double y; y = ( x - a ) / b; a2 = 0.5 * c; b2 = 0.5; c2 = c / ( c + y * y ); if ( y <= 0.0 ) { cdf = 0.5 * beta_inc ( a2, b2, c2 ); } else { cdf = 1.0 - 0.5 * beta_inc ( a2, b2, c2 ); } return cdf; } /******************************************************************************/ void student_cdf_values ( int *n_data, double *c, double *x, double *fx ) /******************************************************************************/ /* Purpose: STUDENT_CDF_VALUES returns some values of the Student CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = StudentTDistribution [ c ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 31 July 2006 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 13 double c_vec[N_MAX] = { 1.0, 2.0, 3.0, 4.0, 5.0, 2.0, 5.0, 2.0, 5.0, 2.0, 3.0, 4.0, 5.0 }; double fx_vec[N_MAX] = { 0.6000231200328521, 0.6001080279134390, 0.6001150934648930, 0.6000995134721354, 0.5999341989834830, 0.7498859393137811, 0.7500879487671045, 0.9500004222186464, 0.9499969138365968, 0.9900012348724744, 0.9900017619355059, 0.9900004567580596, 0.9900007637471291 }; double x_vec[N_MAX] = { 0.325, 0.289, 0.277, 0.271, 0.267, 0.816, 0.727, 2.920, 2.015, 6.965, 4.541, 3.747, 3.365 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *c = 0.0; *x = 0.0; *fx = 0.0; } else { *c = c_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int student_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: STUDENT_CHECK checks the parameter of the central Student T CDF. Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. */ { if ( b == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "STUDENT_CHECK(): Warning!\n" ); fprintf ( stderr, " B must be nonzero.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "STUDENT_CHECK(): Warning!\n" ); fprintf ( stderr, " C must be greater than 0.\n" ); return 0; } return 1; } /******************************************************************************/ double student_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: STUDENT_MEAN returns the mean of the central Student T PDF. Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Output, double STUDENT_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double student_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: STUDENT_PDF evaluates the central Student T PDF. Discussion: PDF(A,B,C;X) = Gamma ( (C+1)/2 ) / ( Gamma ( C / 2 ) * Sqrt ( PI * C ) * ( 1 + ((X-A)/B)^2/C )^(C + 1/2 ) ) Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Output, double STUDENT_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - a ) / b; pdf = tgamma ( 0.5 * ( c + 1.0 ) ) / ( sqrt ( r8_pi * c ) * tgamma ( 0.5 * c ) * sqrt ( pow ( ( 1.0 + y * y / c ), ( 2 * c + 1.0 ) ) ) ); return pdf; } /******************************************************************************/ double student_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: STUDENT_SAMPLE samples the central Student T PDF. Discussion: For the sampling algorithm, it is necessary that 2 < C. Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Input/output, int *SEED, a seed for the random number generator. Output, double STUDENT_SAMPLE, a sample of the PDF. */ { double a2; double b2; double x; double x2; double x3; if ( c <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "STUDENT_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " Sampling fails for C <= 2.\n" ); exit ( 1 ); } a2 = 0.0; b2 = c / ( c - 2.0 ); x2 = normal_sample ( a2, b2, seed ); x3 = chi_square_sample ( c, seed ); x3 = x3 * c / ( c - 2.0 ); x = a + b * x2 * sqrt ( c ) / x3; return x; } /******************************************************************************/ double student_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: STUDENT_VARIANCE returns the variance of the central Student T PDF. Discussion: The variance is not defined unless 2 < C. Licensing: This code is distributed under the MIT license. Modified: 02 November 2005 Author: John Burkardt Parameters: Input, double A, B, shape parameters of the PDF, used to transform the argument X to a shifted and scaled value Y = ( X - A ) / B. It is required that B be nonzero. For the standard distribution, A = 0 and B = 1. Input, double C, is usually called the number of degrees of freedom of the distribution. C is typically an integer, but that is not essential. It is required that C be strictly positive. Output, double STUDENT_VARIANCE, the variance of the PDF. */ { double variance; if ( c <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "STUDENT_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " Variance not defined for C <= 2.\n" ); exit ( 1 ); } variance = b * b * c / ( c - 2.0 ); return variance; } /******************************************************************************/ double student_noncentral_cdf ( double x, int idf, double d ) /******************************************************************************/ /* Purpose: STUDENT_NONCENTRAL_CDF evaluates the noncentral Student T CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: Original FORTRAN77 version by B E Cooper. This version by John Burkardt Reference: BE Cooper, The Integral of the Noncentral T-Distribution, Algorithm AS 5, Applied Statistics, Volume 17, 1968, page 193. Parameters: Input, double X, the argument of the CDF. Input, int IDF, the number of degrees of freedom. Input, double D, the noncentrality parameter. Output, double STUDENT_NONCENTRAL_CDF, the value of the CDF. */ { double a; int a_max = 100; double ak; double b; double cdf; double cdf2; double drb; double emin = 12.5; double f; double fk; double fmkm1; double fmkm2; int k; const double r8_pi = 3.14159265358979323; double sum2; double temp; f = ( double ) idf; if ( idf == 1 ) { a = x / sqrt ( f ); b = f / ( f + x * x ); drb = d * sqrt ( b ); cdf2 = normal_01_cdf ( drb ); cdf = 1.0 - cdf2 + 2.0 * tfn ( drb, a ); } else if ( idf <= a_max ) { a = x / sqrt ( f ); b = f / ( f + x * x ); drb = d * sqrt ( b ); sum2 = 0.0; fmkm2 = 0.0; if ( fabs ( drb ) < emin ) { cdf2 = normal_01_cdf ( a * drb ); fmkm2 = a * sqrt ( b ) * exp ( - 0.5 * drb * drb ) * cdf2 / sqrt ( 2.0 * r8_pi ); } fmkm1 = b * d * a * fmkm2; if ( fabs ( d ) < emin ) { fmkm1 = fmkm1 + 0.5 * b * a * exp ( - 0.5 * d * d ) / r8_pi; } if ( idf % 2 == 0 ) { sum2 = fmkm2; } else { sum2 = fmkm1; } ak = 1.0; for ( k = 2; k <= idf - 2; k = k + 2 ) { fk = ( double ) ( k ); fmkm2 = b * ( d * a * ak * fmkm1 + fmkm2 ) * ( fk - 1.0 ) / fk; ak = 1.0 / ( ak * ( fk - 1.0 ) ); fmkm1 = b * ( d * a * ak * fmkm2 + fmkm1 ) * fk / ( fk + 1.0 ); if ( idf % 2 == 0 ) { sum2 = sum2 + fmkm2; } else { sum2 = sum2 + fmkm1; } ak = 1.0 / ( ak * fk ); } if ( idf % 2 == 0 ) { cdf2 = normal_01_cdf ( d ); cdf = 1.0 - cdf2 + sum2 * sqrt ( 2.0 * r8_pi ); } else { cdf2 = normal_01_cdf ( drb ); cdf = 1.0 - cdf2 + 2.0 * ( sum2 + tfn ( drb, a ) ); } } /* Normal approximation. */ else { a = sqrt ( 0.5 * f ) * exp ( lgamma ( 0.5 * ( f - 1.0 ) ) - lgamma ( 0.5 * f ) ) * d; temp = ( x - a ) / sqrt ( f * ( 1.0 + d * d ) / ( f - 2.0 ) - a * a ); cdf2 = normal_01_cdf ( temp ); cdf = cdf2; } return cdf; } /******************************************************************************/ void student_noncentral_cdf_values ( int *n_data, int *df, double *lambda, double *x, double *fx ) /******************************************************************************/ /* Purpose: STUDENT_NONCENTRAL_CDF_VALUES returns values of the noncentral Student CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NoncentralStudentTDistribution [ df, lambda ] CDF [ dist, x ] Mathematica seems to have some difficulty computing this function to the desired number of digits. Licensing: This code is distributed under the MIT license. Modified: 01 September 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, int *DF, double *LAMBDA, the parameters of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 30 int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 15, 20, 25, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10 }; double fx_vec[N_MAX] = { 0.8975836176504333, 0.9522670169, 0.9711655571887813, 0.8231218864, 0.9049021510, 0.9363471834, 0.7301025986, 0.8335594263, 0.8774010255, 0.5248571617, 0.6293856597, 0.6800271741, 0.20590131975, 0.2112148916, 0.2074730718, 0.9981130072, 0.9994873850, 0.9998391562, 0.168610566972, 0.16967950985, 0.1701041003, 0.9247683363, 0.7483139269, 0.4659802096, 0.9761872541, 0.8979689357, 0.7181904627, 0.9923658945, 0.9610341649, 0.8688007350 }; double lambda_vec[N_MAX] = { 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0, 7.0, 7.0, 7.0, 1.0, 1.0, 1.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0 }; double x_vec[N_MAX] = { 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 3.00, 15.00, 15.00, 15.00, 0.05, 0.05, 0.05, 4.00, 4.00, 4.00, 5.00, 5.00, 5.00, 6.00, 6.00, 6.00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *df = 0; *lambda = 0.0; *x = 0.0; *fx = 0.0; } else { *df = df_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ double tfn ( double h, double a ) /******************************************************************************/ /* Purpose: TFN calculates the T function of Owen. Discussion: Owen's T function is useful for computation of the bivariate normal distribution and the distribution of a skewed normal distribution. Although it was originally formulated in terms of the bivariate normal function, the function can be defined more directly as T(H,A) = 1 / ( 2 * PI ) * Integral ( 0 <= X <= A ) e^( -H^2 * (1+X^2) / 2 ) / (1+X^2) dX Licensing: This code is distributed under the MIT license. Modified: 10 December 2004 Author: FORTRAN77 original version by J C Young, C E Minder. This version by John Burkardt. Reference: D B Owen, Tables for computing the bivariate normal distribution, Annals of Mathematical Statistics, Volume 27, pages 1075-1090, 1956. J C Young, C E Minder, Algorithm AS 76, An Algorithm Useful in Calculating Non-Central T and Bivariate Normal Distributions, Applied Statistics, Volume 23, Number 3, 1974, pages 455-457. Parameters: Input, double H, A, the arguments of the T function. Output, double TFN, the value of the T function. */ { # define NGAUSS 10 double as; double h1; double h2; double hs; int i; double rt; double two_pi_inverse = 0.1591549430918953; double tv1 = 1.0E-35; double tv2 = 15.0; double tv3 = 15.0; double tv4 = 1.0E-05; double value; double weight[NGAUSS] = { 0.666713443086881375935688098933E-01, 0.149451349150580593145776339658, 0.219086362515982043995534934228, 0.269266719309996355091226921569, 0.295524224714752870173892994651, 0.295524224714752870173892994651, 0.269266719309996355091226921569, 0.219086362515982043995534934228, 0.149451349150580593145776339658, 0.666713443086881375935688098933E-01 }; double x; double xtab[NGAUSS] = { -0.973906528517171720077964012084, -0.865063366688984510732096688423, -0.679409568299024406234327365115, -0.433395394129247190799265943166, -0.148874338981631210884826001130, 0.148874338981631210884826001130, 0.433395394129247190799265943166, 0.679409568299024406234327365115, 0.865063366688984510732096688423, 0.973906528517171720077964012084 }; /* Test for H near zero. */ if ( fabs ( h ) < tv1 ) { value = atan ( a ) * two_pi_inverse; } /* Test for large values of abs(H). */ else if ( tv2 < fabs ( h ) ) { value = 0.0; } /* Test for A near zero. */ else if ( fabs ( a ) < tv1 ) { value = 0.0; } /* Test whether abs(A) is so large that it must be truncated. If so, the truncated value is H2. */ else { hs = - 0.5 * h * h; h2 = a; as = a * a; /* Computation of truncation point by Newton iteration. */ if ( tv3 <= log ( 1.0 + as ) - hs * as ) { h1 = 0.5 * a; as = 0.25 * as; for ( ; ; ) { rt = as + 1.0; h2 = h1 + ( hs * as + tv3 - log ( rt ) ) / ( 2.0 * h1 * ( 1.0 / rt - hs ) ); as = h2 * h2; if ( fabs ( h2 - h1 ) < tv4 ) { break; } h1 = h2; } } /* Gaussian quadrature on the interval [0,H2]. */ rt = 0.0; for ( i = 0; i < NGAUSS; i++ ) { x = 0.5 * h2 * ( xtab[i] + 1.0 ); rt = rt + weight[i] * exp ( hs * ( 1.0 + x * x ) ) / ( 1.0 + x * x ); } value = rt * 0.5 * h2 * two_pi_inverse; } return value; # undef NGAUSS } /******************************************************************************/ void timestamp ( ) /******************************************************************************/ /* Purpose: TIMESTAMP prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the MIT license. Modified: 24 September 2003 Author: John Burkardt Parameters: None */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE } /******************************************************************************/ double triangle_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_CDF evaluates the Triangle CDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, double TRIANGLE_CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else if ( x <= b ) { if ( a == b ) { cdf = 0.0; } else { cdf = ( x - a ) * ( x - a ) / ( b - a ) / ( c - a ); } } else if ( x <= c ) { cdf = ( b - a ) / ( c - a ) + ( 2.0 * c - b - x ) * ( x - b ) / ( c - b ) / ( c - a ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double triangle_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_CDF_INV inverts the Triangle CDF. Licensing: This code is distributed under the MIT license. Modified: 17 September 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, double TRIANGLE_CDF_INV, the corresponding argument. */ { double cdf_mid; double d; double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGLE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } d = 2.0 / ( c - a ); cdf_mid = 0.5 * d * ( b - a ); if ( cdf <= cdf_mid ) { x = a + sqrt ( cdf * ( b - a ) * ( c - a ) ); } else { x = c - sqrt ( ( c - b ) * ( ( c - b ) - ( cdf - cdf_mid ) * ( c - a ) ) ); } return x; } /******************************************************************************/ int triangle_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_CHECK checks the parameters of the Triangle CDF. Licensing: This code is distributed under the MIT license. Modified: 17 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, int TRIANGLE_CHECK, is true if the parameters are legal. */ { if ( b < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGLE_CHECK(): Warning!\n" ); fprintf ( stderr, " B < A.\n" ); return 0; } if ( c < b ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGLE_CHECK(): Warning!\n" ); fprintf ( stderr, " C < B.\n" ); return 0; } if ( a == c ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGLE_CHECK(): Warning!\n" ); fprintf ( stderr, " A == C.\n" ); return 0; } return 1; } /******************************************************************************/ double triangle_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_MEAN returns the mean of the Triangle PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, double TRIANGLE_MEAN, the mean of the discrete uniform PDF. */ { double mean; mean = a + ( c + b - 2.0 * a ) / 3.0; return mean; } /******************************************************************************/ double triangle_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_PDF evaluates the Triangle PDF. Discussion: Given points A <= B <= C, the probability is 0 to the left of A, rises linearly to a maximum of 2/(C-A) at B, drops linearly to zero at C, and is zero for all values greater than C. PDF(A,B,C;X) = 2 * ( X - A ) / ( B - A ) / ( C - A ) for A <= X <= B = 2 * ( C - X ) / ( C - B ) / ( C - A ) for B <= X <= C. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, double TRIANGLE_PDF, the value of the PDF. */ { double pdf; if ( x <= a ) { pdf = 0.0; } else if ( x <= b ) { if ( a == b ) { pdf = 0.0; } else { pdf = 2.0 * ( x - a ) / ( b - a ) / ( c - a ); } } else if ( x <= c ) { if ( b == c ) { pdf = 0.0; } else { pdf = 2.0 * ( c - x ) / ( c - b ) / ( c - a ); } } else { pdf = 0.0; } return pdf; } /******************************************************************************/ double triangle_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: TRIANGLE_SAMPLE samples the Triangle PDF. Licensing: This code is distributed under the MIT license. Modified: 17 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Input/output, int *SEED, a seed for the random number generator. Output, double TRIANGLE_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = triangle_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double triangle_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: TRIANGLE_VARIANCE returns the variance of the Triangle PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. A <= B <= C and A < C. Output, double VARIANCE, the variance of the PDF. */ { double variance; variance = ( ( c - a ) * ( c - a ) - ( c - a ) * ( b - a ) + ( b - a ) * ( b - a ) ) / 18.0; return variance; } /******************************************************************************/ double triangular_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_CDF evaluates the Triangular CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. A < B. Output, double TRIANGULAR_CDF, the value of the CDF. */ { double cdf; if ( x <= a ) { cdf = 0.0; } else if ( x <= 0.5 * ( a + b ) ) { cdf = 2.0 * ( x * x - 2.0 * a * x + a * a ) / pow ( ( b - a ), 2 ); } else if ( x <= b ) { cdf = 0.5 + ( - 2.0 * x * x + 4.0 * b * x + 0.5 * a * a - a * b - 1.5 * b * b ) / pow ( ( b - a ), 2 ); } else { cdf = 1.0; } return cdf; } /******************************************************************************/ double triangular_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_CDF_INV inverts the Triangular CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. A < B. Output, double TRIANGULAR_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGULAR_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf <= 0.5 ) { x = a + 0.5 * ( b - a ) * sqrt ( 2.0 * cdf ); } else { x = b - 0.5 * ( b - a ) * sqrt ( 2.0 * ( 1.0 - cdf ) ); } return x; } /******************************************************************************/ int triangular_check ( double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_CHECK checks the parameters of the Triangular CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, int TRIANGULAR_CHECK, is true if the parameters are legal. */ { if ( b <= a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIANGULAR_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= A.\n" ); return 0; } return 1; } /******************************************************************************/ double triangular_mean ( double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_MEAN returns the mean of the Triangular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, double TRIANGULAR_MEAN, the mean of the discrete PDF. */ { double mean; mean = 0.5 * ( a + b ); return mean; } /******************************************************************************/ double triangular_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_PDF evaluates the Triangular PDF. Discussion: PDF(A,B;X) = 4 * ( X - A ) / ( B - A )^2 for A <= X <= (A+B)/2 = 4 * ( B - X ) / ( B - A )^2 for (A+B)/2 <= X <= B. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. A < B. Output, double TRIANGULAR_PDF, the value of the PDF. */ { double pdf; if ( x <= a ) { pdf = 0.0; } else if ( x <= 0.5 * ( a + b ) ) { pdf = 4.0 * ( x - a ) / ( b - a ) / ( b - a ); } else if ( x <= b ) { pdf = 4.0 * ( b - x ) / ( b - a ) / ( b - a ); } else { pdf = 0.0; } return pdf; } /******************************************************************************/ double triangular_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: TRIANGULAR_SAMPLE samples the Triangular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Input/output, int *SEED, a seed for the random number generator. Output, double TRIANGULAR_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = triangular_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double triangular_variance ( double a, double b ) /******************************************************************************/ /* Purpose: TRIANGULAR_VARIANCE returns the variance of the Triangular PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, double TRIANGULAR_VARIANCE, the variance of the PDF. */ { double variance; variance = ( b - a ) * ( b - a ) / 24.0; return variance; } /******************************************************************************/ double trigamma ( double x ) /******************************************************************************/ /* Purpose: TRIGAMMA calculates the TriGamma function. Discussion: TriGamma(x) = d^2 log ( Gamma ( x ) ) / dx^2. Licensing: This code is distributed under the MIT license. Modified: 03 January 2000 Author: Original FORTRAN77 version by B Schneider This version by John Burkardt Reference: B Schneider, Trigamma Function, Algorithm AS 121, Applied Statistics, Volume 27, Number 1, page 97-99, 1978. Parameters: Input, double X, the argument of the trigamma function. 0 < X. Output, double TRIGAMMA, the value of the trigamma function at X. */ { double a = 0.0001; double b = 5.0; double b2 = 1.0 / 6.0; double b4 = - 1.0 / 30.0; double b6 = 1.0 / 42.0; double b8 = - 1.0 / 30.0; double value; double y; double z; /* 1): If X is not positive, fail. */ if ( x <= 0.0 ) { value = 0.0; fprintf ( stderr, "\n" ); fprintf ( stderr, "TRIGAMMA - Fatal error!\n" ); fprintf ( stderr, " X <= 0.\n" ); exit ( 1 ); } /* 2): If X is smaller than A, use a small value approximation. */ else if ( x <= a ) { value = 1.0 / x / x; } /* 3): Otherwise, increase the argument to B <= ( X + I ). */ else { z = x; value = 0.0; while ( z < b ) { value = value + 1.0 / z / z; z = z + 1.0; } /* ...and then apply an asymptotic formula. */ y = 1.0 / z / z; value = value + 0.5 * y + ( 1.0 + y * ( b2 + y * ( b4 + y * ( b6 + y * b8 )))) / z; } return value; } /******************************************************************************/ double uniform_01_cdf ( double x ) /******************************************************************************/ /* Purpose: UNIFORM_01_CDF evaluates the Uniform 01 CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Output, double UNIFORM_01_CDF, the value of the CDF. */ { double cdf; if ( x < 0.0 ) { cdf = 0.0; } else if ( 1.0 < x ) { cdf = 1.0; } else { cdf = x; } return cdf; } /******************************************************************************/ double uniform_01_cdf_inv ( double cdf ) /******************************************************************************/ /* Purpose: UNIFORM_01_CDF_INV inverts the Uniform 01 CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Output, double UNIFORM_01_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "UNIFORM_01_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = cdf; return x; } /******************************************************************************/ double uniform_01_mean ( ) /******************************************************************************/ /* Purpose: UNIFORM_01_MEAN returns the mean of the Uniform 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Output, double UNIFORM_01_MEAN, the mean of the PDF. */ { double mean; mean = 0.5; return mean; } /******************************************************************************/ double uniform_01_pdf ( double x ) /******************************************************************************/ /* Purpose: UNIFORM_01_PDF evaluates the Uniform 01 PDF. Discussion: PDF(X) = 1 for 0 <= X <= 1 = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. 0.0 <= X <= 1.0. Output, double PDF, the value of the PDF. */ { double pdf; if ( x < 0.0 || 1.0 < x ) { pdf = 0.0; } else { pdf = 1.0; } return pdf; } /******************************************************************************/ double uniform_01_sample ( int *seed ) /******************************************************************************/ /* Purpose: UNIFORM_01_SAMPLE is a random number generator. Discussion: SEED = SEED * (7^5) mod (2^31 - 1) UNIFORM_01_SAMPLE = SEED * / ( 2^31 - 1 ) Licensing: This code is distributed under the MIT license. Modified: 17 October 2008 Author: John Burkardt Parameters: Input/output, int *SEED, the integer "seed" used to generate the output random number, and updated in preparation for the next one. *SEED should not be zero. Output, double UNIFORM_01_SAMPLE, a random value between 0 and 1. Local Parameters: Local, int IA = 7^5. Local, int IB = 2^15. Local, int IB16 = 2^16. Local, int IP = 2^31 - 1. */ { static int ia = 16807; static int ib15 = 32768; static int ib16 = 65536; static int ip = 2147483647; int iprhi; int ixhi; int k; int leftlo; int loxa; double temp; /* Don't let SEED be 0. */ if ( *seed == 0 ) { *seed = ip; } /* Get the 15 high order bits of SEED. */ ixhi = *seed / ib16; /* Get the 16 low bits of SEED and form the low product. */ loxa = ( *seed - ixhi * ib16 ) * ia; /* Get the 15 high order bits of the low product. */ leftlo = loxa / ib16; /* Form the 31 highest bits of the full product. */ iprhi = ixhi * ia + leftlo; /* Get overflow past the 31st bit of full product. */ k = iprhi / ib15; /* Assemble all the parts and presubtract IP. The parentheses are essential. */ *seed = ( ( ( loxa - leftlo * ib16 ) - ip ) + ( iprhi - k * ib15 ) * ib16 ) + k; /* Add IP back in if necessary. */ if ( *seed < 0 ) { *seed = *seed + ip; } /* Multiply by 1 / (2**31-1). */ temp = ( ( double ) *seed ) * 4.656612875E-10; return ( temp ); } /******************************************************************************/ double uniform_01_variance ( ) /******************************************************************************/ /* Purpose: UNIFORM_01_VARIANCE returns the variance of the Uniform 01 PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Output, double UNIFORM_01_VARIANCE, the variance of the PDF. */ { double variance; variance = 1.0 / 12.0; return variance; } /******************************************************************************/ double *uniform_01_order_sample ( int n, int *seed ) /******************************************************************************/ /* Purpose: UNIFORM_01_ORDER_SAMPLE samples the Uniform 01 Order PDF. Discussion: In effect, this routine simply generates N samples of the Uniform 01 PDF; but it generates them in order. (Actually, it generates them in descending order, but stores them in the array in ascending order). This saves the work of sorting the results. Moreover, if the order statistics for another PDF are desired, and the inverse CDF is available, then the desired values may be generated, presorted, by calling this routine and using the results as input to the inverse CDF routine. Licensing: This code is distributed under the MIT license. Modified: 27 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 168. Parameters: Input, int N, the number of elements in the sample. Input/output, int *SEED, a seed for the random number generator. Output, double UNIFORM_01_ORDER_SAMPLE[N], N samples of the Uniform 01 PDF, in ascending order. */ { int i; double u; double v; double *x; x = ( double * ) malloc ( n * sizeof ( double ) ); v = 1.0; for ( i = n-1; 0 <= i; i-- ) { u = r8_uniform_01 ( seed ); v = v * pow ( u, 1.0 / ( double ) ( i + 1 ) ); x[i] = v; } return x; } /******************************************************************************/ double uniform_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_CDF evaluates the Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. Input, double A, B, the parameters of the PDF. A < B. Output, double UNIFORM_CDF, the value of the CDF. */ { double cdf; if ( x < a ) { cdf = 0.0; } else if ( b < x ) { cdf = 1.0; } else { cdf = ( x - a ) / ( b - a ); } return cdf; } /******************************************************************************/ double uniform_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_CDF_INV inverts the Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. A < B. Output, double UNIFORM_CDF_INV, the corresponding argument. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "UNIFORM_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a + ( b - a ) * cdf; return x; } /******************************************************************************/ int uniform_check ( double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_CHECK checks the parameters of the Uniform CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, int UNIFORM_CHECK, is true if the parameters are legal. */ { if ( b <= a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "UNIFORM_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= A.\n" ); return 0; } return 1; } /******************************************************************************/ double uniform_mean ( double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_MEAN returns the mean of the Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, double UNIFORM_MEAN, the mean of the discrete uniform PDF. */ { double mean; mean = 0.5 * ( a + b ); return mean; } /******************************************************************************/ double uniform_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_PDF evaluates the Uniform PDF. Discussion: The Uniform PDF is also known as the "Rectangular" or "de Moivre" PDF. PDF(A,B;X) = 1 / ( B - A ) for A <= X <= B = 0 otherwise Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. Input, double A, B, the parameters of the PDF. A < B. Output, double UNIFORM_PDF, the value of the PDF. */ { double pdf; if ( x < a || b < x ) { pdf = 0.0; } else { pdf = 1.0 / ( b - a ); } return pdf; } /******************************************************************************/ double uniform_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: UNIFORM_SAMPLE samples the Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Input/output, int *SEED, a seed for the random number generator. Output, double UNIFORM_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = uniform_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double uniform_variance ( double a, double b ) /******************************************************************************/ /* Purpose: UNIFORM_VARIANCE returns the variance of the Uniform PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. A < B. Output, double UNIFORM_VARIANCE, the variance of the PDF. */ { double variance; variance = ( b - a ) * ( b - a ) / 12.0; return variance; } /******************************************************************************/ double uniform_discrete_cdf ( int x, int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_CDF evaluates the Uniform Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the CDF. Input, int A, B, the parameters of the PDF. A <= B. Output, double UNIFORM_DISCRETE_CDF, the value of the CDF. */ { double cdf; if ( x < a ) { cdf = 0.0; } else if ( b < x ) { cdf = 1.0; } else { cdf = ( double ) ( x + 1 - a ) / ( double ) ( b + 1 - a ); } return cdf; } /******************************************************************************/ int uniform_discrete_cdf_inv ( double cdf, int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_CDF_INV inverts the Uniform Discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 22 November 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, int A, B, the parameters of the PDF. A <= B. Output, int UNIFORM_DISCRETE_CDF_INV, the smallest argument whose CDF is greater than or equal to CDF. */ { double a2; double b2; int x; double x2; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "UNIFORM_DISCRETE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } a2 = ( double ) ( a ) - 0.5; b2 = ( double ) ( b ) + 0.5; x2 = a + cdf * ( b2 - a2 ); x = r8_nint ( x2 ); x = i4_max ( x, a ); x = i4_min ( x, b ); return x; } /******************************************************************************/ int uniform_discrete_check ( int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_CHECK checks the parameters of the Uniform discrete CDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int A, B, the parameters of the PDF. A <= B. Output, int UNIFORM_DISCRETE_CHECK, is true if the parameters are legal. */ { if ( b < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "UNIFORM_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " B < A.\n" ); return 0; } return 1; } /******************************************************************************/ double uniform_discrete_mean ( int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_MEAN returns the mean of the Uniform discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int A, B, the parameters of the PDF. A <= B. Output, double UNIFORM_DISCRETE_MEAN, the mean of the PDF. */ { double mean; mean = 0.5 * ( double ) ( a + b ); return mean; } /******************************************************************************/ double uniform_discrete_pdf ( int x, int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_PDF evaluates the Uniform discrete PDF. Discussion: The Uniform Discrete PDF is also known as the "Rectangular" Discrete PDF. PDF(A,B;X) = 1 / ( B + 1 - A ) for A <= X <= B. The parameters define the interval of integers for which the PDF is nonzero. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the PDF. Input, int A, B, the parameters of the PDF. A <= B. Output, double UNIFORM_DISCRETE_PDF, the value of the PDF. */ { double pdf; if ( x < a || b < x ) { pdf = 0.0; } else { pdf = 1.0 / ( double ) ( b + 1 - a ); } return pdf; } /******************************************************************************/ int uniform_discrete_sample ( int a, int b, int *seed ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_SAMPLE samples the Uniform discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int A, B, the parameters of the PDF. A <= B. Input/output, int *SEED, a seed for the random number generator. Output, int UNIFORM_DISCRETE_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = uniform_discrete_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double uniform_discrete_variance ( int a, int b ) /******************************************************************************/ /* Purpose: UNIFORM_DISCRETE_VARIANCE returns the variance of the Uniform discrete PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, int A, B, the parameters of the PDF. A <= B. Output, double UNIFORM_DISCRETE_VARIANCE, the variance of the PDF. */ { double variance; variance = ( double ) ( ( b + 1 - a ) * ( b + 1 - a ) - 1 ) / 12.0; return variance; } /******************************************************************************/ double *uniform_nsphere_sample ( int n, int *seed ) /******************************************************************************/ /* Purpose: UNIFORM_NSPHERE_SAMPLE samples the Uniform Unit Sphere PDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 168. Parameters: Input, int N, the dimension of the sphere. Input/output, int *SEED, a seed for the random number generator. Output, double UNIFORM_NSPHERE_SAMPLE[N], a point on the unit N sphere, chosen with a uniform probability. */ { int i; double sum; double *x; x = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { x[i] = normal_01_sample ( seed ); } sum = 0.0; for ( i = 0; i < n; i++ ) { sum = sum + x[i] * x[i]; } sum = sqrt ( sum ); for ( i = 0; i < n; i++ ) { x[i] = x[i] / sum; } return x; } /******************************************************************************/ double von_mises_cdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_CDF evaluates the von Mises CDF. Licensing: This code is distributed under the MIT license. Modified: 17 November 2006 Author: Original FORTRAN77 version by Geoffrey Hill This version by John Burkardt Reference: Geoffrey Hill, ACM TOMS Algorithm 518, Incomplete Bessel Function I0: The von Mises Distribution, ACM Transactions on Mathematical Software, Volume 3, Number 3, September 1977, pages 279-284. Kanti Mardia, Peter Jupp, Directional Statistics, Wiley, 2000, QA276.M335 Parameters: Input, double X, the argument of the CDF. A - PI <= X <= A + PI. Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, double VON_MISES_CDF, the value of the CDF. */ { double a1 = 12.0; double a2 = 0.8; double a3 = 8.0; double a4 = 1.0; double arg; double c; double c1 = 56.0; double cdf; double ck = 10.5; double cn; double erfx; int ip; int n; double p; const double r8_pi = 3.14159265358979323; double r; double s; double sn; double u; double v; double y; double z; /* We expect -PI <= X - A <= PI. */ if ( x - a <= - r8_pi ) { cdf = 0.0; return cdf; } if ( r8_pi <= x - a ) { cdf = 1.0; return cdf; } /* Convert the angle (X - A) modulo 2 PI to the range ( 0, 2 * PI ). */ z = b; u = r8_modp ( x - a + r8_pi, 2.0 * r8_pi ); if ( u < 0.0 ) { u = u + 2.0 * r8_pi; } y = u - r8_pi; /* For small B, sum IP terms by backwards recursion. */ if ( z <= ck ) { v = 0.0; if ( 0.0 < z ) { ip = ( int ) ( z * a2 - a3 / ( z + a4 ) + a1 ); p = ( double ) ( ip ); s = sin ( y ); c = cos ( y ); y = p * y; sn = sin ( y ); cn = cos ( y ); r = 0.0; z = 2.0 / z; for ( n = 2; n <= ip; n++ ) { p = p - 1.0; y = sn; sn = sn * c - cn * s; cn = cn * c + y * s; r = 1.0 / ( p * z + r ); v = ( sn / p + v ) * r; } } cdf = ( u * 0.5 + v ) / r8_pi; } /* For large B, compute the normal approximation and left tail. */ else { c = 24.0 * z; v = c - c1; r = sqrt ( ( 54.0 / ( 347.0 / v + 26.0 - c ) - 6.0 + c ) / 12.0 ); z = sin ( 0.5 * y ) * r; s = 2.0 * z * z; v = v - s + 3.0; y = ( c - s - s - 16.0 ) / 3.0; y = ( ( s + 1.75 ) * s + 83.5 ) / v - y; arg = z * ( 1.0 - s / y / y ); erfx = r8_error_f ( arg ); cdf = 0.5 * erfx + 0.5; } cdf = fmax ( cdf, 0.0 ); cdf = fmin ( cdf, 1.0 ); return cdf; } /******************************************************************************/ double von_mises_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_CDF_INV inverts the von Mises CDF. Discussion: A simple bisection method is used on the interval [ A - PI, A + PI ]. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, double VON_MISES_CDF_INV, the corresponding argument of the CDF. A - PI <= X <= A + PI. */ { double cdf1; double cdf3; int it; int it_max = 100; const double r8_pi = 3.14159265358979323; double tol = 0.0001; double x; double x1; double x2; double x3; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "VON_MISES_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } if ( cdf == 0.0 ) { x = a - r8_pi; return x; } else if ( 1.0 == cdf ) { x = a + r8_pi; return x; } x1 = a - r8_pi; cdf1 = 0.0; x2 = a + r8_pi; /* Now use bisection. */ it = 0; for ( ; ; ) { it = it + 1; x3 = 0.5 * ( x1 + x2 ); cdf3 = von_mises_cdf ( x3, a, b ); if ( fabs ( cdf3 - cdf ) < tol ) { x = x3; break; } if ( it_max < it ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "VON_MISES_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " Iteration limit exceeded.\n" ); exit ( 1 ); } if ( ( cdf3 <= cdf && cdf1 <= cdf ) || ( cdf <= cdf3 && cdf <= cdf1 ) ) { x1 = x3; cdf1 = cdf3; } else { x2 = x3; } } return x; } /******************************************************************************/ void von_mises_cdf_values ( int *n_data, double *a, double *b, double *x, double *fx ) /******************************************************************************/ /* Purpose: VON_MISES_CDF_VALUES returns some values of the von Mises CDF. Licensing: This code is distributed under the MIT license. Modified: 08 December 2004 Author: John Burkardt Reference: Kanti Mardia, Peter Jupp, Directional Statistics, Wiley, 2000, QA276.M335 Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, B, the parameters of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 23 double a_vec[N_MAX] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, -0.2E+01, -0.1E+01, 0.0E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; double b_vec[N_MAX] = { 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.0, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01 }; double fx_vec[N_MAX] = { 0.2535089956281180E-01, 0.1097539041177346, 0.5000000000000000, 0.8043381312498558, 0.9417460124555197, 0.5000000000000000, 0.6018204118446155, 0.6959356933122230, 0.7765935901304593, 0.8410725934916615, 0.8895777369550366, 0.9960322705517925, 0.9404336090170247, 0.5000000000000000, 0.5956639098297530E-01, 0.3967729448207649E-02, 0.2321953958111930E-03, 0.6250000000000000, 0.7438406999109122, 0.8369224904294019, 0.8941711407897124, 0.9291058600568743, 0.9514289900655436 }; double x_vec[N_MAX] = { -0.2617993977991494E+01, -0.1570796326794897E+01, 0.0000000000000000, 0.1047197551196598E+01, 0.2094395102393195E+01, 0.1000000000000000E+01, 0.1200000000000000E+01, 0.1400000000000000E+01, 0.1600000000000000E+01, 0.1800000000000000E+01, 0.2000000000000000E+01, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *b = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int von_mises_check ( double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_CHECK checks the parameters of the von Mises PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, int VON_MISES_CHECK, is true if the parameters are legal. */ { const double r8_pi = 3.14159265358979323; if ( a < - r8_pi || r8_pi < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "VON_MISES_CHECK(): Warning!\n" ); fprintf ( stderr, " A < -PI or PI < A.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "VON_MISES_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.0\n" ); return 0; } return 1; # } /******************************************************************************/ double von_mises_circular_variance ( double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_CIRCULAR_VARIANCE returns the circular variance of the von Mises PDF. Licensing: This code is distributed under the MIT license. Modified: 02 December 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, double VON_MISES_CIRCULAR_VARIANCE, the circular variance of the PDF. */ { double value; value = 1.0 - bessel_i1 ( b ) / bessel_i0 ( b ); return value; } /******************************************************************************/ double von_mises_mean ( double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_MEAN returns the mean of the von Mises PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, double VON_MISES_MEAN, the mean of the PDF. */ { double mean; mean = a; return mean; } /******************************************************************************/ double von_mises_pdf ( double x, double a, double b ) /******************************************************************************/ /* Purpose: VON_MISES_PDF evaluates the von Mises PDF. Discussion: PDF(A,B;X) = EXP ( B * COS ( X - A ) ) / ( 2 * PI * I0(B) ) where: I0(*) is the modified Bessel function of the first kind of order 0. The von Mises distribution for points on the unit circle is analogous to the normal distribution of points on a line. The variable X is interpreted as a deviation from the angle A, with B controlling the amount of dispersion. Licensing: This code is distributed under the MIT license. Modified: 27 October 2004 Author: John Burkardt Reference: Jerry Banks, editor, Handbook of Simulation, Engineering and Management Press Books, 1998, page 160. D J Best, N I Fisher, Efficient Simulation of the von Mises Distribution, Applied Statistics, Volume 28, Number 2, pages 152-157. Kanti Mardia, Peter Jupp, Directional Statistics, Wiley, 2000, QA276.M335 Parameters: Input, double X, the argument of the PDF. A - PI <= X <= A + PI. Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Output, double VON_MISES_PDF, the value of the PDF. */ { double pdf; const double r8_pi = 3.14159265358979323; if ( x < a - r8_pi ) { pdf = 0.0; } else if ( x <= a + r8_pi ) { pdf = exp ( b * cos ( x - a ) ) / ( 2.0 * r8_pi * bessel_i0 ( b ) ); } else { pdf = 0.0; } return pdf; } /******************************************************************************/ double von_mises_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: VON_MISES_SAMPLE samples the von Mises PDF. Licensing: This code is distributed under the MIT license. Modified: 17 October 2004 Author: John Burkardt Reference: D J Best, N I Fisher, Efficient Simulation of the von Mises Distribution, Applied Statistics, Volume 28, Number 2, pages 152-157. Parameters: Input, double A, B, the parameters of the PDF. -PI <= A <= PI, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, double VON_MISES_SAMPLE, a sample of the PDF. */ { double c; double f; const double r8_pi = 3.14159265358979323; double r; double rho; double tau; double u1; double u2; double u3; double x; double z; tau = 1.0 + sqrt ( 1.0 + 4.0 * b * b ); rho = ( tau - sqrt ( 2.0 * tau ) ) / ( 2.0 * b ); r = ( 1.0 + rho * rho ) / ( 2.0 * rho ); for ( ; ; ) { u1 = r8_uniform_01 ( seed ); z = cos ( r8_pi * u1 ); f = ( 1.0 + r * z ) / ( r + z ); c = b * ( r - f ); u2 = r8_uniform_01 ( seed ); if ( u2 < c * ( 2.0 - c ) ) { break; } if ( c <= log ( c / u2 ) + 1.0 ) { break; } } u3 = r8_uniform_01 ( seed ); x = a + r8_sign ( u3 - 0.5 ) * acos ( f ); return x; } /******************************************************************************/ double weibull_cdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_CDF evaluates the Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the CDF. A <= X. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double CDF, the value of the CDF. */ { double cdf; double y; if ( x < a ) { cdf = 0.0; } else { y = ( x - a ) / b; cdf = 1.0 - 1.0 / exp ( pow ( y, c ) ); } return cdf; } /******************************************************************************/ double weibull_cdf_inv ( double cdf, double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_CDF_INV inverts the Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 < CDF < 1.0. Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double WEIBULL_CDF_INV, the corresponding argument of the CDF. */ { double x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = a + b * pow ( ( - log ( 1.0 - cdf ) ), ( 1.0 / c ) ); return x; } /******************************************************************************/ void weibull_cdf_values ( int *n_data, double *alpha, double *beta, double *x, double *fx ) /******************************************************************************/ /* Purpose: WEIBULL_CDF_VALUES returns some values of the Weibull CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = WeibullDistribution [ alpha, beta ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 31 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *ALPHA, the first parameter of the distribution. Output, double *BETA, the second parameter of the distribution. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 12 double alpha_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; double beta_vec[N_MAX] = { 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.5000000000000000, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; double fx_vec[N_MAX] = { 0.8646647167633873, 0.9816843611112658, 0.9975212478233336, 0.9996645373720975, 0.6321205588285577, 0.4865828809674080, 0.3934693402873666, 0.3296799539643607, 0.8946007754381357, 0.9657818816883340, 0.9936702845725143, 0.9994964109502630 }; double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *alpha = 0.0; *beta = 0.0; *x = 0.0; *fx = 0.0; } else { *alpha = alpha_vec[*n_data-1]; *beta = beta_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } /******************************************************************************/ int weibull_check ( double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_CHECK checks the parameters of the Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, int WEIBULL_CHECK, is true if the parameters are legal. */ { if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } if ( c <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_CHECK(): Warning!\n" ); fprintf ( stderr, " C <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double weibull_mean ( double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_MEAN returns the mean of the Weibull PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double MEAN, the mean of the PDF. */ { double mean; mean = b * tgamma ( ( c + 1.0 ) / c ) + a; return mean; } /******************************************************************************/ double weibull_pdf ( double x, double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_PDF evaluates the Weibull PDF. Discussion: PDF(A,B,C;X) = ( C / B ) * ( ( X - A ) / B )^( C - 1 ) * EXP ( - ( ( X - A ) / B )^C ). The Weibull PDF is also known as the Frechet PDF. WEIBULL_PDF(A,B,1;X) is the Exponential PDF. WEIBULL_PDF(0,1,2;X) is the Rayleigh PDF. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double X, the argument of the PDF. A <= X Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double PDF, the value of the PDF. */ { double pdf; double y; if ( x < a ) { pdf = 0.0; } else { y = ( x - a ) / b; pdf = ( c / b ) * pow ( y, ( c - 1.0 ) ) / exp ( pow ( y, c ) ); } return pdf; } /******************************************************************************/ double weibull_sample ( double a, double b, double c, int *seed ) /******************************************************************************/ /* Purpose: WEIBULL_SAMPLE samples the Weibull PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Input/output, int *SEED, a seed for the random number generator. Output, double WEIBULL_SAMPLE, a sample of the PDF. */ { double cdf; double x; cdf = r8_uniform_01 ( seed ); x = weibull_cdf_inv ( cdf, a, b, c ); return x; } /******************************************************************************/ double weibull_variance ( double a, double b, double c ) /******************************************************************************/ /* Purpose: WEIBULL_VARIANCE returns the variance of the Weibull PDF. Licensing: This code is distributed under the MIT license. Modified: 18 September 2004 Author: John Burkardt Parameters: Input, double A, B, C, the parameters of the PDF. 0.0 < B, 0.0 < C. Output, double VARIANCE, the variance of the PDF. */ { double g1; double g2; double variance; g1 = tgamma ( ( c + 2.0 ) / c ); g2 = tgamma ( ( c + 1.0 ) / c ); variance = b * b * ( g1 - g2 * g2 ); return variance; } /******************************************************************************/ double weibull_discrete_cdf ( int x, double a, double b ) /******************************************************************************/ /* Purpose: WEIBULL_DISCRETE_CDF evaluates the Discrete Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the CDF. 0 <= X. Input, double A, B, the parameters of the PDF. 0.0 <= A <= 1.0, 0.0 < B. Output, double WEIBULL_DISCRETE_CDF, the value of the CDF. */ { double cdf; if ( x < 0 ) { cdf = 0.0; } else { cdf = 1.0 - pow ( 1.0 - a, pow ( x + 1, b ) ); } return cdf; } /******************************************************************************/ int weibull_discrete_cdf_inv ( double cdf, double a, double b ) /******************************************************************************/ /* Purpose: WEIBULL_DISCRETE_CDF_INV inverts the Discrete Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. 0.0 <= CDF <= 1.0. Input, double A, B, the parameters of the PDF. 0.0 <= A <= 1.0, 0.0 < B. Output, int WEIBULL_DISCRETE_CDF_INV, the corresponding argument. */ { int x; if ( cdf < 0.0 || 1.0 < cdf ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_DISCRETE_CDF_INV - Fatal error!\n" ); fprintf ( stderr, " CDF < 0 or 1 < CDF.\n" ); exit ( 1 ); } x = r8_ceiling ( pow ( log ( 1.0 - cdf ) / log ( 1.0 - a ), 1.0 / b ) - 1.0 ); return x; } /******************************************************************************/ int weibull_discrete_check ( double a, double b ) /******************************************************************************/ /* Purpose: WEIBULL_DISCRETE_CHECK checks the parameters of the discrete Weibull CDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A <= 1.0, 0.0 < B. Output, int WEIBULL_DISCRETE_CHECK, is true if the parameters are legal. */ { if ( a < 0.0 || 1.0 < a ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " A < 0 or 1 < A.\n" ); return 0; } if ( b <= 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WEIBULL_DISCRETE_CHECK(): Warning!\n" ); fprintf ( stderr, " B <= 0.\n" ); return 0; } return 1; } /******************************************************************************/ double weibull_discrete_pdf ( int x, double a, double b ) /******************************************************************************/ /* Purpose: WEIBULL_DISCRETE_PDF evaluates the discrete Weibull PDF. Discussion: PDF(A,B;X) = ( 1 - A )^X^B - ( 1 - A )^(X+1)^B. WEIBULL_DISCRETE_PDF(A,1;X) = GEOMETRIC_PDF(A;X) Licensing: This code is distributed under the MIT license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the PDF. 0 <= X Input, double A, B, the parameters that define the PDF. 0 <= A <= 1, 0 < B. Output, double WEIBULL_DISCRETE_PDF, the value of the PDF. */ { double pdf; if ( x < 0 ) { pdf = 0.0; } else { pdf = pow ( 1.0 - a , pow ( x, b ) ) - pow ( 1.0 - a, pow ( x + 1, b ) ); } return pdf; } /******************************************************************************/ int weibull_discrete_sample ( double a, double b, int *seed ) /******************************************************************************/ /* Purpose: WEIBULL_DISCRETE_SAMPLE samples the discrete Weibull PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, B, the parameters of the PDF. 0.0 <= A <= 1.0, 0.0 < B. Input/output, int *SEED, a seed for the random number generator. Output, int WEIBULL_DISCRETE_SAMPLE, a sample of the PDF. */ { double cdf; int x; cdf = r8_uniform_01 ( seed ); x = weibull_discrete_cdf_inv ( cdf, a, b ); return x; } /******************************************************************************/ double zipf_cdf ( int x, double a ) /******************************************************************************/ /* Purpose: ZIPF_CDF evaluates the Zipf CDF. Discussion: Simple summation is used. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, int X, the argument of the PDF. 1 <= N Input, double A, the parameter of the PDF. 1.0 < A. Output, double CDF, the value of the CDF. */ { double c; double cdf; double pdf; int y; if ( x < 1 ) { cdf = 0.0; } else { c = r8_zeta ( a ); cdf = 0.0; for ( y = 1; y <= x; y++ ) { pdf = 1.0 / pow ( y, a ) / c; cdf = cdf + pdf; } } return cdf; } /******************************************************************************/ int zipf_cdf_inv ( double a, double cdf ) /******************************************************************************/ /* Purpose: ZIPF_CDF_INV inverts the Zipf CDF. Discussion: Simple summation is used. Licensing: This code is distributed under the MIT license. Modified: 09 March 2016 Author: John Burkardt Parameters: Input, double CDF, the value of the CDF. Input, double A, the parameter of the PDF. 1.0 < A. Output, int X, the argument such that CDF(X-1) < CDF <= CDF(X) 1 <= X <= 1000 */ { double c; double cdf2; double pdf; int x; int y; if ( cdf <= 0.0 ) { x = 1; } else { c = r8_zeta ( a ); cdf2 = 0.0; x = 1000; for ( y = 1; y <= 1000; y++ ) { pdf = ( 1.0 / pow ( y, a ) ) / c; cdf2 = cdf2 + pdf; if ( cdf <= cdf2 ) { x = y; break; } } } return x; } /******************************************************************************/ int zipf_check ( double a ) /******************************************************************************/ /* Purpose: ZIPF_CHECK checks the parameter of the Zipf PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 1.0 < A. Output, int ZIPF_CHECK, is true if the parameters are legal. */ { if ( a <= 1.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ZIPF_CHECK(): Warning!\n" ); fprintf ( stderr, " A <= 1.\n" ); return 0; } return 1; } /******************************************************************************/ double zipf_mean ( double a ) /******************************************************************************/ /* Purpose: ZIPF_MEAN returns the mean of the Zipf PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 1.0 < A. Output, double ZIPF_MEAN, the mean of the PDF. The mean is only defined for 2 < A. */ { double mean; if ( a <= 2.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ZIPF_MEAN - Fatal error!\n" ); fprintf ( stderr, " No mean defined for A <= 2.\n" ); exit ( 1 ); } mean = r8_zeta ( a - 1.0 ) / r8_zeta ( a ); return mean; } /******************************************************************************/ double zipf_pdf ( int x, double a ) /******************************************************************************/ /* Purpose: ZIPF_PDF evaluates the Zipf PDF. Discussion: PDF(A;X) = ( 1 / X^A ) / C where the normalizing constant is chosen so that C = Sum ( 1 <= I < Infinity ) 1 / I^A. From observation, the frequency of different words in long sequences of text seems to follow the Zipf PDF, with parameter A slightly greater than 1. The Zipf PDF is sometimes known as the "discrete Pareto" PDF. Lotka's law is a version of the Zipf PDF in which A is 2 or approximately 2. Lotka's law describes the frequency of publications by authors in a given field, and estimates that the number of authors with X papers is about 1/X^A of the number of authors with 1 paper. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Reference: Alfred Lotka, The frequency distribution of scientific productivity, Journal of the Washington Academy of Sciences, Volume 16, Number 12, 1926, pages 317-324. Parameters: Input, int X, the argument of the PDF. 1 <= N Input, double A, the parameter of the PDF. 1.0 < A. Output, double PDF, the value of the PDF. */ { double pdf; if ( x < 1 ) { pdf = 0.0; } else { pdf = 1.0 / pow ( x, a ) / r8_zeta ( a ); } return pdf; } /******************************************************************************/ int zipf_sample ( double a, int *seed ) /******************************************************************************/ /* Purpose: ZIPF_SAMPLE samples the Zipf PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Reference: Luc Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986, pages 550-551. Parameters: Input, double A, the parameter of the PDF. 1.0 < A. Input/output, int *SEED, a seed for the random number generator. Output, int ZIPF_SAMPLE, a sample of the PDF. */ { double b; double t; double u; double v; double w; int x; b = pow ( 2.0, ( a - 1.0 ) ); for ( ; ; ) { u = r8_uniform_01 ( seed ); v = r8_uniform_01 ( seed ); w = ( int ) ( 1.0 / pow ( u, 1.0 / ( a - 1.0 ) ) ); t = pow ( ( w + 1.0 ) / w, a - 1.0 ); if ( v * w * ( t - 1.0 ) * b <= t * ( b - 1.0 ) ) { break; } } x = ( int ) w; return x; } /******************************************************************************/ double zipf_variance ( double a ) /******************************************************************************/ /* Purpose: ZIPF_VARIANCE returns the variance of the Zipf PDF. Licensing: This code is distributed under the MIT license. Modified: 14 October 2004 Author: John Burkardt Parameters: Input, double A, the parameter of the PDF. 1.0 < A. Output, double ZIPF_VARIANCE, the variance of the PDF. The variance is only defined for 3 < A. */ { double mean; double variance; if ( a <= 3.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "ZIPF_VARIANCE - Fatal error!\n" ); fprintf ( stderr, " No variance defined for A <= 3.0.\n" ); exit ( 1 ); } mean = zipf_mean ( a ); variance = r8_zeta ( a - 2.0 ) / r8_zeta ( a ) - mean * mean; return variance; }